xref: /netbsd-src/lib/libm/src/s_tan.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /* @(#)s_tan.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: s_tan.c,v 1.8 1997/10/09 11:33:35 lukem Exp $");
16 #endif
17 
18 /* tan(x)
19  * Return tangent function of x.
20  *
21  * kernel function:
22  *	__kernel_tan		... tangent function on [-pi/4,pi/4]
23  *	__ieee754_rem_pio2	... argument reduction routine
24  *
25  * Method.
26  *      Let S,C and T denote the sin, cos and tan respectively on
27  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
28  *	in [-pi/4 , +pi/4], and let n = k mod 4.
29  *	We have
30  *
31  *          n        sin(x)      cos(x)        tan(x)
32  *     ----------------------------------------------------------
33  *	    0	       S	   C		 T
34  *	    1	       C	  -S		-1/T
35  *	    2	      -S	  -C		 T
36  *	    3	      -C	   S		-1/T
37  *     ----------------------------------------------------------
38  *
39  * Special cases:
40  *      Let trig be any of sin, cos, or tan.
41  *      trig(+-INF)  is NaN, with signals;
42  *      trig(NaN)    is that NaN;
43  *
44  * Accuracy:
45  *	TRIG(x) returns trig(x) nearly rounded
46  */
47 
48 #include "math.h"
49 #include "math_private.h"
50 
51 #ifdef __STDC__
52 	double tan(double x)
53 #else
54 	double tan(x)
55 	double x;
56 #endif
57 {
58 	double y[2],z=0.0;
59 	int32_t n, ix;
60 
61     /* High word of x. */
62 	GET_HIGH_WORD(ix,x);
63 
64     /* |x| ~< pi/4 */
65 	ix &= 0x7fffffff;
66 	if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
67 
68     /* tan(Inf or NaN) is NaN */
69 	else if (ix>=0x7ff00000) return x-x;		/* NaN */
70 
71     /* argument reduction needed */
72 	else {
73 	    n = __ieee754_rem_pio2(x,y);
74 	    return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
75 							-1 -- n odd */
76 	}
77 }
78