xref: /netbsd-src/lib/libm/src/e_log.c (revision d9158b13b5dfe46201430699a3f7a235ecf28df3)
1 /* @(#)e_log.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #ifndef lint
14 static char rcsid[] = "$Id: e_log.c,v 1.4 1994/03/03 17:04:18 jtc Exp $";
15 #endif
16 
17 /* __ieee754_log(x)
18  * Return the logrithm of x
19  *
20  * Method :
21  *   1. Argument Reduction: find k and f such that
22  *			x = 2^k * (1+f),
23  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
24  *
25  *   2. Approximation of log(1+f).
26  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
27  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
28  *	     	 = 2s + s*R
29  *      We use a special Reme algorithm on [0,0.1716] to generate
30  * 	a polynomial of degree 14 to approximate R The maximum error
31  *	of this polynomial approximation is bounded by 2**-58.45. In
32  *	other words,
33  *		        2      4      6      8      10      12      14
34  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
35  *  	(the values of Lg1 to Lg7 are listed in the program)
36  *	and
37  *	    |      2          14          |     -58.45
38  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
39  *	    |                             |
40  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
41  *	In order to guarantee error in log below 1ulp, we compute log
42  *	by
43  *		log(1+f) = f - s*(f - R)	(if f is not too large)
44  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
45  *
46  *	3. Finally,  log(x) = k*ln2 + log(1+f).
47  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
48  *	   Here ln2 is split into two floating point number:
49  *			ln2_hi + ln2_lo,
50  *	   where n*ln2_hi is always exact for |n| < 2000.
51  *
52  * Special cases:
53  *	log(x) is NaN with signal if x < 0 (including -INF) ;
54  *	log(+INF) is +INF; log(0) is -INF with signal;
55  *	log(NaN) is that NaN with no signal.
56  *
57  * Accuracy:
58  *	according to an error analysis, the error is always less than
59  *	1 ulp (unit in the last place).
60  *
61  * Constants:
62  * The hexadecimal values are the intended ones for the following
63  * constants. The decimal values may be used, provided that the
64  * compiler will convert from decimal to binary accurately enough
65  * to produce the hexadecimal values shown.
66  */
67 
68 #include <math.h>
69 #include <machine/endian.h>
70 
71 #if BYTE_ORDER == LITTLE_ENDIAN
72 #define n0	1
73 #else
74 #define n0	0
75 #endif
76 
77 #ifdef __STDC__
78 static const double
79 #else
80 static double
81 #endif
82 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
83 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
84 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
85 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
86 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
87 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
88 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
89 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
90 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
91 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
92 
93 static double zero   =  0.0;
94 
95 #ifdef __STDC__
96 	double __ieee754_log(double x)
97 #else
98 	double __ieee754_log(x)
99 	double x;
100 #endif
101 {
102 	double hfsq,f,s,z,R,w,t1,t2,dk;
103 	int k,hx,i,j;
104 	unsigned lx;
105 
106 	hx = *(n0+(int*)&x);		/* high word of x */
107 	lx = *(1-n0+(int*)&x);		/* low  word of x */
108 
109 	k=0;
110 	if (hx < 0x00100000) {			/* x < 2**-1022  */
111 	    if (((hx&0x7fffffff)|lx)==0)
112 		return -two54/zero;		/* log(+-0)=-inf */
113 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
114 	    k -= 54; x *= two54; /* subnormal number, scale up x */
115 	    hx = *(n0+(int*)&x);		/* high word of x */
116 	}
117 	if (hx >= 0x7ff00000) return x+x;
118 	k += (hx>>20)-1023;
119 	hx &= 0x000fffff;
120 	i = (hx+0x95f64)&0x100000;
121 	*(n0+(int*)&x) = hx|(i^0x3ff00000);	/* normalize x or x/2 */
122 	k += (i>>20);
123 	f = x-1.0;
124 	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
125 	    if(f==zero) if(k==0) return zero;  else {dk=(double)k;
126 				 return dk*ln2_hi+dk*ln2_lo;}
127 	    R = f*f*(0.5-0.33333333333333333*f);
128 	    if(k==0) return f-R; else {dk=(double)k;
129 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
130 	}
131  	s = f/(2.0+f);
132 	dk = (double)k;
133 	z = s*s;
134 	i = hx-0x6147a;
135 	w = z*z;
136 	j = 0x6b851-hx;
137 	t1= w*(Lg2+w*(Lg4+w*Lg6));
138 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
139 	i |= j;
140 	R = t2+t1;
141 	if(i>0) {
142 	    hfsq=0.5*f*f;
143 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
144 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
145 	} else {
146 	    if(k==0) return f-s*(f-R); else
147 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
148 	}
149 }
150