xref: /netbsd-src/lib/libm/src/e_jn.c (revision 5e4c038a45edbc7d63b7c2daa76e29f88b64a4e3)
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: e_jn.c,v 1.12 2002/05/26 22:01:50 wiz Exp $");
16 #endif
17 
18 /*
19  * __ieee754_jn(n, x), __ieee754_yn(n, x)
20  * floating point Bessel's function of the 1st and 2nd kind
21  * of order n
22  *
23  * Special cases:
24  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
25  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
26  * Note 2. About jn(n,x), yn(n,x)
27  *	For n=0, j0(x) is called,
28  *	for n=1, j1(x) is called,
29  *	for n<x, forward recursion us used starting
30  *	from values of j0(x) and j1(x).
31  *	for n>x, a continued fraction approximation to
32  *	j(n,x)/j(n-1,x) is evaluated and then backward
33  *	recursion is used starting from a supposed value
34  *	for j(n,x). The resulting value of j(0,x) is
35  *	compared with the actual value to correct the
36  *	supposed value of j(n,x).
37  *
38  *	yn(n,x) is similar in all respects, except
39  *	that forward recursion is used for all
40  *	values of n>1.
41  *
42  */
43 
44 #include "math.h"
45 #include "math_private.h"
46 
47 static const double
48 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
49 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
50 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
51 
52 static const double zero  =  0.00000000000000000000e+00;
53 
54 double
55 __ieee754_jn(int n, double x)
56 {
57 	int32_t i,hx,ix,lx, sgn;
58 	double a, b, temp, di;
59 	double z, w;
60 
61 	temp = 0;
62     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
63      * Thus, J(-n,x) = J(n,-x)
64      */
65 	EXTRACT_WORDS(hx,lx,x);
66 	ix = 0x7fffffff&hx;
67     /* if J(n,NaN) is NaN */
68 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
69 	if(n<0){
70 		n = -n;
71 		x = -x;
72 		hx ^= 0x80000000;
73 	}
74 	if(n==0) return(__ieee754_j0(x));
75 	if(n==1) return(__ieee754_j1(x));
76 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
77 	x = fabs(x);
78 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
79 	    b = zero;
80 	else if((double)n<=x) {
81 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
82 	    if(ix>=0x52D00000) { /* x > 2**302 */
83     /* (x >> n**2)
84      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
85      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
86      *	    Let s=sin(x), c=cos(x),
87      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
88      *
89      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
90      *		----------------------------------
91      *		   0	 s-c		 c+s
92      *		   1	-s-c 		-c+s
93      *		   2	-s+c		-c-s
94      *		   3	 s+c		 c-s
95      */
96 		switch(n&3) {
97 		    case 0: temp =  cos(x)+sin(x); break;
98 		    case 1: temp = -cos(x)+sin(x); break;
99 		    case 2: temp = -cos(x)-sin(x); break;
100 		    case 3: temp =  cos(x)-sin(x); break;
101 		}
102 		b = invsqrtpi*temp/sqrt(x);
103 	    } else {
104 	        a = __ieee754_j0(x);
105 	        b = __ieee754_j1(x);
106 	        for(i=1;i<n;i++){
107 		    temp = b;
108 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
109 		    a = temp;
110 	        }
111 	    }
112 	} else {
113 	    if(ix<0x3e100000) {	/* x < 2**-29 */
114     /* x is tiny, return the first Taylor expansion of J(n,x)
115      * J(n,x) = 1/n!*(x/2)^n  - ...
116      */
117 		if(n>33)	/* underflow */
118 		    b = zero;
119 		else {
120 		    temp = x*0.5; b = temp;
121 		    for (a=one,i=2;i<=n;i++) {
122 			a *= (double)i;		/* a = n! */
123 			b *= temp;		/* b = (x/2)^n */
124 		    }
125 		    b = b/a;
126 		}
127 	    } else {
128 		/* use backward recurrence */
129 		/* 			x      x^2      x^2
130 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
131 		 *			2n  - 2(n+1) - 2(n+2)
132 		 *
133 		 * 			1      1        1
134 		 *  (for large x)   =  ----  ------   ------   .....
135 		 *			2n   2(n+1)   2(n+2)
136 		 *			-- - ------ - ------ -
137 		 *			 x     x         x
138 		 *
139 		 * Let w = 2n/x and h=2/x, then the above quotient
140 		 * is equal to the continued fraction:
141 		 *		    1
142 		 *	= -----------------------
143 		 *		       1
144 		 *	   w - -----------------
145 		 *			  1
146 		 * 	        w+h - ---------
147 		 *		       w+2h - ...
148 		 *
149 		 * To determine how many terms needed, let
150 		 * Q(0) = w, Q(1) = w(w+h) - 1,
151 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
152 		 * When Q(k) > 1e4	good for single
153 		 * When Q(k) > 1e9	good for double
154 		 * When Q(k) > 1e17	good for quadruple
155 		 */
156 	    /* determine k */
157 		double t,v;
158 		double q0,q1,h,tmp; int32_t k,m;
159 		w  = (n+n)/(double)x; h = 2.0/(double)x;
160 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
161 		while(q1<1.0e9) {
162 			k += 1; z += h;
163 			tmp = z*q1 - q0;
164 			q0 = q1;
165 			q1 = tmp;
166 		}
167 		m = n+n;
168 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
169 		a = t;
170 		b = one;
171 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
172 		 *  Hence, if n*(log(2n/x)) > ...
173 		 *  single 8.8722839355e+01
174 		 *  double 7.09782712893383973096e+02
175 		 *  long double 1.1356523406294143949491931077970765006170e+04
176 		 *  then recurrent value may overflow and the result is
177 		 *  likely underflow to zero
178 		 */
179 		tmp = n;
180 		v = two/x;
181 		tmp = tmp*__ieee754_log(fabs(v*tmp));
182 		if(tmp<7.09782712893383973096e+02) {
183 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
184 		        temp = b;
185 			b *= di;
186 			b  = b/x - a;
187 		        a = temp;
188 			di -= two;
189 	     	    }
190 		} else {
191 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
192 		        temp = b;
193 			b *= di;
194 			b  = b/x - a;
195 		        a = temp;
196 			di -= two;
197 		    /* scale b to avoid spurious overflow */
198 			if(b>1e100) {
199 			    a /= b;
200 			    t /= b;
201 			    b  = one;
202 			}
203 	     	    }
204 		}
205 	    	b = (t*__ieee754_j0(x)/b);
206 	    }
207 	}
208 	if(sgn==1) return -b; else return b;
209 }
210 
211 double
212 __ieee754_yn(int n, double x)
213 {
214 	int32_t i,hx,ix,lx;
215 	int32_t sign;
216 	double a, b, temp;
217 
218 	temp = 0;
219 	EXTRACT_WORDS(hx,lx,x);
220 	ix = 0x7fffffff&hx;
221     /* if Y(n,NaN) is NaN */
222 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
223 	if((ix|lx)==0) return -one/zero;
224 	if(hx<0) return zero/zero;
225 	sign = 1;
226 	if(n<0){
227 		n = -n;
228 		sign = 1 - ((n&1)<<1);
229 	}
230 	if(n==0) return(__ieee754_y0(x));
231 	if(n==1) return(sign*__ieee754_y1(x));
232 	if(ix==0x7ff00000) return zero;
233 	if(ix>=0x52D00000) { /* x > 2**302 */
234     /* (x >> n**2)
235      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
236      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
237      *	    Let s=sin(x), c=cos(x),
238      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
239      *
240      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
241      *		----------------------------------
242      *		   0	 s-c		 c+s
243      *		   1	-s-c 		-c+s
244      *		   2	-s+c		-c-s
245      *		   3	 s+c		 c-s
246      */
247 		switch(n&3) {
248 		    case 0: temp =  sin(x)-cos(x); break;
249 		    case 1: temp = -sin(x)-cos(x); break;
250 		    case 2: temp = -sin(x)+cos(x); break;
251 		    case 3: temp =  sin(x)+cos(x); break;
252 		}
253 		b = invsqrtpi*temp/sqrt(x);
254 	} else {
255 	    u_int32_t high;
256 	    a = __ieee754_y0(x);
257 	    b = __ieee754_y1(x);
258 	/* quit if b is -inf */
259 	    GET_HIGH_WORD(high,b);
260 	    for(i=1;i<n&&high!=0xfff00000;i++){
261 		temp = b;
262 		b = ((double)(i+i)/x)*b - a;
263 		GET_HIGH_WORD(high,b);
264 		a = temp;
265 	    }
266 	}
267 	if(sign>0) return b; else return -b;
268 }
269