xref: /netbsd-src/lib/libm/src/e_acosh.c (revision 1ca5c1b28139779176bd5c13ad7c5f25c0bcd5f8)
1 /* @(#)e_acosh.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: e_acosh.c,v 1.11 1999/07/02 15:37:38 simonb Exp $");
16 #endif
17 
18 /* __ieee754_acosh(x)
19  * Method :
20  *	Based on
21  *		acosh(x) = log [ x + sqrt(x*x-1) ]
22  *	we have
23  *		acosh(x) := log(x)+ln2,	if x is large; else
24  *		acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
25  *		acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
26  *
27  * Special cases:
28  *	acosh(x) is NaN with signal if x<1.
29  *	acosh(NaN) is NaN without signal.
30  */
31 
32 #include "math.h"
33 #include "math_private.h"
34 
35 #ifdef __STDC__
36 static const double
37 #else
38 static double
39 #endif
40 one	= 1.0,
41 ln2	= 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */
42 
43 #ifdef __STDC__
44 	double __ieee754_acosh(double x)
45 #else
46 	double __ieee754_acosh(x)
47 	double x;
48 #endif
49 {
50 	double t;
51 	int32_t hx;
52 	u_int32_t lx;
53 	EXTRACT_WORDS(hx,lx,x);
54 	if(hx<0x3ff00000) {		/* x < 1 */
55 	    return (x-x)/(x-x);
56 	} else if(hx >=0x41b00000) {	/* x > 2**28 */
57 	    if(hx >=0x7ff00000) {	/* x is inf of NaN */
58 	        return x+x;
59 	    } else
60 		return __ieee754_log(x)+ln2;	/* acosh(huge)=log(2x) */
61 	} else if(((hx-0x3ff00000)|lx)==0) {
62 	    return 0.0;			/* acosh(1) = 0 */
63 	} else if (hx > 0x40000000) {	/* 2**28 > x > 2 */
64 	    t=x*x;
65 	    return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));
66 	} else {			/* 1<x<2 */
67 	    t = x-one;
68 	    return log1p(t+sqrt(2.0*t+t*t));
69 	}
70 }
71