xref: /netbsd-src/lib/libm/src/e_sqrt.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /* @(#)e_sqrt.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: e_sqrt.c,v 1.9 1997/10/09 11:30:06 lukem Exp $");
16 #endif
17 
18 /* __ieee754_sqrt(x)
19  * Return correctly rounded sqrt.
20  *           ------------------------------------------
21  *	     |  Use the hardware sqrt if you have one |
22  *           ------------------------------------------
23  * Method:
24  *   Bit by bit method using integer arithmetic. (Slow, but portable)
25  *   1. Normalization
26  *	Scale x to y in [1,4) with even powers of 2:
27  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
28  *		sqrt(x) = 2^k * sqrt(y)
29  *   2. Bit by bit computation
30  *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
31  *	     i							 0
32  *                                     i+1         2
33  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
34  *	     i      i            i                 i
35  *
36  *	To compute q    from q , one checks whether
37  *		    i+1       i
38  *
39  *			      -(i+1) 2
40  *			(q + 2      ) <= y.			(2)
41  *     			  i
42  *							      -(i+1)
43  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
44  *		 	       i+1   i             i+1   i
45  *
46  *	With some algebric manipulation, it is not difficult to see
47  *	that (2) is equivalent to
48  *                             -(i+1)
49  *			s  +  2       <= y			(3)
50  *			 i                i
51  *
52  *	The advantage of (3) is that s  and y  can be computed by
53  *				      i      i
54  *	the following recurrence formula:
55  *	    if (3) is false
56  *
57  *	    s     =  s  ,	y    = y   ;			(4)
58  *	     i+1      i		 i+1    i
59  *
60  *	    otherwise,
61  *                         -i                     -(i+1)
62  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
63  *           i+1      i          i+1    i     i
64  *
65  *	One may easily use induction to prove (4) and (5).
66  *	Note. Since the left hand side of (3) contain only i+2 bits,
67  *	      it does not necessary to do a full (53-bit) comparison
68  *	      in (3).
69  *   3. Final rounding
70  *	After generating the 53 bits result, we compute one more bit.
71  *	Together with the remainder, we can decide whether the
72  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
73  *	(it will never equal to 1/2ulp).
74  *	The rounding mode can be detected by checking whether
75  *	huge + tiny is equal to huge, and whether huge - tiny is
76  *	equal to huge for some floating point number "huge" and "tiny".
77  *
78  * Special cases:
79  *	sqrt(+-0) = +-0 	... exact
80  *	sqrt(inf) = inf
81  *	sqrt(-ve) = NaN		... with invalid signal
82  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
83  *
84  * Other methods : see the appended file at the end of the program below.
85  *---------------
86  */
87 
88 #include "math.h"
89 #include "math_private.h"
90 
91 #ifdef __STDC__
92 static	const double	one	= 1.0, tiny=1.0e-300;
93 #else
94 static	double	one	= 1.0, tiny=1.0e-300;
95 #endif
96 
97 #ifdef __STDC__
98 	double __ieee754_sqrt(double x)
99 #else
100 	double __ieee754_sqrt(x)
101 	double x;
102 #endif
103 {
104 	double z;
105 	int32_t sign = (int)0x80000000;
106 	int32_t ix0,s0,q,m,t,i;
107 	u_int32_t r,t1,s1,ix1,q1;
108 
109 	EXTRACT_WORDS(ix0,ix1,x);
110 
111     /* take care of Inf and NaN */
112 	if((ix0&0x7ff00000)==0x7ff00000) {
113 	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
114 					   sqrt(-inf)=sNaN */
115 	}
116     /* take care of zero */
117 	if(ix0<=0) {
118 	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
119 	    else if(ix0<0)
120 		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
121 	}
122     /* normalize x */
123 	m = (ix0>>20);
124 	if(m==0) {				/* subnormal x */
125 	    while(ix0==0) {
126 		m -= 21;
127 		ix0 |= (ix1>>11); ix1 <<= 21;
128 	    }
129 	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
130 	    m -= i-1;
131 	    ix0 |= (ix1>>(32-i));
132 	    ix1 <<= i;
133 	}
134 	m -= 1023;	/* unbias exponent */
135 	ix0 = (ix0&0x000fffff)|0x00100000;
136 	if(m&1){	/* odd m, double x to make it even */
137 	    ix0 += ix0 + ((ix1&sign)>>31);
138 	    ix1 += ix1;
139 	}
140 	m >>= 1;	/* m = [m/2] */
141 
142     /* generate sqrt(x) bit by bit */
143 	ix0 += ix0 + ((ix1&sign)>>31);
144 	ix1 += ix1;
145 	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
146 	r = 0x00200000;		/* r = moving bit from right to left */
147 
148 	while(r!=0) {
149 	    t = s0+r;
150 	    if(t<=ix0) {
151 		s0   = t+r;
152 		ix0 -= t;
153 		q   += r;
154 	    }
155 	    ix0 += ix0 + ((ix1&sign)>>31);
156 	    ix1 += ix1;
157 	    r>>=1;
158 	}
159 
160 	r = sign;
161 	while(r!=0) {
162 	    t1 = s1+r;
163 	    t  = s0;
164 	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
165 		s1  = t1+r;
166 		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
167 		ix0 -= t;
168 		if (ix1 < t1) ix0 -= 1;
169 		ix1 -= t1;
170 		q1  += r;
171 	    }
172 	    ix0 += ix0 + ((ix1&sign)>>31);
173 	    ix1 += ix1;
174 	    r>>=1;
175 	}
176 
177     /* use floating add to find out rounding direction */
178 	if((ix0|ix1)!=0) {
179 	    z = one-tiny; /* trigger inexact flag */
180 	    if (z>=one) {
181 	        z = one+tiny;
182 	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
183 		else if (z>one) {
184 		    if (q1==(u_int32_t)0xfffffffe) q+=1;
185 		    q1+=2;
186 		} else
187 	            q1 += (q1&1);
188 	    }
189 	}
190 	ix0 = (q>>1)+0x3fe00000;
191 	ix1 =  q1>>1;
192 	if ((q&1)==1) ix1 |= sign;
193 	ix0 += (m <<20);
194 	INSERT_WORDS(z,ix0,ix1);
195 	return z;
196 }
197 
198 /*
199 Other methods  (use floating-point arithmetic)
200 -------------
201 (This is a copy of a drafted paper by Prof W. Kahan
202 and K.C. Ng, written in May, 1986)
203 
204 	Two algorithms are given here to implement sqrt(x)
205 	(IEEE double precision arithmetic) in software.
206 	Both supply sqrt(x) correctly rounded. The first algorithm (in
207 	Section A) uses newton iterations and involves four divisions.
208 	The second one uses reciproot iterations to avoid division, but
209 	requires more multiplications. Both algorithms need the ability
210 	to chop results of arithmetic operations instead of round them,
211 	and the INEXACT flag to indicate when an arithmetic operation
212 	is executed exactly with no roundoff error, all part of the
213 	standard (IEEE 754-1985). The ability to perform shift, add,
214 	subtract and logical AND operations upon 32-bit words is needed
215 	too, though not part of the standard.
216 
217 A.  sqrt(x) by Newton Iteration
218 
219    (1)	Initial approximation
220 
221 	Let x0 and x1 be the leading and the trailing 32-bit words of
222 	a floating point number x (in IEEE double format) respectively
223 
224 	    1    11		     52				  ...widths
225 	   ------------------------------------------------------
226 	x: |s|	  e     |	      f				|
227 	   ------------------------------------------------------
228 	      msb    lsb  msb				      lsb ...order
229 
230 
231 	     ------------------------  	     ------------------------
232 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
233 	     ------------------------  	     ------------------------
234 
235 	By performing shifts and subtracts on x0 and x1 (both regarded
236 	as integers), we obtain an 8-bit approximation of sqrt(x) as
237 	follows.
238 
239 		k  := (x0>>1) + 0x1ff80000;
240 		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
241 	Here k is a 32-bit integer and T1[] is an integer array containing
242 	correction terms. Now magically the floating value of y (y's
243 	leading 32-bit word is y0, the value of its trailing word is 0)
244 	approximates sqrt(x) to almost 8-bit.
245 
246 	Value of T1:
247 	static int T1[32]= {
248 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
249 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
250 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
251 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
252 
253     (2)	Iterative refinement
254 
255 	Apply Heron's rule three times to y, we have y approximates
256 	sqrt(x) to within 1 ulp (Unit in the Last Place):
257 
258 		y := (y+x/y)/2		... almost 17 sig. bits
259 		y := (y+x/y)/2		... almost 35 sig. bits
260 		y := y-(y-x/y)/2	... within 1 ulp
261 
262 
263 	Remark 1.
264 	    Another way to improve y to within 1 ulp is:
265 
266 		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
267 		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
268 
269 				2
270 			    (x-y )*y
271 		y := y + 2* ----------	...within 1 ulp
272 			       2
273 			     3y  + x
274 
275 
276 	This formula has one division fewer than the one above; however,
277 	it requires more multiplications and additions. Also x must be
278 	scaled in advance to avoid spurious overflow in evaluating the
279 	expression 3y*y+x. Hence it is not recommended uless division
280 	is slow. If division is very slow, then one should use the
281 	reciproot algorithm given in section B.
282 
283     (3) Final adjustment
284 
285 	By twiddling y's last bit it is possible to force y to be
286 	correctly rounded according to the prevailing rounding mode
287 	as follows. Let r and i be copies of the rounding mode and
288 	inexact flag before entering the square root program. Also we
289 	use the expression y+-ulp for the next representable floating
290 	numbers (up and down) of y. Note that y+-ulp = either fixed
291 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
292 	mode.
293 
294 		I := FALSE;	... reset INEXACT flag I
295 		R := RZ;	... set rounding mode to round-toward-zero
296 		z := x/y;	... chopped quotient, possibly inexact
297 		If(not I) then {	... if the quotient is exact
298 		    if(z=y) {
299 		        I := i;	 ... restore inexact flag
300 		        R := r;  ... restore rounded mode
301 		        return sqrt(x):=y.
302 		    } else {
303 			z := z - ulp;	... special rounding
304 		    }
305 		}
306 		i := TRUE;		... sqrt(x) is inexact
307 		If (r=RN) then z=z+ulp	... rounded-to-nearest
308 		If (r=RP) then {	... round-toward-+inf
309 		    y = y+ulp; z=z+ulp;
310 		}
311 		y := y+z;		... chopped sum
312 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
313 	        I := i;	 		... restore inexact flag
314 	        R := r;  		... restore rounded mode
315 	        return sqrt(x):=y.
316 
317     (4)	Special cases
318 
319 	Square root of +inf, +-0, or NaN is itself;
320 	Square root of a negative number is NaN with invalid signal.
321 
322 
323 B.  sqrt(x) by Reciproot Iteration
324 
325    (1)	Initial approximation
326 
327 	Let x0 and x1 be the leading and the trailing 32-bit words of
328 	a floating point number x (in IEEE double format) respectively
329 	(see section A). By performing shifs and subtracts on x0 and y0,
330 	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
331 
332 	    k := 0x5fe80000 - (x0>>1);
333 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
334 
335 	Here k is a 32-bit integer and T2[] is an integer array
336 	containing correction terms. Now magically the floating
337 	value of y (y's leading 32-bit word is y0, the value of
338 	its trailing word y1 is set to zero) approximates 1/sqrt(x)
339 	to almost 7.8-bit.
340 
341 	Value of T2:
342 	static int T2[64]= {
343 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
344 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
345 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
346 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
347 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
348 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
349 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
350 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
351 
352     (2)	Iterative refinement
353 
354 	Apply Reciproot iteration three times to y and multiply the
355 	result by x to get an approximation z that matches sqrt(x)
356 	to about 1 ulp. To be exact, we will have
357 		-1ulp < sqrt(x)-z<1.0625ulp.
358 
359 	... set rounding mode to Round-to-nearest
360 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
361 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
362 	... special arrangement for better accuracy
363 	   z := x*y			... 29 bits to sqrt(x), with z*y<1
364 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
365 
366 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
367 	(a) the term z*y in the final iteration is always less than 1;
368 	(b) the error in the final result is biased upward so that
369 		-1 ulp < sqrt(x) - z < 1.0625 ulp
370 	    instead of |sqrt(x)-z|<1.03125ulp.
371 
372     (3)	Final adjustment
373 
374 	By twiddling y's last bit it is possible to force y to be
375 	correctly rounded according to the prevailing rounding mode
376 	as follows. Let r and i be copies of the rounding mode and
377 	inexact flag before entering the square root program. Also we
378 	use the expression y+-ulp for the next representable floating
379 	numbers (up and down) of y. Note that y+-ulp = either fixed
380 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
381 	mode.
382 
383 	R := RZ;		... set rounding mode to round-toward-zero
384 	switch(r) {
385 	    case RN:		... round-to-nearest
386 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
387 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
388 	       break;
389 	    case RZ:case RM:	... round-to-zero or round-to--inf
390 	       R:=RP;		... reset rounding mod to round-to-+inf
391 	       if(x<z*z ... rounded up) z = z - ulp; else
392 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
393 	       break;
394 	    case RP:		... round-to-+inf
395 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
396 	       if(x>z*z ...chopped) z = z+ulp;
397 	       break;
398 	}
399 
400 	Remark 3. The above comparisons can be done in fixed point. For
401 	example, to compare x and w=z*z chopped, it suffices to compare
402 	x1 and w1 (the trailing parts of x and w), regarding them as
403 	two's complement integers.
404 
405 	...Is z an exact square root?
406 	To determine whether z is an exact square root of x, let z1 be the
407 	trailing part of z, and also let x0 and x1 be the leading and
408 	trailing parts of x.
409 
410 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
411 	    I := 1;		... Raise Inexact flag: z is not exact
412 	else {
413 	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
414 	    k := z1 >> 26;		... get z's 25-th and 26-th
415 					    fraction bits
416 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
417 	}
418 	R:= r		... restore rounded mode
419 	return sqrt(x):=z.
420 
421 	If multiplication is cheaper then the foregoing red tape, the
422 	Inexact flag can be evaluated by
423 
424 	    I := i;
425 	    I := (z*z!=x) or I.
426 
427 	Note that z*z can overwrite I; this value must be sensed if it is
428 	True.
429 
430 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
431 	zero.
432 
433 		    --------------------
434 		z1: |        f2        |
435 		    --------------------
436 		bit 31		   bit 0
437 
438 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
439 	or even of logb(x) have the following relations:
440 
441 	-------------------------------------------------
442 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
443 	-------------------------------------------------
444 	00			00		odd and even
445 	01			01		even
446 	10			10		odd
447 	10			00		even
448 	11			01		even
449 	-------------------------------------------------
450 
451     (4)	Special cases (see (4) of Section A).
452 
453  */
454 
455