113618394Sjtc /* @(#)s_expm1.c 5.1 93/09/24 */
213618394Sjtc /*
313618394Sjtc * ====================================================
413618394Sjtc * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
513618394Sjtc *
613618394Sjtc * Developed at SunPro, a Sun Microsystems, Inc. business.
713618394Sjtc * Permission to use, copy, modify, and distribute this
813618394Sjtc * software is freely granted, provided that this notice
913618394Sjtc * is preserved.
1013618394Sjtc * ====================================================
1113618394Sjtc */
1213618394Sjtc
1361187201Slukem #include <sys/cdefs.h>
14d1f06e0bSjtc #if defined(LIBM_SCCS) && !defined(lint)
15*fa47e9d8Smaya __RCSID("$NetBSD: s_expm1.c,v 1.13 2017/02/09 22:11:09 maya Exp $");
16bc3f7bf6Sjtc #endif
17bc3f7bf6Sjtc
1813618394Sjtc /* expm1(x)
1913618394Sjtc * Returns exp(x)-1, the exponential of x minus 1.
2013618394Sjtc *
2113618394Sjtc * Method
2213618394Sjtc * 1. Argument reduction:
2313618394Sjtc * Given x, find r and integer k such that
2413618394Sjtc *
2513618394Sjtc * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
2613618394Sjtc *
2713618394Sjtc * Here a correction term c will be computed to compensate
2813618394Sjtc * the error in r when rounded to a floating-point number.
2913618394Sjtc *
3013618394Sjtc * 2. Approximating expm1(r) by a special rational function on
3113618394Sjtc * the interval [0,0.34658]:
3213618394Sjtc * Since
3313618394Sjtc * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
3413618394Sjtc * we define R1(r*r) by
3513618394Sjtc * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
3613618394Sjtc * That is,
3713618394Sjtc * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
3813618394Sjtc * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
3913618394Sjtc * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
4013618394Sjtc * We use a special Reme algorithm on [0,0.347] to generate
4113618394Sjtc * a polynomial of degree 5 in r*r to approximate R1. The
4213618394Sjtc * maximum error of this polynomial approximation is bounded
4313618394Sjtc * by 2**-61. In other words,
4413618394Sjtc * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
4513618394Sjtc * where Q1 = -1.6666666666666567384E-2,
4613618394Sjtc * Q2 = 3.9682539681370365873E-4,
4713618394Sjtc * Q3 = -9.9206344733435987357E-6,
4813618394Sjtc * Q4 = 2.5051361420808517002E-7,
4913618394Sjtc * Q5 = -6.2843505682382617102E-9;
5013618394Sjtc * (where z=r*r, and the values of Q1 to Q5 are listed below)
5113618394Sjtc * with error bounded by
5213618394Sjtc * | 5 | -61
5313618394Sjtc * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
5413618394Sjtc * | |
5513618394Sjtc *
5613618394Sjtc * expm1(r) = exp(r)-1 is then computed by the following
5713618394Sjtc * specific way which minimize the accumulation rounding error:
5813618394Sjtc * 2 3
5913618394Sjtc * r r [ 3 - (R1 + R1*r/2) ]
6013618394Sjtc * expm1(r) = r + --- + --- * [--------------------]
6113618394Sjtc * 2 2 [ 6 - r*(3 - R1*r/2) ]
6213618394Sjtc *
6313618394Sjtc * To compensate the error in the argument reduction, we use
6413618394Sjtc * expm1(r+c) = expm1(r) + c + expm1(r)*c
6513618394Sjtc * ~ expm1(r) + c + r*c
6613618394Sjtc * Thus c+r*c will be added in as the correction terms for
6713618394Sjtc * expm1(r+c). Now rearrange the term to avoid optimization
6813618394Sjtc * screw up:
6913618394Sjtc * ( 2 2 )
7013618394Sjtc * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
7113618394Sjtc * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
7213618394Sjtc * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
7313618394Sjtc * ( )
7413618394Sjtc *
7513618394Sjtc * = r - E
7613618394Sjtc * 3. Scale back to obtain expm1(x):
7713618394Sjtc * From step 1, we have
7813618394Sjtc * expm1(x) = either 2^k*[expm1(r)+1] - 1
7913618394Sjtc * = or 2^k*[expm1(r) + (1-2^-k)]
8013618394Sjtc * 4. Implementation notes:
8113618394Sjtc * (A). To save one multiplication, we scale the coefficient Qi
8213618394Sjtc * to Qi*2^i, and replace z by (x^2)/2.
8313618394Sjtc * (B). To achieve maximum accuracy, we compute expm1(x) by
8413618394Sjtc * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
8513618394Sjtc * (ii) if k=0, return r-E
8613618394Sjtc * (iii) if k=-1, return 0.5*(r-E)-0.5
8713618394Sjtc * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
8813618394Sjtc * else return 1.0+2.0*(r-E);
8913618394Sjtc * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
9013618394Sjtc * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
9113618394Sjtc * (vii) return 2^k(1-((E+2^-k)-r))
9213618394Sjtc *
9313618394Sjtc * Special cases:
9413618394Sjtc * expm1(INF) is INF, expm1(NaN) is NaN;
9513618394Sjtc * expm1(-INF) is -1, and
9613618394Sjtc * for finite argument, only expm1(0)=0 is exact.
9713618394Sjtc *
9813618394Sjtc * Accuracy:
9913618394Sjtc * according to an error analysis, the error is always less than
10013618394Sjtc * 1 ulp (unit in the last place).
10113618394Sjtc *
10213618394Sjtc * Misc. info.
10313618394Sjtc * For IEEE double
10413618394Sjtc * if x > 7.09782712893383973096e+02 then expm1(x) overflow
10513618394Sjtc *
10613618394Sjtc * Constants:
10713618394Sjtc * The hexadecimal values are the intended ones for the following
10813618394Sjtc * constants. The decimal values may be used, provided that the
10913618394Sjtc * compiler will convert from decimal to binary accurately enough
11013618394Sjtc * to produce the hexadecimal values shown.
11113618394Sjtc */
11213618394Sjtc
1138346e333Sjtc #include "math.h"
1148346e333Sjtc #include "math_private.h"
11513618394Sjtc
11613618394Sjtc static const double
11713618394Sjtc one = 1.0,
11813618394Sjtc huge = 1.0e+300,
11913618394Sjtc tiny = 1.0e-300,
12013618394Sjtc o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
12113618394Sjtc ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
12213618394Sjtc ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
12313618394Sjtc invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
12413618394Sjtc /* scaled coefficients related to expm1 */
12513618394Sjtc Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
12613618394Sjtc Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
12713618394Sjtc Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
12813618394Sjtc Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
12913618394Sjtc Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
13013618394Sjtc
131aa30599eSwiz double
expm1(double x)132aa30599eSwiz expm1(double x)
13313618394Sjtc {
13413618394Sjtc double y,hi,lo,c,t,e,hxs,hfx,r1;
135b0c9d092Sjtc int32_t k,xsb;
136b0c9d092Sjtc u_int32_t hx;
13713618394Sjtc
13861187201Slukem c = 0;
1398346e333Sjtc GET_HIGH_WORD(hx,x);
14013618394Sjtc xsb = hx&0x80000000; /* sign bit of x */
141*fa47e9d8Smaya #ifdef DEAD_CODE
14213618394Sjtc if(xsb==0) y=x; else y= -x; /* y = |x| */
143*fa47e9d8Smaya #endif
14413618394Sjtc hx &= 0x7fffffff; /* high word of |x| */
14513618394Sjtc
14613618394Sjtc /* filter out huge and non-finite argument */
14713618394Sjtc if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
14813618394Sjtc if(hx >= 0x40862E42) { /* if |x|>=709.78... */
14913618394Sjtc if(hx>=0x7ff00000) {
150b0c9d092Sjtc u_int32_t low;
1518346e333Sjtc GET_LOW_WORD(low,x);
1528346e333Sjtc if(((hx&0xfffff)|low)!=0)
15313618394Sjtc return x+x; /* NaN */
15413618394Sjtc else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
15513618394Sjtc }
15613618394Sjtc if(x > o_threshold) return huge*huge; /* overflow */
15713618394Sjtc }
15813618394Sjtc if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
15913618394Sjtc if(x+tiny<0.0) /* raise inexact */
16013618394Sjtc return tiny-one; /* return -1 */
16113618394Sjtc }
16213618394Sjtc }
16313618394Sjtc
16413618394Sjtc /* argument reduction */
16513618394Sjtc if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
16613618394Sjtc if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
16713618394Sjtc if(xsb==0)
16813618394Sjtc {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
16913618394Sjtc else
17013618394Sjtc {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
17113618394Sjtc } else {
17213618394Sjtc k = invln2*x+((xsb==0)?0.5:-0.5);
17313618394Sjtc t = k;
17413618394Sjtc hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
17513618394Sjtc lo = t*ln2_lo;
17613618394Sjtc }
17713618394Sjtc x = hi - lo;
17813618394Sjtc c = (hi-x)-lo;
17913618394Sjtc }
18013618394Sjtc else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
18113618394Sjtc t = huge+x; /* return x with inexact flags when x!=0 */
18213618394Sjtc return x - (t-(huge+x));
18313618394Sjtc }
18413618394Sjtc else k = 0;
18513618394Sjtc
18613618394Sjtc /* x is now in primary range */
18713618394Sjtc hfx = 0.5*x;
18813618394Sjtc hxs = x*hfx;
18913618394Sjtc r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
19013618394Sjtc t = 3.0-r1*hfx;
19113618394Sjtc e = hxs*((r1-t)/(6.0 - x*t));
19213618394Sjtc if(k==0) return x - (x*e-hxs); /* c is 0 */
19313618394Sjtc else {
19413618394Sjtc e = (x*(e-c)-c);
19513618394Sjtc e -= hxs;
19613618394Sjtc if(k== -1) return 0.5*(x-e)-0.5;
19708c09aefSthorpej if(k==1) {
19813618394Sjtc if(x < -0.25) return -2.0*(e-(x+0.5));
19913618394Sjtc else return one+2.0*(x-e);
20008c09aefSthorpej }
20113618394Sjtc if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
202b0c9d092Sjtc u_int32_t high;
20313618394Sjtc y = one-(e-x);
2048346e333Sjtc GET_HIGH_WORD(high,y);
2058346e333Sjtc SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
20613618394Sjtc return y-one;
20713618394Sjtc }
20813618394Sjtc t = one;
20913618394Sjtc if(k<20) {
210b0c9d092Sjtc u_int32_t high;
2118346e333Sjtc SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
21213618394Sjtc y = t-(e-x);
2138346e333Sjtc GET_HIGH_WORD(high,y);
2148346e333Sjtc SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
21513618394Sjtc } else {
216b0c9d092Sjtc u_int32_t high;
2178346e333Sjtc SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
21813618394Sjtc y = x-(e+t);
21913618394Sjtc y += one;
2208346e333Sjtc GET_HIGH_WORD(high,y);
2218346e333Sjtc SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
22213618394Sjtc }
22313618394Sjtc }
22413618394Sjtc return y;
22513618394Sjtc }
226