1 /* 2 * ==================================================== 3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * 5 * Developed at SunPro, a Sun Microsystems, Inc. business. 6 * Permission to use, copy, modify, and distribute this 7 * software is freely granted, provided that this notice 8 * is preserved. 9 * ==================================================== 10 */ 11 12 /* 13 * from: @(#)fdlibm.h 5.1 93/09/24 14 * $NetBSD: math_private.h,v 1.22 2015/03/26 11:59:38 justin Exp $ 15 */ 16 17 #ifndef _MATH_PRIVATE_H_ 18 #define _MATH_PRIVATE_H_ 19 20 #include <sys/types.h> 21 22 /* The original fdlibm code used statements like: 23 n0 = ((*(int*)&one)>>29)^1; * index of high word * 24 ix0 = *(n0+(int*)&x); * high word of x * 25 ix1 = *((1-n0)+(int*)&x); * low word of x * 26 to dig two 32 bit words out of the 64 bit IEEE floating point 27 value. That is non-ANSI, and, moreover, the gcc instruction 28 scheduler gets it wrong. We instead use the following macros. 29 Unlike the original code, we determine the endianness at compile 30 time, not at run time; I don't see much benefit to selecting 31 endianness at run time. */ 32 33 /* A union which permits us to convert between a double and two 32 bit 34 ints. */ 35 36 /* 37 * The ARM ports are little endian except for the FPA word order which is 38 * big endian. 39 */ 40 41 #if (BYTE_ORDER == BIG_ENDIAN) || (defined(__arm__) && !defined(__VFP_FP__)) 42 43 typedef union 44 { 45 double value; 46 struct 47 { 48 u_int32_t msw; 49 u_int32_t lsw; 50 } parts; 51 struct { 52 u_int64_t w; 53 } xparts; 54 } ieee_double_shape_type; 55 56 #endif 57 58 #if (BYTE_ORDER == LITTLE_ENDIAN) && \ 59 !(defined(__arm__) && !defined(__VFP_FP__)) 60 61 typedef union 62 { 63 double value; 64 struct 65 { 66 u_int32_t lsw; 67 u_int32_t msw; 68 } parts; 69 struct { 70 u_int64_t w; 71 } xparts; 72 } ieee_double_shape_type; 73 74 #endif 75 76 /* Get two 32 bit ints from a double. */ 77 78 #define EXTRACT_WORDS(ix0,ix1,d) \ 79 do { \ 80 ieee_double_shape_type ew_u; \ 81 ew_u.value = (d); \ 82 (ix0) = ew_u.parts.msw; \ 83 (ix1) = ew_u.parts.lsw; \ 84 } while (/*CONSTCOND*/0) 85 86 /* Get a 64-bit int from a double. */ 87 #define EXTRACT_WORD64(ix,d) \ 88 do { \ 89 ieee_double_shape_type ew_u; \ 90 ew_u.value = (d); \ 91 (ix) = ew_u.xparts.w; \ 92 } while (/*CONSTCOND*/0) 93 94 95 /* Get the more significant 32 bit int from a double. */ 96 97 #define GET_HIGH_WORD(i,d) \ 98 do { \ 99 ieee_double_shape_type gh_u; \ 100 gh_u.value = (d); \ 101 (i) = gh_u.parts.msw; \ 102 } while (/*CONSTCOND*/0) 103 104 /* Get the less significant 32 bit int from a double. */ 105 106 #define GET_LOW_WORD(i,d) \ 107 do { \ 108 ieee_double_shape_type gl_u; \ 109 gl_u.value = (d); \ 110 (i) = gl_u.parts.lsw; \ 111 } while (/*CONSTCOND*/0) 112 113 /* Set a double from two 32 bit ints. */ 114 115 #define INSERT_WORDS(d,ix0,ix1) \ 116 do { \ 117 ieee_double_shape_type iw_u; \ 118 iw_u.parts.msw = (ix0); \ 119 iw_u.parts.lsw = (ix1); \ 120 (d) = iw_u.value; \ 121 } while (/*CONSTCOND*/0) 122 123 /* Set a double from a 64-bit int. */ 124 #define INSERT_WORD64(d,ix) \ 125 do { \ 126 ieee_double_shape_type iw_u; \ 127 iw_u.xparts.w = (ix); \ 128 (d) = iw_u.value; \ 129 } while (/*CONSTCOND*/0) 130 131 132 /* Set the more significant 32 bits of a double from an int. */ 133 134 #define SET_HIGH_WORD(d,v) \ 135 do { \ 136 ieee_double_shape_type sh_u; \ 137 sh_u.value = (d); \ 138 sh_u.parts.msw = (v); \ 139 (d) = sh_u.value; \ 140 } while (/*CONSTCOND*/0) 141 142 /* Set the less significant 32 bits of a double from an int. */ 143 144 #define SET_LOW_WORD(d,v) \ 145 do { \ 146 ieee_double_shape_type sl_u; \ 147 sl_u.value = (d); \ 148 sl_u.parts.lsw = (v); \ 149 (d) = sl_u.value; \ 150 } while (/*CONSTCOND*/0) 151 152 /* A union which permits us to convert between a float and a 32 bit 153 int. */ 154 155 typedef union 156 { 157 float value; 158 u_int32_t word; 159 } ieee_float_shape_type; 160 161 /* Get a 32 bit int from a float. */ 162 163 #define GET_FLOAT_WORD(i,d) \ 164 do { \ 165 ieee_float_shape_type gf_u; \ 166 gf_u.value = (d); \ 167 (i) = gf_u.word; \ 168 } while (/*CONSTCOND*/0) 169 170 /* Set a float from a 32 bit int. */ 171 172 #define SET_FLOAT_WORD(d,i) \ 173 do { \ 174 ieee_float_shape_type sf_u; \ 175 sf_u.word = (i); \ 176 (d) = sf_u.value; \ 177 } while (/*CONSTCOND*/0) 178 179 /* 180 * Attempt to get strict C99 semantics for assignment with non-C99 compilers. 181 */ 182 #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0 183 #define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) 184 #else 185 #define STRICT_ASSIGN(type, lval, rval) do { \ 186 volatile type __lval; \ 187 \ 188 if (sizeof(type) >= sizeof(long double)) \ 189 (lval) = (rval); \ 190 else { \ 191 __lval = (rval); \ 192 (lval) = __lval; \ 193 } \ 194 } while (/*CONSTCOND*/0) 195 #endif 196 197 #ifdef _COMPLEX_H 198 199 /* 200 * Quoting from ISO/IEC 9899:TC2: 201 * 202 * 6.2.5.13 Types 203 * Each complex type has the same representation and alignment requirements as 204 * an array type containing exactly two elements of the corresponding real type; 205 * the first element is equal to the real part, and the second element to the 206 * imaginary part, of the complex number. 207 */ 208 typedef union { 209 float complex z; 210 float parts[2]; 211 } float_complex; 212 213 typedef union { 214 double complex z; 215 double parts[2]; 216 } double_complex; 217 218 typedef union { 219 long double complex z; 220 long double parts[2]; 221 } long_double_complex; 222 223 #define REAL_PART(z) ((z).parts[0]) 224 #define IMAG_PART(z) ((z).parts[1]) 225 226 #endif /* _COMPLEX_H */ 227 228 /* ieee style elementary functions */ 229 extern double __ieee754_sqrt __P((double)); 230 extern double __ieee754_acos __P((double)); 231 extern double __ieee754_acosh __P((double)); 232 extern double __ieee754_log __P((double)); 233 extern double __ieee754_atanh __P((double)); 234 extern double __ieee754_asin __P((double)); 235 extern double __ieee754_atan2 __P((double,double)); 236 extern double __ieee754_exp __P((double)); 237 extern double __ieee754_cosh __P((double)); 238 extern double __ieee754_fmod __P((double,double)); 239 extern double __ieee754_pow __P((double,double)); 240 extern double __ieee754_lgamma_r __P((double,int *)); 241 extern double __ieee754_gamma_r __P((double,int *)); 242 extern double __ieee754_lgamma __P((double)); 243 extern double __ieee754_gamma __P((double)); 244 extern double __ieee754_log10 __P((double)); 245 extern double __ieee754_log2 __P((double)); 246 extern double __ieee754_sinh __P((double)); 247 extern double __ieee754_hypot __P((double,double)); 248 extern double __ieee754_j0 __P((double)); 249 extern double __ieee754_j1 __P((double)); 250 extern double __ieee754_y0 __P((double)); 251 extern double __ieee754_y1 __P((double)); 252 extern double __ieee754_jn __P((int,double)); 253 extern double __ieee754_yn __P((int,double)); 254 extern double __ieee754_remainder __P((double,double)); 255 extern int32_t __ieee754_rem_pio2 __P((double,double*)); 256 extern double __ieee754_scalb __P((double,double)); 257 258 /* fdlibm kernel function */ 259 extern double __kernel_standard __P((double,double,int)); 260 extern double __kernel_sin __P((double,double,int)); 261 extern double __kernel_cos __P((double,double)); 262 extern double __kernel_tan __P((double,double,int)); 263 extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int32_t*)); 264 265 266 /* ieee style elementary float functions */ 267 extern float __ieee754_sqrtf __P((float)); 268 extern float __ieee754_acosf __P((float)); 269 extern float __ieee754_acoshf __P((float)); 270 extern float __ieee754_logf __P((float)); 271 extern float __ieee754_atanhf __P((float)); 272 extern float __ieee754_asinf __P((float)); 273 extern float __ieee754_atan2f __P((float,float)); 274 extern float __ieee754_expf __P((float)); 275 extern float __ieee754_coshf __P((float)); 276 extern float __ieee754_fmodf __P((float,float)); 277 extern float __ieee754_powf __P((float,float)); 278 extern float __ieee754_lgammaf_r __P((float,int *)); 279 extern float __ieee754_gammaf_r __P((float,int *)); 280 extern float __ieee754_lgammaf __P((float)); 281 extern float __ieee754_gammaf __P((float)); 282 extern float __ieee754_log10f __P((float)); 283 extern float __ieee754_log2f __P((float)); 284 extern float __ieee754_sinhf __P((float)); 285 extern float __ieee754_hypotf __P((float,float)); 286 extern float __ieee754_j0f __P((float)); 287 extern float __ieee754_j1f __P((float)); 288 extern float __ieee754_y0f __P((float)); 289 extern float __ieee754_y1f __P((float)); 290 extern float __ieee754_jnf __P((int,float)); 291 extern float __ieee754_ynf __P((int,float)); 292 extern float __ieee754_remainderf __P((float,float)); 293 extern int32_t __ieee754_rem_pio2f __P((float,float*)); 294 extern float __ieee754_scalbf __P((float,float)); 295 296 /* float versions of fdlibm kernel functions */ 297 extern float __kernel_sinf __P((float,float,int)); 298 extern float __kernel_cosf __P((float,float)); 299 extern float __kernel_tanf __P((float,float,int)); 300 extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const int32_t*)); 301 302 /* ieee style elementary long double functions */ 303 extern long double __ieee754_fmodl(long double, long double); 304 extern long double __ieee754_sqrtl(long double); 305 306 /* 307 * TRUNC() is a macro that sets the trailing 27 bits in the mantissa of an 308 * IEEE double variable to zero. It must be expression-like for syntactic 309 * reasons, and we implement this expression using an inline function 310 * instead of a pure macro to avoid depending on the gcc feature of 311 * statement-expressions. 312 */ 313 #define TRUNC(d) (_b_trunc(&(d))) 314 315 static __inline void 316 _b_trunc(volatile double *_dp) 317 { 318 uint32_t _lw; 319 320 GET_LOW_WORD(_lw, *_dp); 321 SET_LOW_WORD(*_dp, _lw & 0xf8000000); 322 } 323 324 struct Double { 325 double a; 326 double b; 327 }; 328 329 /* 330 * Functions internal to the math package, yet not static. 331 */ 332 double __exp__D(double, double); 333 struct Double __log__D(double); 334 335 #endif /* _MATH_PRIVATE_H_ */ 336