xref: /netbsd-src/lib/libm/src/e_acosh.c (revision ae1bfcddc410612bc8c58b807e1830becb69a24c)
1 /* @(#)e_acosh.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #ifndef lint
14 static char rcsid[] = "$Id: e_acosh.c,v 1.4 1994/03/03 17:04:05 jtc Exp $";
15 #endif
16 
17 /* __ieee754_acosh(x)
18  * Method :
19  *	Based on
20  *		acosh(x) = log [ x + sqrt(x*x-1) ]
21  *	we have
22  *		acosh(x) := log(x)+ln2,	if x is large; else
23  *		acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
24  *		acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
25  *
26  * Special cases:
27  *	acosh(x) is NaN with signal if x<1.
28  *	acosh(NaN) is NaN without signal.
29  */
30 
31 #include <math.h>
32 #include <machine/endian.h>
33 
34 #if BYTE_ORDER == LITTLE_ENDIAN
35 #define n0	1
36 #else
37 #define n0	0
38 #endif
39 
40 #ifdef __STDC__
41 static const double
42 #else
43 static double
44 #endif
45 one	= 1.0,
46 ln2	= 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */
47 
48 #ifdef __STDC__
49 	double __ieee754_acosh(double x)
50 #else
51 	double __ieee754_acosh(x)
52 	double x;
53 #endif
54 {
55 	double t;
56 	int hx;
57 
58 	hx = *(n0+(int*)&x);
59 	if(hx<0x3ff00000) {		/* x < 1 */
60 	    return (x-x)/(x-x);
61 	} else if(hx >=0x41b00000) {	/* x > 2**28 */
62 	    if(hx >=0x7ff00000) {	/* x is inf of NaN */
63 	        return x+x;
64 	    } else
65 		return __ieee754_log(x)+ln2;	/* acosh(huge)=log(2x) */
66 	} else if(((hx-0x3ff00000)|*(1-n0+(int*)&x))==0) {
67 	    return 0.0;			/* acosh(1) = 0 */
68 	} else if (hx > 0x40000000) {	/* 2**28 > x > 2 */
69 	    t=x*x;
70 	    return __ieee754_log(2.0*x-one/(x+sqrt(t-one)));
71 	} else {			/* 1<x<2 */
72 	    t = x-one;
73 	    return log1p(t+sqrt(2.0*t+t*t));
74 	}
75 }
76