1 /* e_lgammaf_r.c -- float version of e_lgamma_r.c. 2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. 3 */ 4 5 /* 6 * ==================================================== 7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 8 * 9 * Developed at SunPro, a Sun Microsystems, Inc. business. 10 * Permission to use, copy, modify, and distribute this 11 * software is freely granted, provided that this notice 12 * is preserved. 13 * ==================================================== 14 */ 15 16 #include <sys/cdefs.h> 17 #if defined(LIBM_SCCS) && !defined(lint) 18 __RCSID("$NetBSD: e_lgammaf_r.c,v 1.5 1999/07/02 15:37:40 simonb Exp $"); 19 #endif 20 21 #include "math.h" 22 #include "math_private.h" 23 24 #ifdef __STDC__ 25 static const float 26 #else 27 static float 28 #endif 29 two23= 8.3886080000e+06, /* 0x4b000000 */ 30 half= 5.0000000000e-01, /* 0x3f000000 */ 31 one = 1.0000000000e+00, /* 0x3f800000 */ 32 pi = 3.1415927410e+00, /* 0x40490fdb */ 33 a0 = 7.7215664089e-02, /* 0x3d9e233f */ 34 a1 = 3.2246702909e-01, /* 0x3ea51a66 */ 35 a2 = 6.7352302372e-02, /* 0x3d89f001 */ 36 a3 = 2.0580807701e-02, /* 0x3ca89915 */ 37 a4 = 7.3855509982e-03, /* 0x3bf2027e */ 38 a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ 39 a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ 40 a7 = 5.1006977446e-04, /* 0x3a05b634 */ 41 a8 = 2.2086278477e-04, /* 0x39679767 */ 42 a9 = 1.0801156895e-04, /* 0x38e28445 */ 43 a10 = 2.5214456400e-05, /* 0x37d383a2 */ 44 a11 = 4.4864096708e-05, /* 0x383c2c75 */ 45 tc = 1.4616321325e+00, /* 0x3fbb16c3 */ 46 tf = -1.2148628384e-01, /* 0xbdf8cdcd */ 47 /* tt = -(tail of tf) */ 48 tt = 6.6971006518e-09, /* 0x31e61c52 */ 49 t0 = 4.8383611441e-01, /* 0x3ef7b95e */ 50 t1 = -1.4758771658e-01, /* 0xbe17213c */ 51 t2 = 6.4624942839e-02, /* 0x3d845a15 */ 52 t3 = -3.2788541168e-02, /* 0xbd064d47 */ 53 t4 = 1.7970675603e-02, /* 0x3c93373d */ 54 t5 = -1.0314224288e-02, /* 0xbc28fcfe */ 55 t6 = 6.1005386524e-03, /* 0x3bc7e707 */ 56 t7 = -3.6845202558e-03, /* 0xbb7177fe */ 57 t8 = 2.2596477065e-03, /* 0x3b141699 */ 58 t9 = -1.4034647029e-03, /* 0xbab7f476 */ 59 t10 = 8.8108185446e-04, /* 0x3a66f867 */ 60 t11 = -5.3859531181e-04, /* 0xba0d3085 */ 61 t12 = 3.1563205994e-04, /* 0x39a57b6b */ 62 t13 = -3.1275415677e-04, /* 0xb9a3f927 */ 63 t14 = 3.3552918467e-04, /* 0x39afe9f7 */ 64 u0 = -7.7215664089e-02, /* 0xbd9e233f */ 65 u1 = 6.3282704353e-01, /* 0x3f2200f4 */ 66 u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ 67 u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ 68 u4 = 2.2896373272e-01, /* 0x3e6a7578 */ 69 u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ 70 v1 = 2.4559779167e+00, /* 0x401d2ebe */ 71 v2 = 2.1284897327e+00, /* 0x4008392d */ 72 v3 = 7.6928514242e-01, /* 0x3f44efdf */ 73 v4 = 1.0422264785e-01, /* 0x3dd572af */ 74 v5 = 3.2170924824e-03, /* 0x3b52d5db */ 75 s0 = -7.7215664089e-02, /* 0xbd9e233f */ 76 s1 = 2.1498242021e-01, /* 0x3e5c245a */ 77 s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ 78 s3 = 1.4635047317e-01, /* 0x3e15dce6 */ 79 s4 = 2.6642270386e-02, /* 0x3cda40e4 */ 80 s5 = 1.8402845599e-03, /* 0x3af135b4 */ 81 s6 = 3.1947532989e-05, /* 0x3805ff67 */ 82 r1 = 1.3920053244e+00, /* 0x3fb22d3b */ 83 r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ 84 r3 = 1.7193385959e-01, /* 0x3e300f6e */ 85 r4 = 1.8645919859e-02, /* 0x3c98bf54 */ 86 r5 = 7.7794247773e-04, /* 0x3a4beed6 */ 87 r6 = 7.3266842264e-06, /* 0x36f5d7bd */ 88 w0 = 4.1893854737e-01, /* 0x3ed67f1d */ 89 w1 = 8.3333335817e-02, /* 0x3daaaaab */ 90 w2 = -2.7777778450e-03, /* 0xbb360b61 */ 91 w3 = 7.9365057172e-04, /* 0x3a500cfd */ 92 w4 = -5.9518753551e-04, /* 0xba1c065c */ 93 w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ 94 w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ 95 96 #ifdef __STDC__ 97 static const float zero= 0.0000000000e+00; 98 #else 99 static float zero= 0.0000000000e+00; 100 #endif 101 102 #ifdef __STDC__ 103 static float sin_pif(float x) 104 #else 105 static float sin_pif(x) 106 float x; 107 #endif 108 { 109 float y,z; 110 int n,ix; 111 112 GET_FLOAT_WORD(ix,x); 113 ix &= 0x7fffffff; 114 115 if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0); 116 y = -x; /* x is assume negative */ 117 118 /* 119 * argument reduction, make sure inexact flag not raised if input 120 * is an integer 121 */ 122 z = floorf(y); 123 if(z!=y) { /* inexact anyway */ 124 y *= (float)0.5; 125 y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */ 126 n = (int) (y*(float)4.0); 127 } else { 128 if(ix>=0x4b800000) { 129 y = zero; n = 0; /* y must be even */ 130 } else { 131 if(ix<0x4b000000) z = y+two23; /* exact */ 132 GET_FLOAT_WORD(n,z); 133 n &= 1; 134 y = n; 135 n<<= 2; 136 } 137 } 138 switch (n) { 139 case 0: y = __kernel_sinf(pi*y,zero,0); break; 140 case 1: 141 case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break; 142 case 3: 143 case 4: y = __kernel_sinf(pi*(one-y),zero,0); break; 144 case 5: 145 case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break; 146 default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break; 147 } 148 return -y; 149 } 150 151 152 #ifdef __STDC__ 153 float __ieee754_lgammaf_r(float x, int *signgamp) 154 #else 155 float __ieee754_lgammaf_r(x,signgamp) 156 float x; int *signgamp; 157 #endif 158 { 159 float t,y,z,nadj,p,p1,p2,p3,q,r,w; 160 int i,hx,ix; 161 162 nadj = 0; 163 GET_FLOAT_WORD(hx,x); 164 165 /* purge off +-inf, NaN, +-0, and negative arguments */ 166 *signgamp = 1; 167 ix = hx&0x7fffffff; 168 if(ix>=0x7f800000) return x*x; 169 if(ix==0) return one/zero; 170 if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */ 171 if(hx<0) { 172 *signgamp = -1; 173 return -__ieee754_logf(-x); 174 } else return -__ieee754_logf(x); 175 } 176 if(hx<0) { 177 if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ 178 return one/zero; 179 t = sin_pif(x); 180 if(t==zero) return one/zero; /* -integer */ 181 nadj = __ieee754_logf(pi/fabsf(t*x)); 182 if(t<zero) *signgamp = -1; 183 x = -x; 184 } 185 186 /* purge off 1 and 2 */ 187 if (ix==0x3f800000||ix==0x40000000) r = 0; 188 /* for x < 2.0 */ 189 else if(ix<0x40000000) { 190 if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ 191 r = -__ieee754_logf(x); 192 if(ix>=0x3f3b4a20) {y = one-x; i= 0;} 193 else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} 194 else {y = x; i=2;} 195 } else { 196 r = zero; 197 if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ 198 else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ 199 else {y=x-one;i=2;} 200 } 201 switch(i) { 202 case 0: 203 z = y*y; 204 p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); 205 p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); 206 p = y*p1+p2; 207 r += (p-(float)0.5*y); break; 208 case 1: 209 z = y*y; 210 w = z*y; 211 p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ 212 p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); 213 p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); 214 p = z*p1-(tt-w*(p2+y*p3)); 215 r += (tf + p); break; 216 case 2: 217 p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); 218 p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); 219 r += (-(float)0.5*y + p1/p2); 220 } 221 } 222 else if(ix<0x41000000) { /* x < 8.0 */ 223 i = (int)x; 224 t = zero; 225 y = x-(float)i; 226 p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); 227 q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); 228 r = half*y+p/q; 229 z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ 230 switch(i) { 231 case 7: z *= (y+(float)6.0); /* FALLTHRU */ 232 case 6: z *= (y+(float)5.0); /* FALLTHRU */ 233 case 5: z *= (y+(float)4.0); /* FALLTHRU */ 234 case 4: z *= (y+(float)3.0); /* FALLTHRU */ 235 case 3: z *= (y+(float)2.0); /* FALLTHRU */ 236 r += __ieee754_logf(z); break; 237 } 238 /* 8.0 <= x < 2**58 */ 239 } else if (ix < 0x5c800000) { 240 t = __ieee754_logf(x); 241 z = one/x; 242 y = z*z; 243 w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); 244 r = (x-half)*(t-one)+w; 245 } else 246 /* 2**58 <= x <= inf */ 247 r = x*(__ieee754_logf(x)-one); 248 if(hx<0) r = nadj - r; 249 return r; 250 } 251