xref: /netbsd-src/lib/libm/src/s_atan.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /* @(#)s_atan.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: s_atan.c,v 1.9 1997/10/09 11:30:56 lukem Exp $");
16 #endif
17 
18 /* atan(x)
19  * Method
20  *   1. Reduce x to positive by atan(x) = -atan(-x).
21  *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
22  *      is further reduced to one of the following intervals and the
23  *      arctangent of t is evaluated by the corresponding formula:
24  *
25  *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
26  *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
27  *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
28  *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
29  *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
30  *
31  * Constants:
32  * The hexadecimal values are the intended ones for the following
33  * constants. The decimal values may be used, provided that the
34  * compiler will convert from decimal to binary accurately enough
35  * to produce the hexadecimal values shown.
36  */
37 
38 #include "math.h"
39 #include "math_private.h"
40 
41 #ifdef __STDC__
42 static const double atanhi[] = {
43 #else
44 static double atanhi[] = {
45 #endif
46   4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
47   7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
48   9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
49   1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
50 };
51 
52 #ifdef __STDC__
53 static const double atanlo[] = {
54 #else
55 static double atanlo[] = {
56 #endif
57   2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
58   3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
59   1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
60   6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
61 };
62 
63 #ifdef __STDC__
64 static const double aT[] = {
65 #else
66 static double aT[] = {
67 #endif
68   3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
69  -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
70   1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
71  -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
72   9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
73  -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
74   6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
75  -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
76   4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
77  -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
78   1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
79 };
80 
81 #ifdef __STDC__
82 	static const double
83 #else
84 	static double
85 #endif
86 one   = 1.0,
87 huge   = 1.0e300;
88 
89 #ifdef __STDC__
90 	double atan(double x)
91 #else
92 	double atan(x)
93 	double x;
94 #endif
95 {
96 	double w,s1,s2,z;
97 	int32_t ix,hx,id;
98 
99 	GET_HIGH_WORD(hx,x);
100 	ix = hx&0x7fffffff;
101 	if(ix>=0x44100000) {	/* if |x| >= 2^66 */
102 	    u_int32_t low;
103 	    GET_LOW_WORD(low,x);
104 	    if(ix>0x7ff00000||
105 		(ix==0x7ff00000&&(low!=0)))
106 		return x+x;		/* NaN */
107 	    if(hx>0) return  atanhi[3]+atanlo[3];
108 	    else     return -atanhi[3]-atanlo[3];
109 	} if (ix < 0x3fdc0000) {	/* |x| < 0.4375 */
110 	    if (ix < 0x3e200000) {	/* |x| < 2^-29 */
111 		if(huge+x>one) return x;	/* raise inexact */
112 	    }
113 	    id = -1;
114 	} else {
115 	x = fabs(x);
116 	if (ix < 0x3ff30000) {		/* |x| < 1.1875 */
117 	    if (ix < 0x3fe60000) {	/* 7/16 <=|x|<11/16 */
118 		id = 0; x = (2.0*x-one)/(2.0+x);
119 	    } else {			/* 11/16<=|x|< 19/16 */
120 		id = 1; x  = (x-one)/(x+one);
121 	    }
122 	} else {
123 	    if (ix < 0x40038000) {	/* |x| < 2.4375 */
124 		id = 2; x  = (x-1.5)/(one+1.5*x);
125 	    } else {			/* 2.4375 <= |x| < 2^66 */
126 		id = 3; x  = -1.0/x;
127 	    }
128 	}}
129     /* end of argument reduction */
130 	z = x*x;
131 	w = z*z;
132     /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
133 	s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
134 	s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
135 	if (id<0) return x - x*(s1+s2);
136 	else {
137 	    z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
138 	    return (hx<0)? -z:z;
139 	}
140 }
141