xref: /netbsd-src/lib/libm/noieee_src/n_lgamma.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*      $NetBSD: n_lgamma.c,v 1.1 1995/10/10 23:36:56 ragge Exp $ */
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 static char sccsid[] = "@(#)lgamma.c	8.2 (Berkeley) 11/30/93";
37 #endif /* not lint */
38 
39 /*
40  * Coded by Peter McIlroy, Nov 1992;
41  *
42  * The financial support of UUNET Communications Services is greatfully
43  * acknowledged.
44  */
45 
46 #include <math.h>
47 #include <errno.h>
48 
49 #include "mathimpl.h"
50 
51 /* Log gamma function.
52  * Error:  x > 0 error < 1.3ulp.
53  *	   x > 4, error < 1ulp.
54  *	   x > 9, error < .6ulp.
55  * 	   x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
56  * Method:
57  *	x > 6:
58  *		Use the asymptotic expansion (Stirling's Formula)
59  *	0 < x < 6:
60  *		Use gamma(x+1) = x*gamma(x) for argument reduction.
61  *		Use rational approximation in
62  *		the range 1.2, 2.5
63  *		Two approximations are used, one centered at the
64  *		minimum to ensure monotonicity; one centered at 2
65  *		to maintain small relative error.
66  *	x < 0:
67  *		Use the reflection formula,
68  *		G(1-x)G(x) = PI/sin(PI*x)
69  * Special values:
70  *	non-positive integer	returns +Inf.
71  *	NaN			returns NaN
72 */
73 static int endian;
74 #if defined(vax) || defined(tahoe)
75 #define _IEEE		0
76 /* double and float have same size exponent field */
77 #define TRUNC(x)	x = (double) (float) (x)
78 #else
79 #define _IEEE		1
80 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
81 #define infnan(x)	0.0
82 #endif
83 
84 static double small_lgam(double);
85 static double large_lgam(double);
86 static double neg_lgam(double);
87 static double zero = 0.0, one = 1.0;
88 int signgam;
89 
90 #define UNDERFL (1e-1020 * 1e-1020)
91 
92 #define LEFT	(1.0 - (x0 + .25))
93 #define RIGHT	(x0 - .218)
94 /*
95 /* Constants for approximation in [1.244,1.712]
96 */
97 #define x0	0.461632144968362356785
98 #define x0_lo	-.000000000000000015522348162858676890521
99 #define a0_hi	-0.12148629128932952880859
100 #define a0_lo	.0000000007534799204229502
101 #define r0	-2.771227512955130520e-002
102 #define r1	-2.980729795228150847e-001
103 #define r2	-3.257411333183093394e-001
104 #define r3	-1.126814387531706041e-001
105 #define r4	-1.129130057170225562e-002
106 #define r5	-2.259650588213369095e-005
107 #define s0	 1.714457160001714442e+000
108 #define s1	 2.786469504618194648e+000
109 #define s2	 1.564546365519179805e+000
110 #define s3	 3.485846389981109850e-001
111 #define s4	 2.467759345363656348e-002
112 /*
113  * Constants for approximation in [1.71, 2.5]
114 */
115 #define a1_hi	4.227843350984671344505727574870e-01
116 #define a1_lo	4.670126436531227189e-18
117 #define p0	3.224670334241133695662995251041e-01
118 #define p1	3.569659696950364669021382724168e-01
119 #define p2	1.342918716072560025853732668111e-01
120 #define p3	1.950702176409779831089963408886e-02
121 #define p4	8.546740251667538090796227834289e-04
122 #define q0	1.000000000000000444089209850062e+00
123 #define q1	1.315850076960161985084596381057e+00
124 #define q2	6.274644311862156431658377186977e-01
125 #define q3	1.304706631926259297049597307705e-01
126 #define q4	1.102815279606722369265536798366e-02
127 #define q5	2.512690594856678929537585620579e-04
128 #define q6	-1.003597548112371003358107325598e-06
129 /*
130  * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
131 */
132 #define lns2pi	.418938533204672741780329736405
133 #define pb0	 8.33333333333333148296162562474e-02
134 #define pb1	-2.77777777774548123579378966497e-03
135 #define pb2	 7.93650778754435631476282786423e-04
136 #define pb3	-5.95235082566672847950717262222e-04
137 #define pb4	 8.41428560346653702135821806252e-04
138 #define pb5	-1.89773526463879200348872089421e-03
139 #define pb6	 5.69394463439411649408050664078e-03
140 #define pb7	-1.44705562421428915453880392761e-02
141 
142 __pure double
143 lgamma(double x)
144 {
145 	double r;
146 
147 	signgam = 1;
148 	endian = ((*(int *) &one)) ? 1 : 0;
149 
150 	if (!finite(x))
151 		if (_IEEE)
152 			return (x+x);
153 		else return (infnan(EDOM));
154 
155 	if (x > 6 + RIGHT) {
156 		r = large_lgam(x);
157 		return (r);
158 	} else if (x > 1e-16)
159 		return (small_lgam(x));
160 	else if (x > -1e-16) {
161 		if (x < 0)
162 			signgam = -1, x = -x;
163 		return (-log(x));
164 	} else
165 		return (neg_lgam(x));
166 }
167 
168 static double
169 large_lgam(double x)
170 {
171 	double z, p, x1;
172 	int i;
173 	struct Double t, u, v;
174 	u = __log__D(x);
175 	u.a -= 1.0;
176 	if (x > 1e15) {
177 		v.a = x - 0.5;
178 		TRUNC(v.a);
179 		v.b = (x - v.a) - 0.5;
180 		t.a = u.a*v.a;
181 		t.b = x*u.b + v.b*u.a;
182 		if (_IEEE == 0 && !finite(t.a))
183 			return(infnan(ERANGE));
184 		return(t.a + t.b);
185 	}
186 	x1 = 1./x;
187 	z = x1*x1;
188 	p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
189 					/* error in approximation = 2.8e-19 */
190 
191 	p = p*x1;			/* error < 2.3e-18 absolute */
192 					/* 0 < p < 1/64 (at x = 5.5) */
193 	v.a = x = x - 0.5;
194 	TRUNC(v.a);			/* truncate v.a to 26 bits. */
195 	v.b = x - v.a;
196 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
197 	t.b = v.b*u.a + x*u.b;
198 	t.b += p; t.b += lns2pi;	/* return t + lns2pi + p */
199 	return (t.a + t.b);
200 }
201 
202 static double
203 small_lgam(double x)
204 {
205 	int x_int;
206 	double y, z, t, r = 0, p, q, hi, lo;
207 	struct Double rr;
208 	x_int = (x + .5);
209 	y = x - x_int;
210 	if (x_int <= 2 && y > RIGHT) {
211 		t = y - x0;
212 		y--; x_int++;
213 		goto CONTINUE;
214 	} else if (y < -LEFT) {
215 		t = y +(1.0-x0);
216 CONTINUE:
217 		z = t - x0_lo;
218 		p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
219 		q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
220 		r = t*(z*(p/q) - x0_lo);
221 		t = .5*t*t;
222 		z = 1.0;
223 		switch (x_int) {
224 		case 6:	z  = (y + 5);
225 		case 5:	z *= (y + 4);
226 		case 4:	z *= (y + 3);
227 		case 3:	z *= (y + 2);
228 			rr = __log__D(z);
229 			rr.b += a0_lo; rr.a += a0_hi;
230 			return(((r+rr.b)+t+rr.a));
231 		case 2: return(((r+a0_lo)+t)+a0_hi);
232 		case 0: r -= log1p(x);
233 		default: rr = __log__D(x);
234 			rr.a -= a0_hi; rr.b -= a0_lo;
235 			return(((r - rr.b) + t) - rr.a);
236 		}
237 	} else {
238 		p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
239 		q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
240 		p = p*(y/q);
241 		t = (double)(float) y;
242 		z = y-t;
243 		hi = (double)(float) (p+a1_hi);
244 		lo = a1_hi - hi; lo += p; lo += a1_lo;
245 		r = lo*y + z*hi;	/* q + r = y*(a0+p/q) */
246 		q = hi*t;
247 		z = 1.0;
248 		switch (x_int) {
249 		case 6:	z  = (y + 5);
250 		case 5:	z *= (y + 4);
251 		case 4:	z *= (y + 3);
252 		case 3:	z *= (y + 2);
253 			rr = __log__D(z);
254 			r += rr.b; r += q;
255 			return(rr.a + r);
256 		case 2:	return (q+ r);
257 		case 0: rr = __log__D(x);
258 			r -= rr.b; r -= log1p(x);
259 			r += q; r-= rr.a;
260 			return(r);
261 		default: rr = __log__D(x);
262 			r -= rr.b;
263 			q -= rr.a;
264 			return (r+q);
265 		}
266 	}
267 }
268 
269 static double
270 neg_lgam(double x)
271 {
272 	int xi;
273 	double y, z, one = 1.0, zero = 0.0;
274 	extern double gamma();
275 
276 	/* avoid destructive cancellation as much as possible */
277 	if (x > -170) {
278 		xi = x;
279 		if (xi == x)
280 			if (_IEEE)
281 				return(one/zero);
282 			else
283 				return(infnan(ERANGE));
284 		y = gamma(x);
285 		if (y < 0)
286 			y = -y, signgam = -1;
287 		return (log(y));
288 	}
289 	z = floor(x + .5);
290 	if (z == x) {		/* convention: G(-(integer)) -> +Inf */
291 		if (_IEEE)
292 			return (one/zero);
293 		else
294 			return (infnan(ERANGE));
295 	}
296 	y = .5*ceil(x);
297 	if (y == ceil(y))
298 		signgam = -1;
299 	x = -x;
300 	z = fabs(x + z);	/* 0 < z <= .5 */
301 	if (z < .25)
302 		z = sin(M_PI*z);
303 	else
304 		z = cos(M_PI*(0.5-z));
305 	z = log(M_PI/(z*x));
306 	y = large_lgam(x);
307 	return (z - y);
308 }
309