xref: /netbsd-src/lib/libnpf/npf.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*-
2  * Copyright (c) 2010-2018 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This material is based upon work partially supported by The
6  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: npf.c,v 1.45 2019/01/19 21:19:31 rmind Exp $");
32 
33 #include <sys/types.h>
34 #include <sys/mman.h>
35 #include <sys/stat.h>
36 #include <netinet/in_systm.h>
37 #include <netinet/in.h>
38 #include <net/if.h>
39 
40 #include <stdlib.h>
41 #include <string.h>
42 #include <assert.h>
43 #include <unistd.h>
44 #include <errno.h>
45 #include <err.h>
46 
47 #include <nv.h>
48 #include <dnv.h>
49 
50 #include <cdbw.h>
51 
52 #define	_NPF_PRIVATE
53 #include "npf.h"
54 
55 struct nl_rule {
56 	nvlist_t *	rule_dict;
57 };
58 
59 struct nl_rproc {
60 	nvlist_t *	rproc_dict;
61 };
62 
63 struct nl_table {
64 	nvlist_t *	table_dict;
65 };
66 
67 struct nl_alg {
68 	nvlist_t *	alg_dict;
69 };
70 
71 struct nl_ext {
72 	nvlist_t *	ext_dict;
73 };
74 
75 struct nl_config {
76 	nvlist_t *	ncf_dict;
77 
78 	/* Temporary rule list. */
79 	nvlist_t **	ncf_rule_list;
80 	unsigned	ncf_rule_count;
81 
82 	/* Iterators. */
83 	unsigned	ncf_rule_iter;
84 	unsigned	ncf_reduce[16];
85 	unsigned	ncf_nlevel;
86 	unsigned	ncf_counter;
87 	nl_rule_t	ncf_cur_rule;
88 
89 	unsigned	ncf_table_iter;
90 	nl_table_t	ncf_cur_table;
91 
92 	unsigned	ncf_rproc_iter;
93 	nl_rproc_t	ncf_cur_rproc;
94 };
95 
96 /*
97  * Various helper routines.
98  */
99 
100 static bool
101 _npf_add_addr(nvlist_t *nvl, const char *name, int af, const npf_addr_t *addr)
102 {
103 	size_t sz;
104 
105 	if (af == AF_INET) {
106 		sz = sizeof(struct in_addr);
107 	} else if (af == AF_INET6) {
108 		sz = sizeof(struct in6_addr);
109 	} else {
110 		return false;
111 	}
112 	nvlist_add_binary(nvl, name, addr, sz);
113 	return nvlist_error(nvl) == 0;
114 }
115 
116 static unsigned
117 _npf_get_addr(const nvlist_t *nvl, const char *name, npf_addr_t *addr)
118 {
119 	const void *d;
120 	size_t sz = 0;
121 
122 	d = nvlist_get_binary(nvl, name, &sz);
123 	switch (sz) {
124 	case sizeof(struct in_addr):
125 	case sizeof(struct in6_addr):
126 		memcpy(addr, d, sz);
127 		return (unsigned)sz;
128 	}
129 	return 0;
130 }
131 
132 static bool
133 _npf_dataset_lookup(const nvlist_t *dict, const char *dataset,
134     const char *key, const char *name)
135 {
136 	const nvlist_t * const *items;
137 	size_t nitems;
138 
139 	if (!nvlist_exists_nvlist_array(dict, dataset)) {
140 		return false;
141 	}
142 	items = nvlist_get_nvlist_array(dict, dataset, &nitems);
143 	for (unsigned i = 0; i < nitems; i++) {
144 		const char *item_name;
145 
146 		item_name = dnvlist_get_string(items[i], key, NULL);
147 		if (item_name && strcmp(item_name, name) == 0) {
148 			return true;
149 		}
150 	}
151 	return false;
152 }
153 
154 static const nvlist_t *
155 _npf_dataset_getelement(nvlist_t *dict, const char *dataset, unsigned i)
156 {
157 	const nvlist_t * const *items;
158 	size_t nitems;
159 
160 	if (!nvlist_exists_nvlist_array(dict, dataset)) {
161 		return NULL;
162 	}
163 	items = nvlist_get_nvlist_array(dict, dataset, &nitems);
164 	if (i < nitems) {
165 		return items[i];
166 	}
167 	return NULL;
168 }
169 
170 /*
171  * _npf_rules_process: transform the ruleset representing nested rules
172  * with sublists into a single array with skip-to marks.
173  */
174 static void
175 _npf_rules_process(nl_config_t *ncf, nvlist_t *dict, const char *key)
176 {
177 	nvlist_t **items;
178 	size_t nitems;
179 
180 	if (!nvlist_exists_nvlist_array(dict, key)) {
181 		return;
182 	}
183 	items = nvlist_take_nvlist_array(dict, key, &nitems);
184 	for (unsigned i = 0; i < nitems; i++) {
185 		nvlist_t *rule_dict = items[i];
186 		size_t len = (ncf->ncf_rule_count + 1) * sizeof(nvlist_t *);
187 		void *p = realloc(ncf->ncf_rule_list, len);
188 
189 		/*
190 		 * - Add rule to the transformed array.
191 		 * - Process subrules recursively.
192 		 * - Add the skip-to position.
193 		 */
194 		ncf->ncf_rule_list = p;
195 		ncf->ncf_rule_list[ncf->ncf_rule_count] = rule_dict;
196 		ncf->ncf_rule_count++;
197 
198 		if (nvlist_exists_nvlist_array(rule_dict, "subrules")) {
199 			unsigned idx;
200 
201 			_npf_rules_process(ncf, rule_dict, "subrules");
202 			idx = ncf->ncf_rule_count; // post-recursion index
203 			nvlist_add_number(rule_dict, "skip-to", idx);
204 		}
205 		assert(nvlist_error(rule_dict) == 0);
206 	}
207 	free(items);
208 }
209 
210 /*
211  * CONFIGURATION INTERFACE.
212  */
213 
214 nl_config_t *
215 npf_config_create(void)
216 {
217 	nl_config_t *ncf;
218 
219 	ncf = calloc(1, sizeof(nl_config_t));
220 	if (!ncf) {
221 		return NULL;
222 	}
223 	ncf->ncf_dict = nvlist_create(0);
224 	nvlist_add_number(ncf->ncf_dict, "version", NPF_VERSION);
225 	return ncf;
226 }
227 
228 int
229 npf_config_submit(nl_config_t *ncf, int fd, npf_error_t *errinfo)
230 {
231 	nvlist_t *errnv = NULL;
232 	int error;
233 
234 	/* Ensure the config is built. */
235 	(void)npf_config_build(ncf);
236 
237 	if (nvlist_xfer_ioctl(fd, IOC_NPF_LOAD, ncf->ncf_dict, &errnv) == -1) {
238 		assert(errnv == NULL);
239 		return errno;
240 	}
241 	error = dnvlist_get_number(errnv, "errno", 0);
242 	if (error && errinfo) {
243 		memset(errinfo, 0, sizeof(npf_error_t));
244 		errinfo->id = dnvlist_get_number(errnv, "id", 0);
245 		errinfo->source_file =
246 		    dnvlist_take_string(errnv, "source-file", NULL);
247 		errinfo->source_line =
248 		    dnvlist_take_number(errnv, "source-line", 0);
249 	}
250 	nvlist_destroy(errnv);
251 	return error;
252 }
253 
254 nl_config_t *
255 npf_config_retrieve(int fd)
256 {
257 	nl_config_t *ncf;
258 
259 	ncf = calloc(1, sizeof(nl_config_t));
260 	if (!ncf) {
261 		return NULL;
262 	}
263 	if (nvlist_recv_ioctl(fd, IOC_NPF_SAVE, &ncf->ncf_dict) == -1) {
264 		free(ncf);
265 		return NULL;
266 	}
267 	return ncf;
268 }
269 
270 void *
271 npf_config_export(nl_config_t *ncf, size_t *length)
272 {
273 	/* Ensure the config is built. */
274 	(void)npf_config_build(ncf);
275 	return nvlist_pack(ncf->ncf_dict, length);
276 }
277 
278 nl_config_t *
279 npf_config_import(const void *blob, size_t len)
280 {
281 	nl_config_t *ncf;
282 
283 	ncf = calloc(1, sizeof(nl_config_t));
284 	if (!ncf) {
285 		return NULL;
286 	}
287 	ncf->ncf_dict = nvlist_unpack(blob, len, 0);
288 	if (!ncf->ncf_dict) {
289 		free(ncf);
290 		return NULL;
291 	}
292 	return ncf;
293 }
294 
295 int
296 npf_config_flush(int fd)
297 {
298 	nl_config_t *ncf;
299 	npf_error_t errinfo;
300 	int error;
301 
302 	ncf = npf_config_create();
303 	if (!ncf) {
304 		return ENOMEM;
305 	}
306 	nvlist_add_bool(ncf->ncf_dict, "flush", true);
307 	error = npf_config_submit(ncf, fd, &errinfo);
308 	npf_config_destroy(ncf);
309 	return error;
310 }
311 
312 bool
313 npf_config_active_p(nl_config_t *ncf)
314 {
315 	return dnvlist_get_bool(ncf->ncf_dict, "active", false);
316 }
317 
318 bool
319 npf_config_loaded_p(nl_config_t *ncf)
320 {
321 	return nvlist_exists_nvlist_array(ncf->ncf_dict, "rules");
322 }
323 
324 void *
325 npf_config_build(nl_config_t *ncf)
326 {
327 	_npf_rules_process(ncf, ncf->ncf_dict, "__rules");
328 	if (ncf->ncf_rule_list) {
329 		/* Set the transformed ruleset. */
330 		nvlist_move_nvlist_array(ncf->ncf_dict, "rules",
331 		    ncf->ncf_rule_list, ncf->ncf_rule_count);
332 
333 		/* Clear the temporary list. */
334 		ncf->ncf_rule_list = NULL;
335 		ncf->ncf_rule_count = 0;
336 	}
337 	assert(nvlist_error(ncf->ncf_dict) == 0);
338 	return (void *)ncf->ncf_dict;
339 }
340 
341 void
342 npf_config_destroy(nl_config_t *ncf)
343 {
344 	nvlist_destroy(ncf->ncf_dict);
345 	free(ncf);
346 }
347 
348 /*
349  * DYNAMIC RULESET INTERFACE.
350  */
351 
352 int
353 npf_ruleset_add(int fd, const char *rname, nl_rule_t *rl, uint64_t *id)
354 {
355 	nvlist_t *rule_dict = rl->rule_dict;
356 	nvlist_t *ret_dict;
357 
358 	nvlist_add_string(rule_dict, "ruleset-name", rname);
359 	nvlist_add_number(rule_dict, "command", NPF_CMD_RULE_ADD);
360 	if (nvlist_xfer_ioctl(fd, IOC_NPF_RULE, rule_dict, &ret_dict) == -1) {
361 		return errno;
362 	}
363 	*id = nvlist_get_number(ret_dict, "id");
364 	return 0;
365 }
366 
367 int
368 npf_ruleset_remove(int fd, const char *rname, uint64_t id)
369 {
370 	nvlist_t *rule_dict = nvlist_create(0);
371 
372 	nvlist_add_string(rule_dict, "ruleset-name", rname);
373 	nvlist_add_number(rule_dict, "command", NPF_CMD_RULE_REMOVE);
374 	nvlist_add_number(rule_dict, "id", id);
375 	if (nvlist_send_ioctl(fd, IOC_NPF_RULE, rule_dict) == -1) {
376 		return errno;
377 	}
378 	return 0;
379 }
380 
381 int
382 npf_ruleset_remkey(int fd, const char *rname, const void *key, size_t len)
383 {
384 	nvlist_t *rule_dict = nvlist_create(0);
385 
386 	nvlist_add_string(rule_dict, "ruleset-name", rname);
387 	nvlist_add_number(rule_dict, "command", NPF_CMD_RULE_REMKEY);
388 	nvlist_add_binary(rule_dict, "key", key, len);
389 	if (nvlist_send_ioctl(fd, IOC_NPF_RULE, rule_dict) == -1) {
390 		return errno;
391 	}
392 	return 0;
393 }
394 
395 int
396 npf_ruleset_flush(int fd, const char *rname)
397 {
398 	nvlist_t *rule_dict = nvlist_create(0);
399 
400 	nvlist_add_string(rule_dict, "ruleset-name", rname);
401 	nvlist_add_number(rule_dict, "command", NPF_CMD_RULE_FLUSH);
402 	if (nvlist_send_ioctl(fd, IOC_NPF_RULE, rule_dict) == -1) {
403 		return errno;
404 	}
405 	return 0;
406 }
407 
408 /*
409  * NPF EXTENSION INTERFACE.
410  */
411 
412 nl_ext_t *
413 npf_ext_construct(const char *name)
414 {
415 	nl_ext_t *ext;
416 
417 	ext = malloc(sizeof(*ext));
418 	if (!ext) {
419 		return NULL;
420 	}
421 	ext->ext_dict = nvlist_create(0);
422 	nvlist_add_string(ext->ext_dict, "name", name);
423 	return ext;
424 }
425 
426 void
427 npf_ext_param_u32(nl_ext_t *ext, const char *key, uint32_t val)
428 {
429 	nvlist_add_number(ext->ext_dict, key, val);
430 }
431 
432 void
433 npf_ext_param_bool(nl_ext_t *ext, const char *key, bool val)
434 {
435 	nvlist_add_bool(ext->ext_dict, key, val);
436 }
437 
438 void
439 npf_ext_param_string(nl_ext_t *ext, const char *key, const char *val)
440 {
441 	nvlist_add_string(ext->ext_dict, key, val);
442 }
443 
444 /*
445  * RULE INTERFACE.
446  */
447 
448 nl_rule_t *
449 npf_rule_create(const char *name, uint32_t attr, const char *ifname)
450 {
451 	nl_rule_t *rl;
452 
453 	rl = malloc(sizeof(nl_rule_t));
454 	if (!rl) {
455 		return NULL;
456 	}
457 	rl->rule_dict = nvlist_create(0);
458 	nvlist_add_number(rl->rule_dict, "attr", attr);
459 	if (name) {
460 		nvlist_add_string(rl->rule_dict, "name", name);
461 	}
462 	if (ifname) {
463 		nvlist_add_string(rl->rule_dict, "ifname", ifname);
464 	}
465 	return rl;
466 }
467 
468 int
469 npf_rule_setcode(nl_rule_t *rl, int type, const void *code, size_t len)
470 {
471 	if (type != NPF_CODE_BPF) {
472 		return ENOTSUP;
473 	}
474 	nvlist_add_number(rl->rule_dict, "code-type", (unsigned)type);
475 	nvlist_add_binary(rl->rule_dict, "code", code, len);
476 	return nvlist_error(rl->rule_dict);
477 }
478 
479 int
480 npf_rule_setkey(nl_rule_t *rl, const void *key, size_t len)
481 {
482 	nvlist_add_binary(rl->rule_dict, "key", key, len);
483 	return nvlist_error(rl->rule_dict);
484 }
485 
486 int
487 npf_rule_setinfo(nl_rule_t *rl, const void *info, size_t len)
488 {
489 	nvlist_add_binary(rl->rule_dict, "info", info, len);
490 	return nvlist_error(rl->rule_dict);
491 }
492 
493 int
494 npf_rule_setprio(nl_rule_t *rl, int pri)
495 {
496 	nvlist_add_number(rl->rule_dict, "prio", (uint64_t)pri);
497 	return nvlist_error(rl->rule_dict);
498 }
499 
500 int
501 npf_rule_setproc(nl_rule_t *rl, const char *name)
502 {
503 	nvlist_add_string(rl->rule_dict, "rproc", name);
504 	return nvlist_error(rl->rule_dict);
505 }
506 
507 void *
508 npf_rule_export(nl_rule_t *rl, size_t *length)
509 {
510 	return nvlist_pack(rl->rule_dict, length);
511 }
512 
513 bool
514 npf_rule_exists_p(nl_config_t *ncf, const char *name)
515 {
516 	return _npf_dataset_lookup(ncf->ncf_dict, "rules", "name", name);
517 }
518 
519 int
520 npf_rule_insert(nl_config_t *ncf, nl_rule_t *parent, nl_rule_t *rl)
521 {
522 	nvlist_t *rule_dict = rl->rule_dict;
523 	nvlist_t *target;
524 	const char *key;
525 
526 	if (parent) {
527 		/* Subrule of the parent. */
528 		target = parent->rule_dict;
529 		key = "subrules";
530 	} else {
531 		/* Global ruleset. */
532 		target = ncf->ncf_dict;
533 		key = "__rules";
534 	}
535 	nvlist_append_nvlist_array(target, key, rule_dict);
536 	nvlist_destroy(rule_dict);
537 	free(rl);
538 	return 0;
539 }
540 
541 static nl_rule_t *
542 _npf_rule_iterate1(nl_config_t *ncf, const char *key, unsigned *level)
543 {
544 	unsigned i = ncf->ncf_rule_iter++;
545 	const nvlist_t *rule_dict;
546 	uint32_t skipto;
547 
548 	if (i == 0) {
549 		/* Initialise the iterator. */
550 		ncf->ncf_nlevel = 0;
551 		ncf->ncf_reduce[0] = 0;
552 		ncf->ncf_counter = 0;
553 	}
554 
555 	rule_dict = _npf_dataset_getelement(ncf->ncf_dict, key, i);
556 	if (!rule_dict) {
557 		/* Reset the iterator. */
558 		ncf->ncf_rule_iter = 0;
559 		return NULL;
560 	}
561 	ncf->ncf_cur_rule.rule_dict = __UNCONST(rule_dict); // XXX
562 	*level = ncf->ncf_nlevel;
563 
564 	skipto = dnvlist_get_number(rule_dict, "skip-to", 0);
565 	if (skipto) {
566 		ncf->ncf_nlevel++;
567 		ncf->ncf_reduce[ncf->ncf_nlevel] = skipto;
568 	}
569 	if (ncf->ncf_reduce[ncf->ncf_nlevel] == ++ncf->ncf_counter) {
570 		assert(ncf->ncf_nlevel > 0);
571 		ncf->ncf_nlevel--;
572 	}
573 	return &ncf->ncf_cur_rule;
574 }
575 
576 nl_rule_t *
577 npf_rule_iterate(nl_config_t *ncf, unsigned *level)
578 {
579 	return _npf_rule_iterate1(ncf, "rules", level);
580 }
581 
582 const char *
583 npf_rule_getname(nl_rule_t *rl)
584 {
585 	return dnvlist_get_string(rl->rule_dict, "name", NULL);
586 }
587 
588 uint32_t
589 npf_rule_getattr(nl_rule_t *rl)
590 {
591 	return dnvlist_get_number(rl->rule_dict, "attr", 0);
592 }
593 
594 const char *
595 npf_rule_getinterface(nl_rule_t *rl)
596 {
597 	return dnvlist_get_string(rl->rule_dict, "ifname", NULL);
598 }
599 
600 const void *
601 npf_rule_getinfo(nl_rule_t *rl, size_t *len)
602 {
603 	return dnvlist_get_binary(rl->rule_dict, "info", len, NULL, 0);
604 }
605 
606 const char *
607 npf_rule_getproc(nl_rule_t *rl)
608 {
609 	return dnvlist_get_string(rl->rule_dict, "rproc", NULL);
610 }
611 
612 uint64_t
613 npf_rule_getid(nl_rule_t *rl)
614 {
615 	return dnvlist_get_number(rl->rule_dict, "id", 0);
616 }
617 
618 const void *
619 npf_rule_getcode(nl_rule_t *rl, int *type, size_t *len)
620 {
621 	*type = (int)dnvlist_get_number(rl->rule_dict, "code-type", 0);
622 	return dnvlist_get_binary(rl->rule_dict, "code", len, NULL, 0);
623 }
624 
625 int
626 _npf_ruleset_list(int fd, const char *rname, nl_config_t *ncf)
627 {
628 	nvlist_t *req, *ret;
629 
630 	req = nvlist_create(0);
631 	nvlist_add_string(req, "ruleset-name", rname);
632 	nvlist_add_number(req, "command", NPF_CMD_RULE_LIST);
633 
634 	if (nvlist_xfer_ioctl(fd, IOC_NPF_RULE, req, &ret) == -1) {
635 		return errno;
636 	}
637 	if (nvlist_exists_nvlist_array(ret, "rules")) {
638 		nvlist_t **rules;
639 		size_t n;
640 
641 		rules = nvlist_take_nvlist_array(ret, "rules", &n);
642 		nvlist_move_nvlist_array(ncf->ncf_dict, "rules", rules, n);
643 	}
644 	nvlist_destroy(ret);
645 	return 0;
646 }
647 
648 void
649 npf_rule_destroy(nl_rule_t *rl)
650 {
651 	nvlist_destroy(rl->rule_dict);
652 	free(rl);
653 }
654 
655 /*
656  * RULE PROCEDURE INTERFACE.
657  */
658 
659 nl_rproc_t *
660 npf_rproc_create(const char *name)
661 {
662 	nl_rproc_t *rp;
663 
664 	rp = malloc(sizeof(nl_rproc_t));
665 	if (!rp) {
666 		return NULL;
667 	}
668 	rp->rproc_dict = nvlist_create(0);
669 	nvlist_add_string(rp->rproc_dict, "name", name);
670 	return rp;
671 }
672 
673 int
674 npf_rproc_extcall(nl_rproc_t *rp, nl_ext_t *ext)
675 {
676 	nvlist_t *rproc_dict = rp->rproc_dict;
677 	const char *name = dnvlist_get_string(ext->ext_dict, "name", NULL);
678 
679 	if (_npf_dataset_lookup(rproc_dict, "extcalls", "name", name)) {
680 		return EEXIST;
681 	}
682 	nvlist_append_nvlist_array(rproc_dict, "extcalls", ext->ext_dict);
683 	nvlist_destroy(ext->ext_dict);
684 	free(ext);
685 	return 0;
686 }
687 
688 bool
689 npf_rproc_exists_p(nl_config_t *ncf, const char *name)
690 {
691 	return _npf_dataset_lookup(ncf->ncf_dict, "rprocs", "name", name);
692 }
693 
694 int
695 npf_rproc_insert(nl_config_t *ncf, nl_rproc_t *rp)
696 {
697 	const char *name;
698 
699 	name = dnvlist_get_string(rp->rproc_dict, "name", NULL);
700 	if (!name) {
701 		return EINVAL;
702 	}
703 	if (npf_rproc_exists_p(ncf, name)) {
704 		return EEXIST;
705 	}
706 	nvlist_append_nvlist_array(ncf->ncf_dict, "rprocs", rp->rproc_dict);
707 	nvlist_destroy(rp->rproc_dict);
708 	free(rp);
709 	return 0;
710 }
711 
712 nl_rproc_t *
713 npf_rproc_iterate(nl_config_t *ncf)
714 {
715 	const nvlist_t *rproc_dict;
716 	unsigned i = ncf->ncf_rproc_iter++;
717 
718 	rproc_dict = _npf_dataset_getelement(ncf->ncf_dict, "rprocs", i);
719 	if (!rproc_dict) {
720 		/* Reset the iterator. */
721 		ncf->ncf_rproc_iter = 0;
722 		return NULL;
723 	}
724 	ncf->ncf_cur_rproc.rproc_dict = __UNCONST(rproc_dict); // XXX
725 	return &ncf->ncf_cur_rproc;
726 }
727 
728 const char *
729 npf_rproc_getname(nl_rproc_t *rp)
730 {
731 	return dnvlist_get_string(rp->rproc_dict, "name", NULL);
732 }
733 
734 /*
735  * NAT INTERFACE.
736  */
737 
738 nl_nat_t *
739 npf_nat_create(int type, unsigned flags, const char *ifname)
740 {
741 	nl_rule_t *rl;
742 	nvlist_t *rule_dict;
743 	uint32_t attr;
744 
745 	attr = NPF_RULE_PASS | NPF_RULE_FINAL |
746 	    (type == NPF_NATOUT ? NPF_RULE_OUT : NPF_RULE_IN);
747 
748 	/* Create a rule for NAT policy.  Next, will add NAT data. */
749 	rl = npf_rule_create(NULL, attr, ifname);
750 	if (!rl) {
751 		return NULL;
752 	}
753 	rule_dict = rl->rule_dict;
754 
755 	/* Translation type and flags. */
756 	nvlist_add_number(rule_dict, "type", type);
757 	nvlist_add_number(rule_dict, "flags", flags);
758 	return (nl_nat_t *)rl;
759 }
760 
761 int
762 npf_nat_insert(nl_config_t *ncf, nl_nat_t *nt, int pri __unused)
763 {
764 	nvlist_add_number(nt->rule_dict, "prio", (uint64_t)NPF_PRI_LAST);
765 	nvlist_append_nvlist_array(ncf->ncf_dict, "nat", nt->rule_dict);
766 	nvlist_destroy(nt->rule_dict);
767 	free(nt);
768 	return 0;
769 }
770 
771 nl_nat_t *
772 npf_nat_iterate(nl_config_t *ncf)
773 {
774 	unsigned level;
775 	return _npf_rule_iterate1(ncf, "nat", &level);
776 }
777 
778 int
779 npf_nat_setaddr(nl_nat_t *nt, int af, npf_addr_t *addr, npf_netmask_t mask)
780 {
781 	/* Translation IP and mask. */
782 	if (!_npf_add_addr(nt->rule_dict, "nat-ip", af, addr)) {
783 		return nvlist_error(nt->rule_dict);
784 	}
785 	nvlist_add_number(nt->rule_dict, "nat-mask", (uint32_t)mask);
786 	return nvlist_error(nt->rule_dict);
787 }
788 
789 int
790 npf_nat_setport(nl_nat_t *nt, in_port_t port)
791 {
792 	/* Translation port (for redirect case). */
793 	nvlist_add_number(nt->rule_dict, "nat-port", port);
794 	return nvlist_error(nt->rule_dict);
795 }
796 
797 int
798 npf_nat_settable(nl_nat_t *nt, unsigned tid)
799 {
800 	nvlist_add_number(nt->rule_dict, "nat-table-id", tid);
801 	return nvlist_error(nt->rule_dict);
802 }
803 
804 int
805 npf_nat_setalgo(nl_nat_t *nt, unsigned algo)
806 {
807 	nvlist_add_number(nt->rule_dict, "nat-algo", algo);
808 	return nvlist_error(nt->rule_dict);
809 }
810 
811 int
812 npf_nat_setnpt66(nl_nat_t *nt, uint16_t adj)
813 {
814 	int error;
815 
816 	if ((error = npf_nat_setalgo(nt, NPF_ALGO_NPT66)) != 0) {
817 		return error;
818 	}
819 	nvlist_add_number(nt->rule_dict, "npt66-adj", adj);
820 	return nvlist_error(nt->rule_dict);
821 }
822 
823 int
824 npf_nat_gettype(nl_nat_t *nt)
825 {
826 	return dnvlist_get_number(nt->rule_dict, "type", 0);
827 }
828 
829 unsigned
830 npf_nat_getflags(nl_nat_t *nt)
831 {
832 	return dnvlist_get_number(nt->rule_dict, "flags", 0);
833 }
834 
835 unsigned
836 npf_nat_getalgo(nl_nat_t *nt)
837 {
838 	return dnvlist_get_number(nt->rule_dict, "nat-algo", 0);
839 }
840 
841 const npf_addr_t *
842 npf_nat_getaddr(nl_nat_t *nt, size_t *alen, npf_netmask_t *mask)
843 {
844 	const void *data;
845 
846 	if (nvlist_exists(nt->rule_dict, "nat-ip")) {
847 		data = nvlist_get_binary(nt->rule_dict, "nat-ip", alen);
848 		*mask = nvlist_get_number(nt->rule_dict, "nat-mask");
849 	} else {
850 		data = NULL;
851 		*alen = 0;
852 		*mask = NPF_NO_NETMASK;
853 	}
854 	return data;
855 }
856 
857 in_port_t
858 npf_nat_getport(nl_nat_t *nt)
859 {
860 	return (uint16_t)dnvlist_get_number(nt->rule_dict, "nat-port", 0);
861 }
862 
863 unsigned
864 npf_nat_gettable(nl_nat_t *nt)
865 {
866 	return dnvlist_get_number(nt->rule_dict, "nat-table-id", 0);
867 }
868 
869 /*
870  * TABLE INTERFACE.
871  */
872 
873 nl_table_t *
874 npf_table_create(const char *name, unsigned id, int type)
875 {
876 	nl_table_t *tl;
877 
878 	tl = malloc(sizeof(*tl));
879 	if (!tl) {
880 		return NULL;
881 	}
882 	tl->table_dict = nvlist_create(0);
883 	nvlist_add_string(tl->table_dict, "name", name);
884 	nvlist_add_number(tl->table_dict, "id", id);
885 	nvlist_add_number(tl->table_dict, "type", type);
886 	return tl;
887 }
888 
889 int
890 npf_table_add_entry(nl_table_t *tl, int af, const npf_addr_t *addr,
891     const npf_netmask_t mask)
892 {
893 	nvlist_t *entry;
894 
895 	/* Create the table entry. */
896 	entry = nvlist_create(0);
897 	if (!entry) {
898 		return ENOMEM;
899 	}
900 	if (!_npf_add_addr(entry, "addr", af, addr)) {
901 		nvlist_destroy(entry);
902 		return EINVAL;
903 	}
904 	nvlist_add_number(entry, "mask", mask);
905 	nvlist_append_nvlist_array(tl->table_dict, "entries", entry);
906 	nvlist_destroy(entry);
907 	return 0;
908 }
909 
910 static inline int
911 _npf_table_build(nl_table_t *tl)
912 {
913 	struct cdbw *cdbw;
914 	const nvlist_t * const *entries;
915 	int error = 0, fd = -1;
916 	size_t nitems, len;
917 	void *cdb, *buf;
918 	struct stat sb;
919 	char sfn[32];
920 
921 	if (!nvlist_exists_nvlist_array(tl->table_dict, "entries")) {
922 		return 0;
923 	}
924 
925 	/*
926 	 * Create a constant database and put all the entries.
927 	 */
928 	if ((cdbw = cdbw_open()) == NULL) {
929 		return errno;
930 	}
931 	entries = nvlist_get_nvlist_array(tl->table_dict, "entries", &nitems);
932 	for (unsigned i = 0; i < nitems; i++) {
933 		const nvlist_t *entry = entries[i];
934 		const npf_addr_t *addr;
935 		size_t alen;
936 
937 		addr = dnvlist_get_binary(entry, "addr", &alen, NULL, 0);
938 		if (addr == NULL || alen == 0 || alen > sizeof(npf_addr_t)) {
939 			error = EINVAL;
940 			goto out;
941 		}
942 		if (cdbw_put(cdbw, addr, alen, addr, alen) == -1) {
943 			error = errno;
944 			goto out;
945 		}
946 	}
947 
948 	/*
949 	 * Produce the constant database into a temporary file.
950 	 */
951 	strncpy(sfn, "/tmp/npfcdb.XXXXXX", sizeof(sfn));
952 	sfn[sizeof(sfn) - 1] = '\0';
953 
954 	if ((fd = mkstemp(sfn)) == -1) {
955 		error = errno;
956 		goto out;
957 	}
958 	unlink(sfn);
959 
960 	if (cdbw_output(cdbw, fd, "npf-table-cdb", NULL) == -1) {
961 		error = errno;
962 		goto out;
963 	}
964 	if (fstat(fd, &sb) == -1) {
965 		error = errno;
966 		goto out;
967 	}
968 	len = sb.st_size;
969 
970 	/*
971 	 * Memory-map the database and copy it into a buffer.
972 	 */
973 	buf = malloc(len);
974 	if (!buf) {
975 		error = ENOMEM;
976 		goto out;
977 	}
978 	cdb = mmap(NULL, len, PROT_READ, MAP_FILE | MAP_PRIVATE, fd, 0);
979 	if (cdb == MAP_FAILED) {
980 		error = errno;
981 		free(buf);
982 		goto out;
983 	}
984 	munmap(cdb, len);
985 
986 	/*
987 	 * Move the data buffer to the nvlist.
988 	 */
989 	nvlist_move_binary(tl->table_dict, "data", buf, len);
990 	error = nvlist_error(tl->table_dict);
991 out:
992 	if (fd != -1) {
993 		close(fd);
994 	}
995 	cdbw_close(cdbw);
996 	return error;
997 }
998 
999 int
1000 npf_table_insert(nl_config_t *ncf, nl_table_t *tl)
1001 {
1002 	const char *name;
1003 	int error;
1004 
1005 	name = dnvlist_get_string(tl->table_dict, "name", NULL);
1006 	if (!name) {
1007 		return EINVAL;
1008 	}
1009 	if (_npf_dataset_lookup(ncf->ncf_dict, "tables", "name", name)) {
1010 		return EEXIST;
1011 	}
1012 	if (dnvlist_get_number(tl->table_dict, "type", 0) == NPF_TABLE_CONST) {
1013 		if ((error = _npf_table_build(tl)) != 0) {
1014 			return error;
1015 		}
1016 	}
1017 	nvlist_append_nvlist_array(ncf->ncf_dict, "tables", tl->table_dict);
1018 	nvlist_destroy(tl->table_dict);
1019 	free(tl);
1020 	return 0;
1021 }
1022 
1023 nl_table_t *
1024 npf_table_iterate(nl_config_t *ncf)
1025 {
1026 	const nvlist_t *table_dict;
1027 	unsigned i = ncf->ncf_table_iter++;
1028 
1029 	table_dict = _npf_dataset_getelement(ncf->ncf_dict, "tables", i);
1030 	if (!table_dict) {
1031 		/* Reset the iterator. */
1032 		ncf->ncf_table_iter = 0;
1033 		return NULL;
1034 	}
1035 	ncf->ncf_cur_table.table_dict = __UNCONST(table_dict); // XXX
1036 	return &ncf->ncf_cur_table;
1037 }
1038 
1039 unsigned
1040 npf_table_getid(nl_table_t *tl)
1041 {
1042 	return dnvlist_get_number(tl->table_dict, "id", (unsigned)-1);
1043 }
1044 
1045 const char *
1046 npf_table_getname(nl_table_t *tl)
1047 {
1048 	return dnvlist_get_string(tl->table_dict, "name", NULL);
1049 }
1050 
1051 int
1052 npf_table_gettype(nl_table_t *tl)
1053 {
1054 	return dnvlist_get_number(tl->table_dict, "type", 0);
1055 }
1056 
1057 void
1058 npf_table_destroy(nl_table_t *tl)
1059 {
1060 	nvlist_destroy(tl->table_dict);
1061 	free(tl);
1062 }
1063 
1064 /*
1065  * ALG INTERFACE.
1066  */
1067 
1068 int
1069 _npf_alg_load(nl_config_t *ncf, const char *name)
1070 {
1071 	nvlist_t *alg_dict;
1072 
1073 	if (_npf_dataset_lookup(ncf->ncf_dict, "algs", "name", name)) {
1074 		return EEXIST;
1075 	}
1076 	alg_dict = nvlist_create(0);
1077 	nvlist_add_string(alg_dict, "name", name);
1078 	nvlist_append_nvlist_array(ncf->ncf_dict, "algs", alg_dict);
1079 	nvlist_destroy(alg_dict);
1080 	return 0;
1081 }
1082 
1083 int
1084 _npf_alg_unload(nl_config_t *ncf, const char *name)
1085 {
1086 	if (!_npf_dataset_lookup(ncf->ncf_dict, "algs", "name", name)) {
1087 		return ENOENT;
1088 	}
1089 	return ENOTSUP;
1090 }
1091 
1092 /*
1093  * CONNECTION / NAT ENTRY INTERFACE.
1094  */
1095 
1096 int
1097 npf_nat_lookup(int fd, int af, npf_addr_t *addr[2], in_port_t port[2],
1098     int proto, int dir)
1099 {
1100 	nvlist_t *req = NULL, *conn_res;
1101 	const nvlist_t *nat;
1102 	int error = EINVAL;
1103 
1104 	/*
1105 	 * Setup the connection lookup key.
1106 	 */
1107 	conn_res = nvlist_create(0);
1108 	if (!conn_res) {
1109 		return ENOMEM;
1110 	}
1111 	if (!_npf_add_addr(conn_res, "saddr", af, addr[0]))
1112 		goto out;
1113 	if (!_npf_add_addr(conn_res, "daddr", af, addr[1]))
1114 		goto out;
1115 	nvlist_add_number(conn_res, "sport", port[0]);
1116 	nvlist_add_number(conn_res, "dport", port[1]);
1117 	nvlist_add_number(conn_res, "proto", proto);
1118 
1119 	/*
1120 	 * Setup the request.
1121 	 */
1122 	req = nvlist_create(0);
1123 	if (!req) {
1124 		error = ENOMEM;
1125 		goto out;
1126 	}
1127 	nvlist_add_number(req, "direction", dir);
1128 	nvlist_move_nvlist(req, "key", conn_res);
1129 	conn_res = NULL;
1130 
1131 	/* Lookup: retrieve the connection entry. */
1132 	if (nvlist_xfer_ioctl(fd, IOC_NPF_CONN_LOOKUP, req, &conn_res) == -1) {
1133 		error = errno;
1134 		goto out;
1135 	}
1136 
1137 	/*
1138 	 * Get the NAT entry and extract the translated pair.
1139 	 */
1140 	nat = dnvlist_get_nvlist(conn_res, "nat", NULL);
1141 	if (!nat) {
1142 		errno = ENOENT;
1143 		goto out;
1144 	}
1145 	if (!_npf_get_addr(nat, "oaddr", addr[0])) {
1146 		error = EINVAL;
1147 		goto out;
1148 	}
1149 	port[0] = nvlist_get_number(nat, "oport");
1150 	port[1] = nvlist_get_number(nat, "tport");
1151 out:
1152 	if (conn_res) {
1153 		nvlist_destroy(conn_res);
1154 	}
1155 	if (req) {
1156 		nvlist_destroy(req);
1157 	}
1158 	return error;
1159 }
1160 
1161 typedef struct {
1162 	npf_addr_t	addr[2];
1163 	in_port_t	port[2];
1164 	uint16_t	alen;
1165 	uint16_t	proto;
1166 } npf_endpoint_t;
1167 
1168 static bool
1169 npf_endpoint_load(const nvlist_t *conn, const char *name, npf_endpoint_t *ep)
1170 {
1171 	const nvlist_t *ed = dnvlist_get_nvlist(conn, name, NULL);
1172 
1173 	if (!ed)
1174 		return false;
1175 	if (!(ep->alen = _npf_get_addr(ed, "saddr", &ep->addr[0])))
1176 		return false;
1177 	if (ep->alen != _npf_get_addr(ed, "daddr", &ep->addr[1]))
1178 		return false;
1179 	ep->port[0] = nvlist_get_number(ed, "sport");
1180 	ep->port[1] = nvlist_get_number(ed, "dport");
1181 	ep->proto = nvlist_get_number(ed, "proto");
1182 	return true;
1183 }
1184 
1185 static void
1186 npf_conn_handle(const nvlist_t *conn, npf_conn_func_t func, void *arg)
1187 {
1188 	const nvlist_t *nat;
1189 	npf_endpoint_t ep;
1190 	uint16_t tport;
1191 	const char *ifname;
1192 
1193 	ifname = dnvlist_get_string(conn, "ifname", NULL);
1194 	if (!ifname)
1195 		goto err;
1196 
1197 	if ((nat = dnvlist_get_nvlist(conn, "nat", NULL)) != NULL) {
1198 		tport = nvlist_get_number(nat, "tport");
1199 	} else {
1200 		tport = 0;
1201 	}
1202 	if (!npf_endpoint_load(conn, "forw-key", &ep)) {
1203 		goto err;
1204 	}
1205 
1206 	in_port_t p[] = {
1207 	    ntohs(ep.port[0]),
1208 	    ntohs(ep.port[1]),
1209 	    ntohs(tport)
1210 	};
1211 	(*func)((unsigned)ep.alen, ep.addr, p, ifname, arg);
1212 err:
1213 	return;
1214 }
1215 
1216 int
1217 npf_conn_list(int fd, npf_conn_func_t func, void *arg)
1218 {
1219 	nl_config_t *ncf;
1220 	const nvlist_t * const *conns;
1221 	size_t nitems;
1222 
1223 	ncf = npf_config_retrieve(fd);
1224 	if (!ncf) {
1225 		return errno;
1226 	}
1227 	if (!nvlist_exists_nvlist_array(ncf->ncf_dict, "conn-list")) {
1228 		return 0;
1229 	}
1230 	conns = nvlist_get_nvlist_array(ncf->ncf_dict, "conn-list", &nitems);
1231 	for (unsigned i = 0; i < nitems; i++) {
1232 		const nvlist_t *conn = conns[i];
1233 		npf_conn_handle(conn, func, arg);
1234 	}
1235 	return 0;
1236 }
1237 
1238 /*
1239  * MISC.
1240  */
1241 
1242 void
1243 _npf_debug_addif(nl_config_t *ncf, const char *ifname)
1244 {
1245 	nvlist_t *debug;
1246 
1247 	/*
1248 	 * Initialise the debug dictionary on the first call.
1249 	 */
1250 	debug = dnvlist_take_nvlist(ncf->ncf_dict, "debug", NULL);
1251 	if (debug == NULL) {
1252 		debug = nvlist_create(0);
1253 	}
1254 	if (!_npf_dataset_lookup(debug, "interfaces", "name", ifname)) {
1255 		nvlist_t *ifdict = nvlist_create(0);
1256 		nvlist_add_string(ifdict, "name", ifname);
1257 		nvlist_add_number(ifdict, "index", if_nametoindex(ifname));
1258 		nvlist_append_nvlist_array(debug, "interfaces", ifdict);
1259 		nvlist_destroy(ifdict);
1260 	}
1261 	nvlist_move_nvlist(ncf->ncf_dict, "debug", debug);
1262 }
1263 
1264 void
1265 _npf_config_dump(nl_config_t *ncf, int fd)
1266 {
1267 	(void)npf_config_build(ncf);
1268 	nvlist_dump(ncf->ncf_dict, fd);
1269 }
1270