xref: /netbsd-src/lib/libm/src/e_hypot.c (revision ae1bfcddc410612bc8c58b807e1830becb69a24c)
1 /* @(#)e_hypot.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #ifndef lint
14 static char rcsid[] = "$Id: e_hypot.c,v 1.4 1994/03/03 17:04:12 jtc Exp $";
15 #endif
16 
17 /* __ieee754_hypot(x,y)
18  *
19  * Method :
20  *	If (assume round-to-nearest) z=x*x+y*y
21  *	has error less than sqrt(2)/2 ulp, than
22  *	sqrt(z) has error less than 1 ulp (exercise).
23  *
24  *	So, compute sqrt(x*x+y*y) with some care as
25  *	follows to get the error below 1 ulp:
26  *
27  *	Assume x>y>0;
28  *	(if possible, set rounding to round-to-nearest)
29  *	1. if x > 2y  use
30  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
31  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
32  *	2. if x <= 2y use
33  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
34  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
35  *	y1= y with lower 32 bits chopped, y2 = y-y1.
36  *
37  *	NOTE: scaling may be necessary if some argument is too
38  *	      large or too tiny
39  *
40  * Special cases:
41  *	hypot(x,y) is INF if x or y is +INF or -INF; else
42  *	hypot(x,y) is NAN if x or y is NAN.
43  *
44  * Accuracy:
45  * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
46  * 	than 1 ulps (units in the last place)
47  */
48 
49 #include <math.h>
50 #include <machine/endian.h>
51 
52 #if BYTE_ORDER == LITTLE_ENDIAN
53 #define n0	1
54 #else
55 #define n0	0
56 #endif
57 
58 #ifdef __STDC__
59 	double __ieee754_hypot(double x, double y)
60 #else
61 	double __ieee754_hypot(x,y)
62 	double x, y;
63 #endif
64 {
65 	double a=x,b=y,t1,t2,y1,y2,w;
66 	int j,k,ha,hb;
67 
68 	ha = *(n0+(int*)&x)&0x7fffffff;	/* high word of  x */
69 	hb = *(n0+(int*)&y)&0x7fffffff;	/* high word of  y */
70 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
71 	*(n0+(int*)&a) = ha;	/* a <- |a| */
72 	*(n0+(int*)&b) = hb;	/* b <- |b| */
73 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
74 	k=0;
75 	if(ha > 0x5f300000) {	/* a>2**500 */
76 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
77 	       w = a+b;			/* for sNaN */
78 	       if(((ha&0xfffff)|*(1-n0+(int*)&a))==0) w = a;
79 	       if(((hb^0x7ff00000)|*(1-n0+(int*)&b))==0) w = b;
80 	       return w;
81 	   }
82 	   /* scale a and b by 2**-600 */
83 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
84 	   *(n0+(int*)&a) = ha;
85 	   *(n0+(int*)&b) = hb;
86 	}
87 	if(hb < 0x20b00000) {	/* b < 2**-500 */
88 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
89 		if((hb|(*(1-n0+(int*)&b)))==0) return a;
90 		t1=0;
91 		*(n0+(int*)&t1) = 0x7fd00000;	/* t1=2^1022 */
92 		b *= t1;
93 		a *= t1;
94 		k -= 1022;
95 	    } else {		/* scale a and b by 2^600 */
96 	        ha += 0x25800000; 	/* a *= 2^600 */
97 		hb += 0x25800000;	/* b *= 2^600 */
98 		k -= 600;
99 	   	*(n0+(int*)&a) = ha;
100 	   	*(n0+(int*)&b) = hb;
101 	    }
102 	}
103     /* medium size a and b */
104 	w = a-b;
105 	if (w>b) {
106 	    t1 = 0;
107 	    *(n0+(int*)&t1) = ha;
108 	    t2 = a-t1;
109 	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
110 	} else {
111 	    a  = a+a;
112 	    y1 = 0;
113 	    *(n0+(int*)&y1) = hb;
114 	    y2 = b - y1;
115 	    t1 = 0;
116 	    *(n0+(int*)&t1) = ha+0x00100000;
117 	    t2 = a - t1;
118 	    w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
119 	}
120 	if(k!=0) {
121 	    t1 = 1.0;
122 	    *(n0+(int*)&t1) += (k<<20);
123 	    return t1*w;
124 	} else return w;
125 }
126