xref: /netbsd-src/lib/libm/src/e_jn.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: e_jn.c,v 1.10 1997/10/09 11:29:18 lukem Exp $");
16 #endif
17 
18 /*
19  * __ieee754_jn(n, x), __ieee754_yn(n, x)
20  * floating point Bessel's function of the 1st and 2nd kind
21  * of order n
22  *
23  * Special cases:
24  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
25  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
26  * Note 2. About jn(n,x), yn(n,x)
27  *	For n=0, j0(x) is called,
28  *	for n=1, j1(x) is called,
29  *	for n<x, forward recursion us used starting
30  *	from values of j0(x) and j1(x).
31  *	for n>x, a continued fraction approximation to
32  *	j(n,x)/j(n-1,x) is evaluated and then backward
33  *	recursion is used starting from a supposed value
34  *	for j(n,x). The resulting value of j(0,x) is
35  *	compared with the actual value to correct the
36  *	supposed value of j(n,x).
37  *
38  *	yn(n,x) is similar in all respects, except
39  *	that forward recursion is used for all
40  *	values of n>1.
41  *
42  */
43 
44 #include "math.h"
45 #include "math_private.h"
46 
47 #ifdef __STDC__
48 static const double
49 #else
50 static double
51 #endif
52 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
53 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
54 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
55 
56 #ifdef __STDC__
57 static const double zero  =  0.00000000000000000000e+00;
58 #else
59 static double zero  =  0.00000000000000000000e+00;
60 #endif
61 
62 #ifdef __STDC__
63 	double __ieee754_jn(int n, double x)
64 #else
65 	double __ieee754_jn(n,x)
66 	int n; double x;
67 #endif
68 {
69 	int32_t i,hx,ix,lx, sgn;
70 	double a, b, temp, di;
71 	double z, w;
72 
73 	temp = 0;
74     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
75      * Thus, J(-n,x) = J(n,-x)
76      */
77 	EXTRACT_WORDS(hx,lx,x);
78 	ix = 0x7fffffff&hx;
79     /* if J(n,NaN) is NaN */
80 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
81 	if(n<0){
82 		n = -n;
83 		x = -x;
84 		hx ^= 0x80000000;
85 	}
86 	if(n==0) return(__ieee754_j0(x));
87 	if(n==1) return(__ieee754_j1(x));
88 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
89 	x = fabs(x);
90 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
91 	    b = zero;
92 	else if((double)n<=x) {
93 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
94 	    if(ix>=0x52D00000) { /* x > 2**302 */
95     /* (x >> n**2)
96      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
97      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
98      *	    Let s=sin(x), c=cos(x),
99      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
100      *
101      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
102      *		----------------------------------
103      *		   0	 s-c		 c+s
104      *		   1	-s-c 		-c+s
105      *		   2	-s+c		-c-s
106      *		   3	 s+c		 c-s
107      */
108 		switch(n&3) {
109 		    case 0: temp =  cos(x)+sin(x); break;
110 		    case 1: temp = -cos(x)+sin(x); break;
111 		    case 2: temp = -cos(x)-sin(x); break;
112 		    case 3: temp =  cos(x)-sin(x); break;
113 		}
114 		b = invsqrtpi*temp/sqrt(x);
115 	    } else {
116 	        a = __ieee754_j0(x);
117 	        b = __ieee754_j1(x);
118 	        for(i=1;i<n;i++){
119 		    temp = b;
120 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
121 		    a = temp;
122 	        }
123 	    }
124 	} else {
125 	    if(ix<0x3e100000) {	/* x < 2**-29 */
126     /* x is tiny, return the first Taylor expansion of J(n,x)
127      * J(n,x) = 1/n!*(x/2)^n  - ...
128      */
129 		if(n>33)	/* underflow */
130 		    b = zero;
131 		else {
132 		    temp = x*0.5; b = temp;
133 		    for (a=one,i=2;i<=n;i++) {
134 			a *= (double)i;		/* a = n! */
135 			b *= temp;		/* b = (x/2)^n */
136 		    }
137 		    b = b/a;
138 		}
139 	    } else {
140 		/* use backward recurrence */
141 		/* 			x      x^2      x^2
142 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
143 		 *			2n  - 2(n+1) - 2(n+2)
144 		 *
145 		 * 			1      1        1
146 		 *  (for large x)   =  ----  ------   ------   .....
147 		 *			2n   2(n+1)   2(n+2)
148 		 *			-- - ------ - ------ -
149 		 *			 x     x         x
150 		 *
151 		 * Let w = 2n/x and h=2/x, then the above quotient
152 		 * is equal to the continued fraction:
153 		 *		    1
154 		 *	= -----------------------
155 		 *		       1
156 		 *	   w - -----------------
157 		 *			  1
158 		 * 	        w+h - ---------
159 		 *		       w+2h - ...
160 		 *
161 		 * To determine how many terms needed, let
162 		 * Q(0) = w, Q(1) = w(w+h) - 1,
163 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
164 		 * When Q(k) > 1e4	good for single
165 		 * When Q(k) > 1e9	good for double
166 		 * When Q(k) > 1e17	good for quadruple
167 		 */
168 	    /* determine k */
169 		double t,v;
170 		double q0,q1,h,tmp; int32_t k,m;
171 		w  = (n+n)/(double)x; h = 2.0/(double)x;
172 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
173 		while(q1<1.0e9) {
174 			k += 1; z += h;
175 			tmp = z*q1 - q0;
176 			q0 = q1;
177 			q1 = tmp;
178 		}
179 		m = n+n;
180 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
181 		a = t;
182 		b = one;
183 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
184 		 *  Hence, if n*(log(2n/x)) > ...
185 		 *  single 8.8722839355e+01
186 		 *  double 7.09782712893383973096e+02
187 		 *  long double 1.1356523406294143949491931077970765006170e+04
188 		 *  then recurrent value may overflow and the result is
189 		 *  likely underflow to zero
190 		 */
191 		tmp = n;
192 		v = two/x;
193 		tmp = tmp*__ieee754_log(fabs(v*tmp));
194 		if(tmp<7.09782712893383973096e+02) {
195 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
196 		        temp = b;
197 			b *= di;
198 			b  = b/x - a;
199 		        a = temp;
200 			di -= two;
201 	     	    }
202 		} else {
203 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
204 		        temp = b;
205 			b *= di;
206 			b  = b/x - a;
207 		        a = temp;
208 			di -= two;
209 		    /* scale b to avoid spurious overflow */
210 			if(b>1e100) {
211 			    a /= b;
212 			    t /= b;
213 			    b  = one;
214 			}
215 	     	    }
216 		}
217 	    	b = (t*__ieee754_j0(x)/b);
218 	    }
219 	}
220 	if(sgn==1) return -b; else return b;
221 }
222 
223 #ifdef __STDC__
224 	double __ieee754_yn(int n, double x)
225 #else
226 	double __ieee754_yn(n,x)
227 	int n; double x;
228 #endif
229 {
230 	int32_t i,hx,ix,lx;
231 	int32_t sign;
232 	double a, b, temp;
233 
234 	temp = 0;
235 	EXTRACT_WORDS(hx,lx,x);
236 	ix = 0x7fffffff&hx;
237     /* if Y(n,NaN) is NaN */
238 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
239 	if((ix|lx)==0) return -one/zero;
240 	if(hx<0) return zero/zero;
241 	sign = 1;
242 	if(n<0){
243 		n = -n;
244 		sign = 1 - ((n&1)<<1);
245 	}
246 	if(n==0) return(__ieee754_y0(x));
247 	if(n==1) return(sign*__ieee754_y1(x));
248 	if(ix==0x7ff00000) return zero;
249 	if(ix>=0x52D00000) { /* x > 2**302 */
250     /* (x >> n**2)
251      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
252      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
253      *	    Let s=sin(x), c=cos(x),
254      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
255      *
256      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
257      *		----------------------------------
258      *		   0	 s-c		 c+s
259      *		   1	-s-c 		-c+s
260      *		   2	-s+c		-c-s
261      *		   3	 s+c		 c-s
262      */
263 		switch(n&3) {
264 		    case 0: temp =  sin(x)-cos(x); break;
265 		    case 1: temp = -sin(x)-cos(x); break;
266 		    case 2: temp = -sin(x)+cos(x); break;
267 		    case 3: temp =  sin(x)+cos(x); break;
268 		}
269 		b = invsqrtpi*temp/sqrt(x);
270 	} else {
271 	    u_int32_t high;
272 	    a = __ieee754_y0(x);
273 	    b = __ieee754_y1(x);
274 	/* quit if b is -inf */
275 	    GET_HIGH_WORD(high,b);
276 	    for(i=1;i<n&&high!=0xfff00000;i++){
277 		temp = b;
278 		b = ((double)(i+i)/x)*b - a;
279 		GET_HIGH_WORD(high,b);
280 		a = temp;
281 	    }
282 	}
283 	if(sign>0) return b; else return -b;
284 }
285