xref: /netbsd-src/lib/libm/noieee_src/n_log.c (revision 81b108b45f75f89f1e3ffad9fb6f074e771c0935)
1 /*      $NetBSD: n_log.c,v 1.1 1995/10/10 23:36:57 ragge Exp $ */
2 /*
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
37 #endif /* not lint */
38 
39 #include <math.h>
40 #include <errno.h>
41 
42 #include "mathimpl.h"
43 
44 /* Table-driven natural logarithm.
45  *
46  * This code was derived, with minor modifications, from:
47  *	Peter Tang, "Table-Driven Implementation of the
48  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
49  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
50  *
51  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
52  * where F = j/128 for j an integer in [0, 128].
53  *
54  * log(2^m) = log2_hi*m + log2_tail*m
55  * since m is an integer, the dominant term is exact.
56  * m has at most 10 digits (for subnormal numbers),
57  * and log2_hi has 11 trailing zero bits.
58  *
59  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
60  * logF_hi[] + 512 is exact.
61  *
62  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
63  * the leading term is calculated to extra precision in two
64  * parts, the larger of which adds exactly to the dominant
65  * m and F terms.
66  * There are two cases:
67  *	1. when m, j are non-zero (m | j), use absolute
68  *	   precision for the leading term.
69  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
70  *	   In this case, use a relative precision of 24 bits.
71  * (This is done differently in the original paper)
72  *
73  * Special cases:
74  *	0	return signalling -Inf
75  *	neg	return signalling NaN
76  *	+Inf	return +Inf
77 */
78 
79 #if defined(vax) || defined(tahoe)
80 #define _IEEE		0
81 #define TRUNC(x)	x = (double) (float) (x)
82 #else
83 #define _IEEE		1
84 #define endian		(((*(int *) &one)) ? 1 : 0)
85 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
86 #define infnan(x)	0.0
87 #endif
88 
89 #define N 128
90 
91 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
92  * Used for generation of extend precision logarithms.
93  * The constant 35184372088832 is 2^45, so the divide is exact.
94  * It ensures correct reading of logF_head, even for inaccurate
95  * decimal-to-binary conversion routines.  (Everybody gets the
96  * right answer for integers less than 2^53.)
97  * Values for log(F) were generated using error < 10^-57 absolute
98  * with the bc -l package.
99 */
100 static double	A1 = 	  .08333333333333178827;
101 static double	A2 = 	  .01250000000377174923;
102 static double	A3 =	 .002232139987919447809;
103 static double	A4 =	.0004348877777076145742;
104 
105 static double logF_head[N+1] = {
106 	0.,
107 	.007782140442060381246,
108 	.015504186535963526694,
109 	.023167059281547608406,
110 	.030771658666765233647,
111 	.038318864302141264488,
112 	.045809536031242714670,
113 	.053244514518837604555,
114 	.060624621816486978786,
115 	.067950661908525944454,
116 	.075223421237524235039,
117 	.082443669210988446138,
118 	.089612158689760690322,
119 	.096729626458454731618,
120 	.103796793681567578460,
121 	.110814366340264314203,
122 	.117783035656430001836,
123 	.124703478501032805070,
124 	.131576357788617315236,
125 	.138402322859292326029,
126 	.145182009844575077295,
127 	.151916042025732167530,
128 	.158605030176659056451,
129 	.165249572895390883786,
130 	.171850256926518341060,
131 	.178407657472689606947,
132 	.184922338493834104156,
133 	.191394852999565046047,
134 	.197825743329758552135,
135 	.204215541428766300668,
136 	.210564769107350002741,
137 	.216873938300523150246,
138 	.223143551314024080056,
139 	.229374101064877322642,
140 	.235566071312860003672,
141 	.241719936886966024758,
142 	.247836163904594286577,
143 	.253915209980732470285,
144 	.259957524436686071567,
145 	.265963548496984003577,
146 	.271933715484010463114,
147 	.277868451003087102435,
148 	.283768173130738432519,
149 	.289633292582948342896,
150 	.295464212893421063199,
151 	.301261330578199704177,
152 	.307025035294827830512,
153 	.312755710004239517729,
154 	.318453731118097493890,
155 	.324119468654316733591,
156 	.329753286372579168528,
157 	.335355541920762334484,
158 	.340926586970454081892,
159 	.346466767346100823488,
160 	.351976423156884266063,
161 	.357455888922231679316,
162 	.362905493689140712376,
163 	.368325561158599157352,
164 	.373716409793814818840,
165 	.379078352934811846353,
166 	.384411698910298582632,
167 	.389716751140440464951,
168 	.394993808240542421117,
169 	.400243164127459749579,
170 	.405465108107819105498,
171 	.410659924985338875558,
172 	.415827895143593195825,
173 	.420969294644237379543,
174 	.426084395310681429691,
175 	.431173464818130014464,
176 	.436236766774527495726,
177 	.441274560805140936281,
178 	.446287102628048160113,
179 	.451274644139630254358,
180 	.456237433481874177232,
181 	.461175715122408291790,
182 	.466089729924533457960,
183 	.470979715219073113985,
184 	.475845904869856894947,
185 	.480688529345570714212,
186 	.485507815781602403149,
187 	.490303988045525329653,
188 	.495077266798034543171,
189 	.499827869556611403822,
190 	.504556010751912253908,
191 	.509261901790523552335,
192 	.513945751101346104405,
193 	.518607764208354637958,
194 	.523248143765158602036,
195 	.527867089620485785417,
196 	.532464798869114019908,
197 	.537041465897345915436,
198 	.541597282432121573947,
199 	.546132437597407260909,
200 	.550647117952394182793,
201 	.555141507540611200965,
202 	.559615787935399566777,
203 	.564070138285387656651,
204 	.568504735352689749561,
205 	.572919753562018740922,
206 	.577315365035246941260,
207 	.581691739635061821900,
208 	.586049045003164792433,
209 	.590387446602107957005,
210 	.594707107746216934174,
211 	.599008189645246602594,
212 	.603290851438941899687,
213 	.607555250224322662688,
214 	.611801541106615331955,
215 	.616029877215623855590,
216 	.620240409751204424537,
217 	.624433288012369303032,
218 	.628608659422752680256,
219 	.632766669570628437213,
220 	.636907462236194987781,
221 	.641031179420679109171,
222 	.645137961373620782978,
223 	.649227946625615004450,
224 	.653301272011958644725,
225 	.657358072709030238911,
226 	.661398482245203922502,
227 	.665422632544505177065,
228 	.669430653942981734871,
229 	.673422675212350441142,
230 	.677398823590920073911,
231 	.681359224807238206267,
232 	.685304003098281100392,
233 	.689233281238557538017,
234 	.693147180560117703862
235 };
236 
237 static double logF_tail[N+1] = {
238 	0.,
239 	-.00000000000000543229938420049,
240 	 .00000000000000172745674997061,
241 	-.00000000000001323017818229233,
242 	-.00000000000001154527628289872,
243 	-.00000000000000466529469958300,
244 	 .00000000000005148849572685810,
245 	-.00000000000002532168943117445,
246 	-.00000000000005213620639136504,
247 	-.00000000000001819506003016881,
248 	 .00000000000006329065958724544,
249 	 .00000000000008614512936087814,
250 	-.00000000000007355770219435028,
251 	 .00000000000009638067658552277,
252 	 .00000000000007598636597194141,
253 	 .00000000000002579999128306990,
254 	-.00000000000004654729747598444,
255 	-.00000000000007556920687451336,
256 	 .00000000000010195735223708472,
257 	-.00000000000017319034406422306,
258 	-.00000000000007718001336828098,
259 	 .00000000000010980754099855238,
260 	-.00000000000002047235780046195,
261 	-.00000000000008372091099235912,
262 	 .00000000000014088127937111135,
263 	 .00000000000012869017157588257,
264 	 .00000000000017788850778198106,
265 	 .00000000000006440856150696891,
266 	 .00000000000016132822667240822,
267 	-.00000000000007540916511956188,
268 	-.00000000000000036507188831790,
269 	 .00000000000009120937249914984,
270 	 .00000000000018567570959796010,
271 	-.00000000000003149265065191483,
272 	-.00000000000009309459495196889,
273 	 .00000000000017914338601329117,
274 	-.00000000000001302979717330866,
275 	 .00000000000023097385217586939,
276 	 .00000000000023999540484211737,
277 	 .00000000000015393776174455408,
278 	-.00000000000036870428315837678,
279 	 .00000000000036920375082080089,
280 	-.00000000000009383417223663699,
281 	 .00000000000009433398189512690,
282 	 .00000000000041481318704258568,
283 	-.00000000000003792316480209314,
284 	 .00000000000008403156304792424,
285 	-.00000000000034262934348285429,
286 	 .00000000000043712191957429145,
287 	-.00000000000010475750058776541,
288 	-.00000000000011118671389559323,
289 	 .00000000000037549577257259853,
290 	 .00000000000013912841212197565,
291 	 .00000000000010775743037572640,
292 	 .00000000000029391859187648000,
293 	-.00000000000042790509060060774,
294 	 .00000000000022774076114039555,
295 	 .00000000000010849569622967912,
296 	-.00000000000023073801945705758,
297 	 .00000000000015761203773969435,
298 	 .00000000000003345710269544082,
299 	-.00000000000041525158063436123,
300 	 .00000000000032655698896907146,
301 	-.00000000000044704265010452446,
302 	 .00000000000034527647952039772,
303 	-.00000000000007048962392109746,
304 	 .00000000000011776978751369214,
305 	-.00000000000010774341461609578,
306 	 .00000000000021863343293215910,
307 	 .00000000000024132639491333131,
308 	 .00000000000039057462209830700,
309 	-.00000000000026570679203560751,
310 	 .00000000000037135141919592021,
311 	-.00000000000017166921336082431,
312 	-.00000000000028658285157914353,
313 	-.00000000000023812542263446809,
314 	 .00000000000006576659768580062,
315 	-.00000000000028210143846181267,
316 	 .00000000000010701931762114254,
317 	 .00000000000018119346366441110,
318 	 .00000000000009840465278232627,
319 	-.00000000000033149150282752542,
320 	-.00000000000018302857356041668,
321 	-.00000000000016207400156744949,
322 	 .00000000000048303314949553201,
323 	-.00000000000071560553172382115,
324 	 .00000000000088821239518571855,
325 	-.00000000000030900580513238244,
326 	-.00000000000061076551972851496,
327 	 .00000000000035659969663347830,
328 	 .00000000000035782396591276383,
329 	-.00000000000046226087001544578,
330 	 .00000000000062279762917225156,
331 	 .00000000000072838947272065741,
332 	 .00000000000026809646615211673,
333 	-.00000000000010960825046059278,
334 	 .00000000000002311949383800537,
335 	-.00000000000058469058005299247,
336 	-.00000000000002103748251144494,
337 	-.00000000000023323182945587408,
338 	-.00000000000042333694288141916,
339 	-.00000000000043933937969737844,
340 	 .00000000000041341647073835565,
341 	 .00000000000006841763641591466,
342 	 .00000000000047585534004430641,
343 	 .00000000000083679678674757695,
344 	-.00000000000085763734646658640,
345 	 .00000000000021913281229340092,
346 	-.00000000000062242842536431148,
347 	-.00000000000010983594325438430,
348 	 .00000000000065310431377633651,
349 	-.00000000000047580199021710769,
350 	-.00000000000037854251265457040,
351 	 .00000000000040939233218678664,
352 	 .00000000000087424383914858291,
353 	 .00000000000025218188456842882,
354 	-.00000000000003608131360422557,
355 	-.00000000000050518555924280902,
356 	 .00000000000078699403323355317,
357 	-.00000000000067020876961949060,
358 	 .00000000000016108575753932458,
359 	 .00000000000058527188436251509,
360 	-.00000000000035246757297904791,
361 	-.00000000000018372084495629058,
362 	 .00000000000088606689813494916,
363 	 .00000000000066486268071468700,
364 	 .00000000000063831615170646519,
365 	 .00000000000025144230728376072,
366 	-.00000000000017239444525614834
367 };
368 
369 double
370 #ifdef _ANSI_SOURCE
371 log(double x)
372 #else
373 log(x) double x;
374 #endif
375 {
376 	int m, j;
377 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
378 	volatile double u1;
379 
380 	/* Catch special cases */
381 	if (x <= 0)
382 		if (_IEEE && x == zero)	/* log(0) = -Inf */
383 			return (-one/zero);
384 		else if (_IEEE)		/* log(neg) = NaN */
385 			return (zero/zero);
386 		else if (x == zero)	/* NOT REACHED IF _IEEE */
387 			return (infnan(-ERANGE));
388 		else
389 			return (infnan(EDOM));
390 	else if (!finite(x))
391 		if (_IEEE)		/* x = NaN, Inf */
392 			return (x+x);
393 		else
394 			return (infnan(ERANGE));
395 
396 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
397 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
398 
399 	m = logb(x);
400 	g = ldexp(x, -m);
401 	if (_IEEE && m == -1022) {
402 		j = logb(g), m += j;
403 		g = ldexp(g, -j);
404 	}
405 	j = N*(g-1) + .5;
406 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
407 	f = g - F;
408 
409 	/* Approximate expansion for log(1+f/F) ~= u + q */
410 	g = 1/(2*F+f);
411 	u = 2*f*g;
412 	v = u*u;
413 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
414 
415     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
416      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
417      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
418     */
419 	if (m | j)
420 		u1 = u + 513, u1 -= 513;
421 
422     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
423      * 		u1 = u to 24 bits.
424     */
425 	else
426 		u1 = u, TRUNC(u1);
427 	u2 = (2.0*(f - F*u1) - u1*f) * g;
428 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
429 
430 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
431 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
432 	/* (exact) + (tiny)						*/
433 
434 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
435 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
436 	u2 += logF_tail[N]*m;
437 	return (u1 + u2);
438 }
439 
440 /*
441  * Extra precision variant, returning struct {double a, b;};
442  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
443  */
444 struct Double
445 #ifdef _ANSI_SOURCE
446 __log__D(double x)
447 #else
448 __log__D(x) double x;
449 #endif
450 {
451 	int m, j;
452 	double F, f, g, q, u, v, u2, one = 1.0;
453 	volatile double u1;
454 	struct Double r;
455 
456 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
457 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
458 
459 	m = logb(x);
460 	g = ldexp(x, -m);
461 	if (_IEEE && m == -1022) {
462 		j = logb(g), m += j;
463 		g = ldexp(g, -j);
464 	}
465 	j = N*(g-1) + .5;
466 	F = (1.0/N) * j + 1;
467 	f = g - F;
468 
469 	g = 1/(2*F+f);
470 	u = 2*f*g;
471 	v = u*u;
472 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
473 	if (m | j)
474 		u1 = u + 513, u1 -= 513;
475 	else
476 		u1 = u, TRUNC(u1);
477 	u2 = (2.0*(f - F*u1) - u1*f) * g;
478 
479 	u1 += m*logF_head[N] + logF_head[j];
480 
481 	u2 +=  logF_tail[j]; u2 += q;
482 	u2 += logF_tail[N]*m;
483 	r.a = u1 + u2;			/* Only difference is here */
484 	TRUNC(r.a);
485 	r.b = (u1 - r.a) + u2;
486 	return (r);
487 }
488