1 /* @(#)e_j0.c 5.1 93/09/24 */ 2 /* 3 * ==================================================== 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5 * 6 * Developed at SunPro, a Sun Microsystems, Inc. business. 7 * Permission to use, copy, modify, and distribute this 8 * software is freely granted, provided that this notice 9 * is preserved. 10 * ==================================================== 11 */ 12 13 #include <sys/cdefs.h> 14 #if defined(LIBM_SCCS) && !defined(lint) 15 __RCSID("$NetBSD: e_j0.c,v 1.9 1997/10/09 11:29:08 lukem Exp $"); 16 #endif 17 18 /* __ieee754_j0(x), __ieee754_y0(x) 19 * Bessel function of the first and second kinds of order zero. 20 * Method -- j0(x): 21 * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... 22 * 2. Reduce x to |x| since j0(x)=j0(-x), and 23 * for x in (0,2) 24 * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; 25 * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) 26 * for x in (2,inf) 27 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) 28 * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) 29 * as follow: 30 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) 31 * = 1/sqrt(2) * (cos(x) + sin(x)) 32 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) 33 * = 1/sqrt(2) * (sin(x) - cos(x)) 34 * (To avoid cancellation, use 35 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 36 * to compute the worse one.) 37 * 38 * 3 Special cases 39 * j0(nan)= nan 40 * j0(0) = 1 41 * j0(inf) = 0 42 * 43 * Method -- y0(x): 44 * 1. For x<2. 45 * Since 46 * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) 47 * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. 48 * We use the following function to approximate y0, 49 * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 50 * where 51 * U(z) = u00 + u01*z + ... + u06*z^6 52 * V(z) = 1 + v01*z + ... + v04*z^4 53 * with absolute approximation error bounded by 2**-72. 54 * Note: For tiny x, U/V = u0 and j0(x)~1, hence 55 * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) 56 * 2. For x>=2. 57 * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) 58 * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) 59 * by the method mentioned above. 60 * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. 61 */ 62 63 #include "math.h" 64 #include "math_private.h" 65 66 #ifdef __STDC__ 67 static double pzero(double), qzero(double); 68 #else 69 static double pzero(), qzero(); 70 #endif 71 72 #ifdef __STDC__ 73 static const double 74 #else 75 static double 76 #endif 77 huge = 1e300, 78 one = 1.0, 79 invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ 80 tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ 81 /* R0/S0 on [0, 2.00] */ 82 R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ 83 R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ 84 R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ 85 R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */ 86 S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */ 87 S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */ 88 S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */ 89 S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ 90 91 #ifdef __STDC__ 92 static const double zero = 0.0; 93 #else 94 static double zero = 0.0; 95 #endif 96 97 #ifdef __STDC__ 98 double __ieee754_j0(double x) 99 #else 100 double __ieee754_j0(x) 101 double x; 102 #endif 103 { 104 double z, s,c,ss,cc,r,u,v; 105 int32_t hx,ix; 106 107 GET_HIGH_WORD(hx,x); 108 ix = hx&0x7fffffff; 109 if(ix>=0x7ff00000) return one/(x*x); 110 x = fabs(x); 111 if(ix >= 0x40000000) { /* |x| >= 2.0 */ 112 s = sin(x); 113 c = cos(x); 114 ss = s-c; 115 cc = s+c; 116 if(ix<0x7fe00000) { /* make sure x+x not overflow */ 117 z = -cos(x+x); 118 if ((s*c)<zero) cc = z/ss; 119 else ss = z/cc; 120 } 121 /* 122 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 123 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 124 */ 125 if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x); 126 else { 127 u = pzero(x); v = qzero(x); 128 z = invsqrtpi*(u*cc-v*ss)/sqrt(x); 129 } 130 return z; 131 } 132 if(ix<0x3f200000) { /* |x| < 2**-13 */ 133 if(huge+x>one) { /* raise inexact if x != 0 */ 134 if(ix<0x3e400000) return one; /* |x|<2**-27 */ 135 else return one - 0.25*x*x; 136 } 137 } 138 z = x*x; 139 r = z*(R02+z*(R03+z*(R04+z*R05))); 140 s = one+z*(S01+z*(S02+z*(S03+z*S04))); 141 if(ix < 0x3FF00000) { /* |x| < 1.00 */ 142 return one + z*(-0.25+(r/s)); 143 } else { 144 u = 0.5*x; 145 return((one+u)*(one-u)+z*(r/s)); 146 } 147 } 148 149 #ifdef __STDC__ 150 static const double 151 #else 152 static double 153 #endif 154 u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */ 155 u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */ 156 u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */ 157 u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */ 158 u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */ 159 u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */ 160 u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */ 161 v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */ 162 v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */ 163 v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */ 164 v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ 165 166 #ifdef __STDC__ 167 double __ieee754_y0(double x) 168 #else 169 double __ieee754_y0(x) 170 double x; 171 #endif 172 { 173 double z, s,c,ss,cc,u,v; 174 int32_t hx,ix,lx; 175 176 EXTRACT_WORDS(hx,lx,x); 177 ix = 0x7fffffff&hx; 178 /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ 179 if(ix>=0x7ff00000) return one/(x+x*x); 180 if((ix|lx)==0) return -one/zero; 181 if(hx<0) return zero/zero; 182 if(ix >= 0x40000000) { /* |x| >= 2.0 */ 183 /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) 184 * where x0 = x-pi/4 185 * Better formula: 186 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) 187 * = 1/sqrt(2) * (sin(x) + cos(x)) 188 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 189 * = 1/sqrt(2) * (sin(x) - cos(x)) 190 * To avoid cancellation, use 191 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 192 * to compute the worse one. 193 */ 194 s = sin(x); 195 c = cos(x); 196 ss = s-c; 197 cc = s+c; 198 /* 199 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 200 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 201 */ 202 if(ix<0x7fe00000) { /* make sure x+x not overflow */ 203 z = -cos(x+x); 204 if ((s*c)<zero) cc = z/ss; 205 else ss = z/cc; 206 } 207 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x); 208 else { 209 u = pzero(x); v = qzero(x); 210 z = invsqrtpi*(u*ss+v*cc)/sqrt(x); 211 } 212 return z; 213 } 214 if(ix<=0x3e400000) { /* x < 2**-27 */ 215 return(u00 + tpi*__ieee754_log(x)); 216 } 217 z = x*x; 218 u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); 219 v = one+z*(v01+z*(v02+z*(v03+z*v04))); 220 return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x))); 221 } 222 223 /* The asymptotic expansions of pzero is 224 * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. 225 * For x >= 2, We approximate pzero by 226 * pzero(x) = 1 + (R/S) 227 * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 228 * S = 1 + pS0*s^2 + ... + pS4*s^10 229 * and 230 * | pzero(x)-1-R/S | <= 2 ** ( -60.26) 231 */ 232 #ifdef __STDC__ 233 static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 234 #else 235 static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 236 #endif 237 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 238 -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ 239 -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ 240 -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ 241 -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ 242 -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ 243 }; 244 #ifdef __STDC__ 245 static const double pS8[5] = { 246 #else 247 static double pS8[5] = { 248 #endif 249 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ 250 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ 251 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ 252 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ 253 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ 254 }; 255 256 #ifdef __STDC__ 257 static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 258 #else 259 static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 260 #endif 261 -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ 262 -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ 263 -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ 264 -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ 265 -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ 266 -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ 267 }; 268 #ifdef __STDC__ 269 static const double pS5[5] = { 270 #else 271 static double pS5[5] = { 272 #endif 273 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ 274 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ 275 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ 276 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ 277 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ 278 }; 279 280 #ifdef __STDC__ 281 static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 282 #else 283 static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 284 #endif 285 -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ 286 -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ 287 -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ 288 -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ 289 -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ 290 -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ 291 }; 292 #ifdef __STDC__ 293 static const double pS3[5] = { 294 #else 295 static double pS3[5] = { 296 #endif 297 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ 298 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ 299 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ 300 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ 301 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ 302 }; 303 304 #ifdef __STDC__ 305 static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 306 #else 307 static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 308 #endif 309 -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ 310 -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ 311 -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ 312 -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ 313 -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ 314 -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ 315 }; 316 #ifdef __STDC__ 317 static const double pS2[5] = { 318 #else 319 static double pS2[5] = { 320 #endif 321 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ 322 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ 323 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ 324 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ 325 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ 326 }; 327 328 #ifdef __STDC__ 329 static double pzero(double x) 330 #else 331 static double pzero(x) 332 double x; 333 #endif 334 { 335 #ifdef __STDC__ 336 const double *p,*q; 337 #else 338 double *p,*q; 339 #endif 340 double z,r,s; 341 int32_t ix; 342 343 p = q = 0; 344 GET_HIGH_WORD(ix,x); 345 ix &= 0x7fffffff; 346 if(ix>=0x40200000) {p = pR8; q= pS8;} 347 else if(ix>=0x40122E8B){p = pR5; q= pS5;} 348 else if(ix>=0x4006DB6D){p = pR3; q= pS3;} 349 else if(ix>=0x40000000){p = pR2; q= pS2;} 350 z = one/(x*x); 351 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 352 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); 353 return one+ r/s; 354 } 355 356 357 /* For x >= 8, the asymptotic expansions of qzero is 358 * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. 359 * We approximate pzero by 360 * qzero(x) = s*(-1.25 + (R/S)) 361 * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 362 * S = 1 + qS0*s^2 + ... + qS5*s^12 363 * and 364 * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) 365 */ 366 #ifdef __STDC__ 367 static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 368 #else 369 static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 370 #endif 371 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 372 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ 373 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ 374 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ 375 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ 376 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ 377 }; 378 #ifdef __STDC__ 379 static const double qS8[6] = { 380 #else 381 static double qS8[6] = { 382 #endif 383 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ 384 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ 385 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ 386 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ 387 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ 388 -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ 389 }; 390 391 #ifdef __STDC__ 392 static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 393 #else 394 static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 395 #endif 396 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ 397 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ 398 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ 399 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ 400 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ 401 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ 402 }; 403 #ifdef __STDC__ 404 static const double qS5[6] = { 405 #else 406 static double qS5[6] = { 407 #endif 408 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ 409 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ 410 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ 411 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ 412 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ 413 -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ 414 }; 415 416 #ifdef __STDC__ 417 static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 418 #else 419 static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 420 #endif 421 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ 422 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ 423 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ 424 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ 425 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ 426 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ 427 }; 428 #ifdef __STDC__ 429 static const double qS3[6] = { 430 #else 431 static double qS3[6] = { 432 #endif 433 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ 434 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ 435 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ 436 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ 437 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ 438 -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ 439 }; 440 441 #ifdef __STDC__ 442 static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 443 #else 444 static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 445 #endif 446 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ 447 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ 448 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ 449 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ 450 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ 451 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ 452 }; 453 #ifdef __STDC__ 454 static const double qS2[6] = { 455 #else 456 static double qS2[6] = { 457 #endif 458 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ 459 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ 460 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ 461 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ 462 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ 463 -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ 464 }; 465 466 #ifdef __STDC__ 467 static double qzero(double x) 468 #else 469 static double qzero(x) 470 double x; 471 #endif 472 { 473 #ifdef __STDC__ 474 const double *p,*q; 475 #else 476 double *p,*q; 477 #endif 478 double s,r,z; 479 int32_t ix; 480 481 p = q = 0; 482 GET_HIGH_WORD(ix,x); 483 ix &= 0x7fffffff; 484 if(ix>=0x40200000) {p = qR8; q= qS8;} 485 else if(ix>=0x40122E8B){p = qR5; q= qS5;} 486 else if(ix>=0x4006DB6D){p = qR3; q= qS3;} 487 else if(ix>=0x40000000){p = qR2; q= qS2;} 488 z = one/(x*x); 489 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 490 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); 491 return (-.125 + r/s)/x; 492 } 493