xref: /netbsd-src/lib/libm/src/e_j1f.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /* e_j1f.c -- float version of e_j1.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include <sys/cdefs.h>
17 #if defined(LIBM_SCCS) && !defined(lint)
18 __RCSID("$NetBSD: e_j1f.c,v 1.10 2006/03/19 20:54:15 christos Exp $");
19 #endif
20 
21 #include "math.h"
22 #include "math_private.h"
23 
24 static float ponef(float), qonef(float);
25 
26 static const float
27 huge    = 1e30,
28 one	= 1.0,
29 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
30 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
31 	/* R0/S0 on [0,2] */
32 r00  = -6.2500000000e-02, /* 0xbd800000 */
33 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
34 r02  = -1.5995563444e-05, /* 0xb7862e36 */
35 r03  =  4.9672799207e-08, /* 0x335557d2 */
36 s01  =  1.9153760746e-02, /* 0x3c9ce859 */
37 s02  =  1.8594678841e-04, /* 0x3942fab6 */
38 s03  =  1.1771846857e-06, /* 0x359dffc2 */
39 s04  =  5.0463624390e-09, /* 0x31ad6446 */
40 s05  =  1.2354227016e-11; /* 0x2d59567e */
41 
42 static const float zero    = 0.0;
43 
44 float
45 __ieee754_j1f(float x)
46 {
47 	float z, s,c,ss,cc,r,u,v,y;
48 	int32_t hx,ix;
49 
50 	GET_FLOAT_WORD(hx,x);
51 	ix = hx&0x7fffffff;
52 	if(ix>=0x7f800000) return one/x;
53 	y = fabsf(x);
54 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
55 		s = sinf(y);
56 		c = cosf(y);
57 		ss = -s-c;
58 		cc = s-c;
59 		if(ix<0x7f000000) {  /* make sure y+y not overflow */
60 		    z = cosf(y+y);
61 		    if ((s*c)>zero) cc = z/ss;
62 		    else 	    ss = z/cc;
63 		}
64 	/*
65 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
66 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
67 	 */
68 #ifdef DEAD_CODE
69 		if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
70 		else
71 #endif
72 		{
73 		    u = ponef(y); v = qonef(y);
74 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
75 		}
76 		if(hx<0) return -z;
77 		else  	 return  z;
78 	}
79 	if(ix<0x32000000) {	/* |x|<2**-27 */
80 	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
81 	}
82 	z = x*x;
83 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
84 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
85 	r *= x;
86 	return(x*(float)0.5+r/s);
87 }
88 
89 static const float U0[5] = {
90  -1.9605709612e-01, /* 0xbe48c331 */
91   5.0443872809e-02, /* 0x3d4e9e3c */
92  -1.9125689287e-03, /* 0xbafaaf2a */
93   2.3525259166e-05, /* 0x37c5581c */
94  -9.1909917899e-08, /* 0xb3c56003 */
95 };
96 static const float V0[5] = {
97   1.9916731864e-02, /* 0x3ca3286a */
98   2.0255257550e-04, /* 0x3954644b */
99   1.3560879779e-06, /* 0x35b602d4 */
100   6.2274145840e-09, /* 0x31d5f8eb */
101   1.6655924903e-11, /* 0x2d9281cf */
102 };
103 
104 float
105 __ieee754_y1f(float x)
106 {
107 	float z, s,c,ss,cc,u,v;
108 	int32_t hx,ix;
109 
110 	GET_FLOAT_WORD(hx,x);
111         ix = 0x7fffffff&hx;
112     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
113 	if(ix>=0x7f800000) return  one/(x+x*x);
114         if(ix==0) return -one/zero;
115         if(hx<0) return zero/zero;
116         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
117                 s = sinf(x);
118                 c = cosf(x);
119                 ss = -s-c;
120                 cc = s-c;
121                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
122                     z = cosf(x+x);
123                     if ((s*c)>zero) cc = z/ss;
124                     else            ss = z/cc;
125                 }
126         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
127          * where x0 = x-3pi/4
128          *      Better formula:
129          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
130          *                      =  1/sqrt(2) * (sin(x) - cos(x))
131          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
132          *                      = -1/sqrt(2) * (cos(x) + sin(x))
133          * To avoid cancellation, use
134          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
135          * to compute the worse one.
136          */
137                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
138                 else {
139                     u = ponef(x); v = qonef(x);
140                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
141                 }
142                 return z;
143         }
144         if(ix<=0x24800000) {    /* x < 2**-54 */
145             return(-tpi/x);
146         }
147         z = x*x;
148         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
149         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
150         return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
151 }
152 
153 /* For x >= 8, the asymptotic expansions of pone is
154  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
155  * We approximate pone by
156  * 	pone(x) = 1 + (R/S)
157  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
158  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
159  * and
160  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
161  */
162 
163 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
164   0.0000000000e+00, /* 0x00000000 */
165   1.1718750000e-01, /* 0x3df00000 */
166   1.3239480972e+01, /* 0x4153d4ea */
167   4.1205184937e+02, /* 0x43ce06a3 */
168   3.8747453613e+03, /* 0x45722bed */
169   7.9144794922e+03, /* 0x45f753d6 */
170 };
171 static const float ps8[5] = {
172   1.1420736694e+02, /* 0x42e46a2c */
173   3.6509309082e+03, /* 0x45642ee5 */
174   3.6956207031e+04, /* 0x47105c35 */
175   9.7602796875e+04, /* 0x47bea166 */
176   3.0804271484e+04, /* 0x46f0a88b */
177 };
178 
179 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
180   1.3199052094e-11, /* 0x2d68333f */
181   1.1718749255e-01, /* 0x3defffff */
182   6.8027510643e+00, /* 0x40d9b023 */
183   1.0830818176e+02, /* 0x42d89dca */
184   5.1763616943e+02, /* 0x440168b7 */
185   5.2871520996e+02, /* 0x44042dc6 */
186 };
187 static const float ps5[5] = {
188   5.9280597687e+01, /* 0x426d1f55 */
189   9.9140142822e+02, /* 0x4477d9b1 */
190   5.3532670898e+03, /* 0x45a74a23 */
191   7.8446904297e+03, /* 0x45f52586 */
192   1.5040468750e+03, /* 0x44bc0180 */
193 };
194 
195 static const float pr3[6] = {
196   3.0250391081e-09, /* 0x314fe10d */
197   1.1718686670e-01, /* 0x3defffab */
198   3.9329774380e+00, /* 0x407bb5e7 */
199   3.5119403839e+01, /* 0x420c7a45 */
200   9.1055007935e+01, /* 0x42b61c2a */
201   4.8559066772e+01, /* 0x42423c7c */
202 };
203 static const float ps3[5] = {
204   3.4791309357e+01, /* 0x420b2a4d */
205   3.3676245117e+02, /* 0x43a86198 */
206   1.0468714600e+03, /* 0x4482dbe3 */
207   8.9081134033e+02, /* 0x445eb3ed */
208   1.0378793335e+02, /* 0x42cf936c */
209 };
210 
211 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
212   1.0771083225e-07, /* 0x33e74ea8 */
213   1.1717621982e-01, /* 0x3deffa16 */
214   2.3685150146e+00, /* 0x401795c0 */
215   1.2242610931e+01, /* 0x4143e1bc */
216   1.7693971634e+01, /* 0x418d8d41 */
217   5.0735230446e+00, /* 0x40a25a4d */
218 };
219 static const float ps2[5] = {
220   2.1436485291e+01, /* 0x41ab7dec */
221   1.2529022980e+02, /* 0x42fa9499 */
222   2.3227647400e+02, /* 0x436846c7 */
223   1.1767937469e+02, /* 0x42eb5bd7 */
224   8.3646392822e+00, /* 0x4105d590 */
225 };
226 
227 static float
228 ponef(float x)
229 {
230 	const float *p,*q;
231 	float z,r,s;
232         int32_t ix;
233 
234 	p = q = 0;
235 	GET_FLOAT_WORD(ix,x);
236 	ix &= 0x7fffffff;
237         if(ix>=0x41000000)     {p = pr8; q= ps8;}
238         else if(ix>=0x40f71c58){p = pr5; q= ps5;}
239         else if(ix>=0x4036db68){p = pr3; q= ps3;}
240         else if(ix>=0x40000000){p = pr2; q= ps2;}
241         z = one/(x*x);
242         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
243         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
244         return one+ r/s;
245 }
246 
247 
248 /* For x >= 8, the asymptotic expansions of qone is
249  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
250  * We approximate pone by
251  * 	qone(x) = s*(0.375 + (R/S))
252  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
253  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
254  * and
255  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
256  */
257 
258 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
259   0.0000000000e+00, /* 0x00000000 */
260  -1.0253906250e-01, /* 0xbdd20000 */
261  -1.6271753311e+01, /* 0xc1822c8d */
262  -7.5960174561e+02, /* 0xc43de683 */
263  -1.1849806641e+04, /* 0xc639273a */
264  -4.8438511719e+04, /* 0xc73d3683 */
265 };
266 static const float qs8[6] = {
267   1.6139537048e+02, /* 0x43216537 */
268   7.8253862305e+03, /* 0x45f48b17 */
269   1.3387534375e+05, /* 0x4802bcd6 */
270   7.1965775000e+05, /* 0x492fb29c */
271   6.6660125000e+05, /* 0x4922be94 */
272  -2.9449025000e+05, /* 0xc88fcb48 */
273 };
274 
275 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
276  -2.0897993405e-11, /* 0xadb7d219 */
277  -1.0253904760e-01, /* 0xbdd1fffe */
278  -8.0564479828e+00, /* 0xc100e736 */
279  -1.8366960144e+02, /* 0xc337ab6b */
280  -1.3731937256e+03, /* 0xc4aba633 */
281  -2.6124443359e+03, /* 0xc523471c */
282 };
283 static const float qs5[6] = {
284   8.1276550293e+01, /* 0x42a28d98 */
285   1.9917987061e+03, /* 0x44f8f98f */
286   1.7468484375e+04, /* 0x468878f8 */
287   4.9851425781e+04, /* 0x4742bb6d */
288   2.7948074219e+04, /* 0x46da5826 */
289  -4.7191835938e+03, /* 0xc5937978 */
290 };
291 
292 static const float qr3[6] = { /* for x in [4.5454,2.8570]=1/[0.22001,0.3499] */
293  -5.0783124372e-09, /* 0xb1ae7d4f */
294  -1.0253783315e-01, /* 0xbdd1ff5b */
295  -4.6101160049e+00, /* 0xc0938612 */
296  -5.7847221375e+01, /* 0xc267638e */
297  -2.2824453735e+02, /* 0xc3643e9a */
298  -2.1921012878e+02, /* 0xc35b35cb */
299 };
300 static const float qs3[6] = {
301   4.7665153503e+01, /* 0x423ea91e */
302   6.7386511230e+02, /* 0x4428775e */
303   3.3801528320e+03, /* 0x45534272 */
304   5.5477290039e+03, /* 0x45ad5dd5 */
305   1.9031191406e+03, /* 0x44ede3d0 */
306  -1.3520118713e+02, /* 0xc3073381 */
307 };
308 
309 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
310  -1.7838172539e-07, /* 0xb43f8932 */
311  -1.0251704603e-01, /* 0xbdd1f475 */
312  -2.7522056103e+00, /* 0xc0302423 */
313  -1.9663616180e+01, /* 0xc19d4f16 */
314  -4.2325313568e+01, /* 0xc2294d1f */
315  -2.1371921539e+01, /* 0xc1aaf9b2 */
316 };
317 static const float qs2[6] = {
318   2.9533363342e+01, /* 0x41ec4454 */
319   2.5298155212e+02, /* 0x437cfb47 */
320   7.5750280762e+02, /* 0x443d602e */
321   7.3939318848e+02, /* 0x4438d92a */
322   1.5594900513e+02, /* 0x431bf2f2 */
323  -4.9594988823e+00, /* 0xc09eb437 */
324 };
325 
326 static float
327 qonef(float x)
328 {
329 	const float *p,*q;
330 	float  s,r,z;
331 	int32_t ix;
332 
333 	p = q = 0;
334 	GET_FLOAT_WORD(ix,x);
335 	ix &= 0x7fffffff;
336 	/* [inf, 8]		(8      41000000) */
337 	if(ix>=0x41000000)     {p = qr8; q= qs8;}
338 	/* [8, 4.5454]		(4.5454 409173eb) */
339 	else if(ix>=0x409173eb){p = qr5; q= qs5;}
340 	/* [4.5454, 2.8570] 	(2.8570	4036d917) */
341 	else if(ix>=0x4036d917){p = qr3; q= qs3;}
342 	/* [2.8570, 2]		(2 	40000000) */
343 	else if(ix>=0x40000000){p = qr2; q= qs2;}
344 	z = one/(x*x);
345 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
346 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
347 	return ((float).375 + r/s)/x;
348 }
349