xref: /netbsd-src/lib/libm/src/e_sqrtl.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*-
2  * Copyright (c) 2007 Steven G. Kargl
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: head/lib/msun/src/e_sqrtl.c 176720 2008-03-02 01:47:58Z das $");
30 #endif
31 __RCSID("$NetBSD: e_sqrtl.c,v 1.5 2016/08/26 08:31:17 christos Exp $");
32 
33 #include <machine/ieee.h>
34 #include <float.h>
35 
36 #include "math.h"
37 #include "math_private.h"
38 
39 #ifdef __HAVE_LONG_DOUBLE
40 
41 #define __TEST_FENV
42 #include <fenv.h>
43 
44 #ifdef LDBL_IMPLICIT_NBIT
45 #define	LDBL_NBIT	0
46 #endif
47 
48 #ifdef __HAVE_FENV
49 
50 /* Return (x + ulp) for normal positive x. Assumes no overflow. */
51 static inline long double
52 inc(long double x)
53 {
54 	union ieee_ext_u ux = { .extu_ld = x, };
55 
56 	if (++ux.extu_fracl == 0) {
57 		if (++ux.extu_frach == 0) {
58 			ux.extu_exp++;
59 			ux.extu_frach |= LDBL_NBIT;
60 		}
61 	}
62 	return (ux.extu_ld);
63 }
64 
65 /* Return (x - ulp) for normal positive x. Assumes no underflow. */
66 static inline long double
67 dec(long double x)
68 {
69 	union ieee_ext_u ux = { .extu_ld = x, };
70 
71 	if (ux.extu_fracl-- == 0) {
72 		if (ux.extu_frach-- == LDBL_NBIT) {
73 			ux.extu_exp--;
74 			ux.extu_frach |= LDBL_NBIT;
75 		}
76 	}
77 	return (ux.extu_ld);
78 }
79 
80 /*
81  * This is slow, but simple and portable. You should use hardware sqrt
82  * if possible.
83  */
84 
85 long double
86 __ieee754_sqrtl(long double x)
87 {
88 	union ieee_ext_u ux = { .extu_ld = x, };
89 	int k, r;
90 	long double lo, xn;
91 	fenv_t env;
92 
93 	/* If x = NaN, then sqrt(x) = NaN. */
94 	/* If x = Inf, then sqrt(x) = Inf. */
95 	/* If x = -Inf, then sqrt(x) = NaN. */
96 	if (ux.extu_exp == LDBL_MAX_EXP * 2 - 1)
97 		return (x * x + x);
98 
99 	/* If x = +-0, then sqrt(x) = +-0. */
100 	if ((ux.extu_frach | ux.extu_fracl | ux.extu_exp) == 0)
101 		return (x);
102 
103 	/* If x < 0, then raise invalid and return NaN */
104 	if (ux.extu_sign)
105 		return ((x - x) / (x - x));
106 
107 	feholdexcept(&env);
108 
109 	if (ux.extu_exp == 0) {
110 		/* Adjust subnormal numbers. */
111 		ux.extu_ld *= 0x1.0p514;
112 		k = -514;
113 	} else {
114 		k = 0;
115 	}
116 	/*
117 	 * ux.extu_ld is a normal number, so break it into ux.extu_ld = e*2^n where
118 	 * ux.extu_ld = (2*e)*2^2k for odd n and ux.extu_ld = (4*e)*2^2k for even n.
119 	 */
120 	if ((ux.extu_exp - EXT_EXP_BIAS) & 1) {	/* n is even.     */
121 		k += ux.extu_exp - EXT_EXP_BIAS - 1; /* 2k = n - 2.   */
122 		ux.extu_exp = EXT_EXP_BIAS + 1;	/* ux.extu_ld in [2,4). */
123 	} else {
124 		k += ux.extu_exp - EXT_EXP_BIAS;	/* 2k = n - 1.   */
125 		ux.extu_exp = EXT_EXP_BIAS;	/* ux.extu_ld in [1,2). */
126 	}
127 
128 	/*
129 	 * Newton's iteration.
130 	 * Split ux.extu_ld into a high and low part to achieve additional precision.
131 	 */
132 	xn = sqrt(ux.extu_ld);			/* 53-bit estimate of sqrtl(x). */
133 #if LDBL_MANT_DIG > 100
134 	xn = (xn + (ux.extu_ld / xn)) * 0.5;	/* 106-bit estimate. */
135 #endif
136 	lo = ux.extu_ld;
137 	ux.extu_fracl = 0;		/* Zero out lower bits. */
138 	lo = (lo - ux.extu_ld) / xn;	/* Low bits divided by xn. */
139 	xn = xn + (ux.extu_ld / xn);	/* High portion of estimate. */
140 	ux.extu_ld = xn + lo;		/* Combine everything. */
141 	ux.extu_exp += (k >> 1) - 1;
142 
143 	feclearexcept(FE_INEXACT);
144 	r = fegetround();
145 	fesetround(FE_TOWARDZERO);	/* Set to round-toward-zero. */
146 	xn = x / ux.extu_ld;		/* Chopped quotient (inexact?). */
147 
148 	if (!fetestexcept(FE_INEXACT)) { /* Quotient is exact. */
149 		if (xn == ux.extu_ld) {
150 			fesetenv(&env);
151 			return (ux.extu_ld);
152 		}
153 		/* Round correctly for inputs like x = y**2 - ulp. */
154 		xn = dec(xn);		/* xn = xn - ulp. */
155 	}
156 
157 	if (r == FE_TONEAREST) {
158 		xn = inc(xn);		/* xn = xn + ulp. */
159 	} else if (r == FE_UPWARD) {
160 		ux.extu_ld = inc(ux.extu_ld);	/* ux.extu_ld = ux.extu_ld + ulp. */
161 		xn = inc(xn);		/* xn  = xn + ulp. */
162 	}
163 	ux.extu_ld = ux.extu_ld + xn;		/* Chopped sum. */
164 	feupdateenv(&env);	/* Restore env and raise inexact */
165 	ux.extu_exp--;
166 	return (ux.extu_ld);
167 }
168 
169 #else /* !__HAVE_FENV */
170 
171 /*
172  * No fenv support:
173  * poor man's version: just use double
174  */
175 long double
176 __ieee754_sqrtl(long double x)
177 {
178 	return __ieee754_sqrt((double)x);
179 }
180 
181 #endif /* __HAVE_FENV */
182 
183 #endif /* __HAVE_LONG_DOUBLE */
184