xref: /netbsd-src/lib/libm/src/k_rem_pio2.c (revision d9158b13b5dfe46201430699a3f7a235ecf28df3)
1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #ifndef lint
14 static char rcsid[] = "$Id: k_rem_pio2.c,v 1.3 1994/02/18 02:25:58 jtc Exp $";
15 #endif
16 
17 /*
18  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
19  * double x[],y[]; int e0,nx,prec; int ipio2[];
20  *
21  * __kernel_rem_pio2 return the last three digits of N with
22  *		y = x - N*pi/2
23  * so that |y| < pi/2.
24  *
25  * The method is to compute the integer (mod 8) and fraction parts of
26  * (2/pi)*x without doing the full multiplication. In general we
27  * skip the part of the product that are known to be a huge integer (
28  * more accurately, = 0 mod 8 ). Thus the number of operations are
29  * independent of the exponent of the input.
30  *
31  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
32  *
33  * Input parameters:
34  * 	x[]	The input value (must be positive) is broken into nx
35  *		pieces of 24-bit integers in double precision format.
36  *		x[i] will be the i-th 24 bit of x. The scaled exponent
37  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
38  *		match x's up to 24 bits.
39  *
40  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
41  *			e0 = ilogb(z)-23
42  *			z  = scalbn(z,-e0)
43  *		for i = 0,1,2
44  *			x[i] = floor(z)
45  *			z    = (z-x[i])*2**24
46  *
47  *
48  *	y[]	ouput result in an array of double precision numbers.
49  *		The dimension of y[] is:
50  *			24-bit  precision	1
51  *			53-bit  precision	2
52  *			64-bit  precision	2
53  *			113-bit precision	3
54  *		The actual value is the sum of them. Thus for 113-bit
55  *		precison, one may have to do something like:
56  *
57  *		long double t,w,r_head, r_tail;
58  *		t = (long double)y[2] + (long double)y[1];
59  *		w = (long double)y[0];
60  *		r_head = t+w;
61  *		r_tail = w - (r_head - t);
62  *
63  *	e0	The exponent of x[0]
64  *
65  *	nx	dimension of x[]
66  *
67  *  	prec	an integer indicating the precision:
68  *			0	24  bits (single)
69  *			1	53  bits (double)
70  *			2	64  bits (extended)
71  *			3	113 bits (quad)
72  *
73  *	ipio2[]
74  *		integer array, contains the (24*i)-th to (24*i+23)-th
75  *		bit of 2/pi after binary point. The corresponding
76  *		floating value is
77  *
78  *			ipio2[i] * 2^(-24(i+1)).
79  *
80  * External function:
81  *	double scalbn(), floor();
82  *
83  *
84  * Here is the description of some local variables:
85  *
86  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
87  *		in the computation. The recommended value is 2,3,4,
88  *		6 for single, double, extended,and quad.
89  *
90  * 	jz	local integer variable indicating the number of
91  *		terms of ipio2[] used.
92  *
93  *	jx	nx - 1
94  *
95  *	jv	index for pointing to the suitable ipio2[] for the
96  *		computation. In general, we want
97  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
98  *		is an integer. Thus
99  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
100  *		Hence jv = max(0,(e0-3)/24).
101  *
102  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
103  *
104  * 	q[]	double array with integral value, representing the
105  *		24-bits chunk of the product of x and 2/pi.
106  *
107  *	q0	the corresponding exponent of q[0]. Note that the
108  *		exponent for q[i] would be q0-24*i.
109  *
110  *	PIo2[]	double precision array, obtained by cutting pi/2
111  *		into 24 bits chunks.
112  *
113  *	f[]	ipio2[] in floating point
114  *
115  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
116  *
117  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
118  *
119  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
120  *		it also indicates the *sign* of the result.
121  *
122  */
123 
124 
125 /*
126  * Constants:
127  * The hexadecimal values are the intended ones for the following
128  * constants. The decimal values may be used, provided that the
129  * compiler will convert from decimal to binary accurately enough
130  * to produce the hexadecimal values shown.
131  */
132 
133 #include <math.h>
134 
135 #ifdef __STDC__
136 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
137 #else
138 static int init_jk[] = {2,3,4,6};
139 #endif
140 
141 #ifdef __STDC__
142 static const double PIo2[] = {
143 #else
144 static double PIo2[] = {
145 #endif
146   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
147   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
148   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
149   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
150   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
151   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
152   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
153   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
154 };
155 
156 #ifdef __STDC__
157 static const double
158 #else
159 static double
160 #endif
161 zero   = 0.0,
162 one    = 1.0,
163 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
164 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
165 
166 #ifdef __STDC__
167 	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
168 #else
169 	int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
170 	double x[], y[]; int e0,nx,prec; int ipio2[];
171 #endif
172 {
173 	int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
174 	double z,fw,f[20],fq[20],q[20];
175 
176     /* initialize jk*/
177 	jk = init_jk[prec];
178 	jp = jk;
179 
180     /* determine jx,jv,q0, note that 3>q0 */
181 	jx =  nx-1;
182 	jv = (e0-3)/24; if(jv<0) jv=0;
183 	q0 =  e0-24*(jv+1);
184 
185     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
186 	j = jv-jx; m = jx+jk;
187 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
188 
189     /* compute q[0],q[1],...q[jk] */
190 	for (i=0;i<=jk;i++) {
191 	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
192 	}
193 
194 	jz = jk;
195 recompute:
196     /* distill q[] into iq[] reversingly */
197 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
198 	    fw    =  (double)((int)(twon24* z));
199 	    iq[i] =  (int)(z-two24*fw);
200 	    z     =  q[j-1]+fw;
201 	}
202 
203     /* compute n */
204 	z  = scalbn(z,q0);		/* actual value of z */
205 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
206 	n  = (int) z;
207 	z -= (double)n;
208 	ih = 0;
209 	if(q0>0) {	/* need iq[jz-1] to determine n */
210 	    i  = (iq[jz-1]>>(24-q0)); n += i;
211 	    iq[jz-1] -= i<<(24-q0);
212 	    ih = iq[jz-1]>>(23-q0);
213 	}
214 	else if(q0==0) ih = iq[jz-1]>>23;
215 	else if(z>=0.5) ih=2;
216 
217 	if(ih>0) {	/* q > 0.5 */
218 	    n += 1; carry = 0;
219 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
220 		j = iq[i];
221 		if(carry==0) {
222 		    if(j!=0) {
223 			carry = 1; iq[i] = 0x1000000- j;
224 		    }
225 		} else  iq[i] = 0xffffff - j;
226 	    }
227 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
228 	        switch(q0) {
229 	        case 1:
230 	    	   iq[jz-1] &= 0x7fffff; break;
231 	    	case 2:
232 	    	   iq[jz-1] &= 0x3fffff; break;
233 	        }
234 	    }
235 	    if(ih==2) {
236 		z = one - z;
237 		if(carry!=0) z -= scalbn(one,q0);
238 	    }
239 	}
240 
241     /* check if recomputation is needed */
242 	if(z==zero) {
243 	    j = 0;
244 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
245 	    if(j==0) { /* need recomputation */
246 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
247 
248 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
249 		    f[jx+i] = (double) ipio2[jv+i];
250 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
251 		    q[i] = fw;
252 		}
253 		jz += k;
254 		goto recompute;
255 	    }
256 	}
257 
258     /* chop off zero terms */
259 	if(z==0.0) {
260 	    jz -= 1; q0 -= 24;
261 	    while(iq[jz]==0) { jz--; q0-=24;}
262 	} else { /* break z into 24-bit if necessary */
263 	    z = scalbn(z,-q0);
264 	    if(z>=two24) {
265 		fw = (double)((int)(twon24*z));
266 		iq[jz] = (int)(z-two24*fw);
267 		jz += 1; q0 += 24;
268 		iq[jz] = (int) fw;
269 	    } else iq[jz] = (int) z ;
270 	}
271 
272     /* convert integer "bit" chunk to floating-point value */
273 	fw = scalbn(one,q0);
274 	for(i=jz;i>=0;i--) {
275 	    q[i] = fw*(double)iq[i]; fw*=twon24;
276 	}
277 
278     /* compute PIo2[0,...,jp]*q[jz,...,0] */
279 	for(i=jz;i>=0;i--) {
280 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
281 	    fq[jz-i] = fw;
282 	}
283 
284     /* compress fq[] into y[] */
285 	switch(prec) {
286 	    case 0:
287 		fw = 0.0;
288 		for (i=jz;i>=0;i--) fw += fq[i];
289 		y[0] = (ih==0)? fw: -fw;
290 		break;
291 	    case 1:
292 	    case 2:
293 		fw = 0.0;
294 		for (i=jz;i>=0;i--) fw += fq[i];
295 		y[0] = (ih==0)? fw: -fw;
296 		fw = fq[0]-fw;
297 		for (i=1;i<=jz;i++) fw += fq[i];
298 		y[1] = (ih==0)? fw: -fw;
299 		break;
300 	    case 3:	/* painful */
301 		for (i=jz;i>0;i--) {
302 		    fw      = fq[i-1]+fq[i];
303 		    fq[i]  += fq[i-1]-fw;
304 		    fq[i-1] = fw;
305 		}
306 		for (i=jz;i>1;i--) {
307 		    fw      = fq[i-1]+fq[i];
308 		    fq[i]  += fq[i-1]-fw;
309 		    fq[i-1] = fw;
310 		}
311 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
312 		if(ih==0) {
313 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
314 		} else {
315 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
316 		}
317 	}
318 	return n&7;
319 }
320