xref: /netbsd-src/lib/libm/src/e_jnf.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include <sys/cdefs.h>
17 #if defined(LIBM_SCCS) && !defined(lint)
18 __RCSID("$NetBSD: e_jnf.c,v 1.7 1999/07/02 15:37:40 simonb Exp $");
19 #endif
20 
21 #include "math.h"
22 #include "math_private.h"
23 
24 #ifdef __STDC__
25 static const float
26 #else
27 static float
28 #endif
29 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
30 two   =  2.0000000000e+00, /* 0x40000000 */
31 one   =  1.0000000000e+00; /* 0x3F800000 */
32 
33 #ifdef __STDC__
34 static const float zero  =  0.0000000000e+00;
35 #else
36 static float zero  =  0.0000000000e+00;
37 #endif
38 
39 #ifdef __STDC__
40 	float __ieee754_jnf(int n, float x)
41 #else
42 	float __ieee754_jnf(n,x)
43 	int n; float x;
44 #endif
45 {
46 	int32_t i,hx,ix, sgn;
47 	float a, b, temp, di;
48 	float z, w;
49 
50     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
51      * Thus, J(-n,x) = J(n,-x)
52      */
53 	GET_FLOAT_WORD(hx,x);
54 	ix = 0x7fffffff&hx;
55     /* if J(n,NaN) is NaN */
56 	if(ix>0x7f800000) return x+x;
57 	if(n<0){
58 		n = -n;
59 		x = -x;
60 		hx ^= 0x80000000;
61 	}
62 	if(n==0) return(__ieee754_j0f(x));
63 	if(n==1) return(__ieee754_j1f(x));
64 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
65 	x = fabsf(x);
66 	if(ix==0||ix>=0x7f800000) 	/* if x is 0 or inf */
67 	    b = zero;
68 	else if((float)n<=x) {
69 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
70 	    a = __ieee754_j0f(x);
71 	    b = __ieee754_j1f(x);
72 	    for(i=1;i<n;i++){
73 		temp = b;
74 		b = b*((float)(i+i)/x) - a; /* avoid underflow */
75 		a = temp;
76 	    }
77 	} else {
78 	    if(ix<0x30800000) {	/* x < 2**-29 */
79     /* x is tiny, return the first Taylor expansion of J(n,x)
80      * J(n,x) = 1/n!*(x/2)^n  - ...
81      */
82 		if(n>33)	/* underflow */
83 		    b = zero;
84 		else {
85 		    temp = x*(float)0.5; b = temp;
86 		    for (a=one,i=2;i<=n;i++) {
87 			a *= (float)i;		/* a = n! */
88 			b *= temp;		/* b = (x/2)^n */
89 		    }
90 		    b = b/a;
91 		}
92 	    } else {
93 		/* use backward recurrence */
94 		/* 			x      x^2      x^2
95 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
96 		 *			2n  - 2(n+1) - 2(n+2)
97 		 *
98 		 * 			1      1        1
99 		 *  (for large x)   =  ----  ------   ------   .....
100 		 *			2n   2(n+1)   2(n+2)
101 		 *			-- - ------ - ------ -
102 		 *			 x     x         x
103 		 *
104 		 * Let w = 2n/x and h=2/x, then the above quotient
105 		 * is equal to the continued fraction:
106 		 *		    1
107 		 *	= -----------------------
108 		 *		       1
109 		 *	   w - -----------------
110 		 *			  1
111 		 * 	        w+h - ---------
112 		 *		       w+2h - ...
113 		 *
114 		 * To determine how many terms needed, let
115 		 * Q(0) = w, Q(1) = w(w+h) - 1,
116 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
117 		 * When Q(k) > 1e4	good for single
118 		 * When Q(k) > 1e9	good for double
119 		 * When Q(k) > 1e17	good for quadruple
120 		 */
121 	    /* determine k */
122 		float t,v;
123 		float q0,q1,h,tmp; int32_t k,m;
124 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
125 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
126 		while(q1<(float)1.0e9) {
127 			k += 1; z += h;
128 			tmp = z*q1 - q0;
129 			q0 = q1;
130 			q1 = tmp;
131 		}
132 		m = n+n;
133 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
134 		a = t;
135 		b = one;
136 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
137 		 *  Hence, if n*(log(2n/x)) > ...
138 		 *  single 8.8722839355e+01
139 		 *  double 7.09782712893383973096e+02
140 		 *  long double 1.1356523406294143949491931077970765006170e+04
141 		 *  then recurrent value may overflow and the result is
142 		 *  likely underflow to zero
143 		 */
144 		tmp = n;
145 		v = two/x;
146 		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
147 		if(tmp<(float)8.8721679688e+01) {
148 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
149 		        temp = b;
150 			b *= di;
151 			b  = b/x - a;
152 		        a = temp;
153 			di -= two;
154 	     	    }
155 		} else {
156 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
157 		        temp = b;
158 			b *= di;
159 			b  = b/x - a;
160 		        a = temp;
161 			di -= two;
162 		    /* scale b to avoid spurious overflow */
163 			if(b>(float)1e10) {
164 			    a /= b;
165 			    t /= b;
166 			    b  = one;
167 			}
168 	     	    }
169 		}
170 	    	b = (t*__ieee754_j0f(x)/b);
171 	    }
172 	}
173 	if(sgn==1) return -b; else return b;
174 }
175 
176 #ifdef __STDC__
177 	float __ieee754_ynf(int n, float x)
178 #else
179 	float __ieee754_ynf(n,x)
180 	int n; float x;
181 #endif
182 {
183 	int32_t i,hx,ix,ib;
184 	int32_t sign;
185 	float a, b, temp;
186 
187 	GET_FLOAT_WORD(hx,x);
188 	ix = 0x7fffffff&hx;
189     /* if Y(n,NaN) is NaN */
190 	if(ix>0x7f800000) return x+x;
191 	if(ix==0) return -one/zero;
192 	if(hx<0) return zero/zero;
193 	sign = 1;
194 	if(n<0){
195 		n = -n;
196 		sign = 1 - ((n&1)<<1);
197 	}
198 	if(n==0) return(__ieee754_y0f(x));
199 	if(n==1) return(sign*__ieee754_y1f(x));
200 	if(ix==0x7f800000) return zero;
201 
202 	a = __ieee754_y0f(x);
203 	b = __ieee754_y1f(x);
204 	/* quit if b is -inf */
205 	GET_FLOAT_WORD(ib,b);
206 	for(i=1;i<n&&ib!=0xff800000;i++){
207 	    temp = b;
208 	    b = ((float)(i+i)/x)*b - a;
209 	    GET_FLOAT_WORD(ib,b);
210 	    a = temp;
211 	}
212 	if(sign>0) return b; else return -b;
213 }
214