xref: /netbsd-src/lib/libm/noieee_src/n_jn.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: n_jn.c,v 1.1 1995/10/10 23:36:54 ragge Exp $	*/
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";
37 #endif /* not lint */
38 
39 /*
40  * 16 December 1992
41  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
42  */
43 
44 /*
45  * ====================================================
46  * Copyright (C) 1992 by Sun Microsystems, Inc.
47  *
48  * Developed at SunPro, a Sun Microsystems, Inc. business.
49  * Permission to use, copy, modify, and distribute this
50  * software is freely granted, provided that this notice
51  * is preserved.
52  * ====================================================
53  *
54  * ******************* WARNING ********************
55  * This is an alpha version of SunPro's FDLIBM (Freely
56  * Distributable Math Library) for IEEE double precision
57  * arithmetic. FDLIBM is a basic math library written
58  * in C that runs on machines that conform to IEEE
59  * Standard 754/854. This alpha version is distributed
60  * for testing purpose. Those who use this software
61  * should report any bugs to
62  *
63  *		fdlibm-comments@sunpro.eng.sun.com
64  *
65  * -- K.C. Ng, Oct 12, 1992
66  * ************************************************
67  */
68 
69 /*
70  * jn(int n, double x), yn(int n, double x)
71  * floating point Bessel's function of the 1st and 2nd kind
72  * of order n
73  *
74  * Special cases:
75  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
76  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
77  * Note 2. About jn(n,x), yn(n,x)
78  *	For n=0, j0(x) is called,
79  *	for n=1, j1(x) is called,
80  *	for n<x, forward recursion us used starting
81  *	from values of j0(x) and j1(x).
82  *	for n>x, a continued fraction approximation to
83  *	j(n,x)/j(n-1,x) is evaluated and then backward
84  *	recursion is used starting from a supposed value
85  *	for j(n,x). The resulting value of j(0,x) is
86  *	compared with the actual value to correct the
87  *	supposed value of j(n,x).
88  *
89  *	yn(n,x) is similar in all respects, except
90  *	that forward recursion is used for all
91  *	values of n>1.
92  *
93  */
94 
95 #include <math.h>
96 #include <float.h>
97 #include <errno.h>
98 
99 #if defined(vax) || defined(tahoe)
100 #define _IEEE	0
101 #else
102 #define _IEEE	1
103 #define infnan(x) (0.0)
104 #endif
105 
106 static double
107 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
108 two  = 2.0,
109 zero = 0.0,
110 one  = 1.0;
111 
112 double jn(n,x)
113 	int n; double x;
114 {
115 	int i, sgn;
116 	double a, b, temp;
117 	double z, w;
118 
119     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
120      * Thus, J(-n,x) = J(n,-x)
121      */
122     /* if J(n,NaN) is NaN */
123 	if (_IEEE && isnan(x)) return x+x;
124 	if (n<0){
125 		n = -n;
126 		x = -x;
127 	}
128 	if (n==0) return(j0(x));
129 	if (n==1) return(j1(x));
130 	sgn = (n&1)&(x < zero);		/* even n -- 0, odd n -- sign(x) */
131 	x = fabs(x);
132 	if (x == 0 || !finite (x)) 	/* if x is 0 or inf */
133 	    b = zero;
134 	else if ((double) n <= x) {
135 			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
136 	    if (_IEEE && x >= 8.148143905337944345e+090) {
137 					/* x >= 2**302 */
138     /* (x >> n**2)
139      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
140      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
141      *	    Let s=sin(x), c=cos(x),
142      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
143      *
144      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
145      *		----------------------------------
146      *		   0	 s-c		 c+s
147      *		   1	-s-c 		-c+s
148      *		   2	-s+c		-c-s
149      *		   3	 s+c		 c-s
150      */
151 		switch(n&3) {
152 		    case 0: temp =  cos(x)+sin(x); break;
153 		    case 1: temp = -cos(x)+sin(x); break;
154 		    case 2: temp = -cos(x)-sin(x); break;
155 		    case 3: temp =  cos(x)-sin(x); break;
156 		}
157 		b = invsqrtpi*temp/sqrt(x);
158 	    } else {
159 	        a = j0(x);
160 	        b = j1(x);
161 	        for(i=1;i<n;i++){
162 		    temp = b;
163 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
164 		    a = temp;
165 	        }
166 	    }
167 	} else {
168 	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
169     /* x is tiny, return the first Taylor expansion of J(n,x)
170      * J(n,x) = 1/n!*(x/2)^n  - ...
171      */
172 		if (n > 33)	/* underflow */
173 		    b = zero;
174 		else {
175 		    temp = x*0.5; b = temp;
176 		    for (a=one,i=2;i<=n;i++) {
177 			a *= (double)i;		/* a = n! */
178 			b *= temp;		/* b = (x/2)^n */
179 		    }
180 		    b = b/a;
181 		}
182 	    } else {
183 		/* use backward recurrence */
184 		/* 			x      x^2      x^2
185 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
186 		 *			2n  - 2(n+1) - 2(n+2)
187 		 *
188 		 * 			1      1        1
189 		 *  (for large x)   =  ----  ------   ------   .....
190 		 *			2n   2(n+1)   2(n+2)
191 		 *			-- - ------ - ------ -
192 		 *			 x     x         x
193 		 *
194 		 * Let w = 2n/x and h=2/x, then the above quotient
195 		 * is equal to the continued fraction:
196 		 *		    1
197 		 *	= -----------------------
198 		 *		       1
199 		 *	   w - -----------------
200 		 *			  1
201 		 * 	        w+h - ---------
202 		 *		       w+2h - ...
203 		 *
204 		 * To determine how many terms needed, let
205 		 * Q(0) = w, Q(1) = w(w+h) - 1,
206 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
207 		 * When Q(k) > 1e4	good for single
208 		 * When Q(k) > 1e9	good for double
209 		 * When Q(k) > 1e17	good for quadruple
210 		 */
211 	    /* determine k */
212 		double t,v;
213 		double q0,q1,h,tmp; int k,m;
214 		w  = (n+n)/(double)x; h = 2.0/(double)x;
215 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
216 		while (q1<1.0e9) {
217 			k += 1; z += h;
218 			tmp = z*q1 - q0;
219 			q0 = q1;
220 			q1 = tmp;
221 		}
222 		m = n+n;
223 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
224 		a = t;
225 		b = one;
226 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
227 		 *  Hence, if n*(log(2n/x)) > ...
228 		 *  single 8.8722839355e+01
229 		 *  double 7.09782712893383973096e+02
230 		 *  long double 1.1356523406294143949491931077970765006170e+04
231 		 *  then recurrent value may overflow and the result will
232 		 *  likely underflow to zero
233 		 */
234 		tmp = n;
235 		v = two/x;
236 		tmp = tmp*log(fabs(v*tmp));
237 	    	for (i=n-1;i>0;i--){
238 		        temp = b;
239 		        b = ((i+i)/x)*b - a;
240 		        a = temp;
241 		    /* scale b to avoid spurious overflow */
242 #			if defined(vax) || defined(tahoe)
243 #				define BMAX 1e13
244 #			else
245 #				define BMAX 1e100
246 #			endif /* defined(vax) || defined(tahoe) */
247 			if (b > BMAX) {
248 				a /= b;
249 				t /= b;
250 				b = one;
251 			}
252 		}
253 	    	b = (t*j0(x)/b);
254 	    }
255 	}
256 	return ((sgn == 1) ? -b : b);
257 }
258 double yn(n,x)
259 	int n; double x;
260 {
261 	int i, sign;
262 	double a, b, temp;
263 
264     /* Y(n,NaN), Y(n, x < 0) is NaN */
265 	if (x <= 0 || (_IEEE && x != x))
266 		if (_IEEE && x < 0) return zero/zero;
267 		else if (x < 0)     return (infnan(EDOM));
268 		else if (_IEEE)     return -one/zero;
269 		else		    return(infnan(-ERANGE));
270 	else if (!finite(x)) return(0);
271 	sign = 1;
272 	if (n<0){
273 		n = -n;
274 		sign = 1 - ((n&1)<<2);
275 	}
276 	if (n == 0) return(y0(x));
277 	if (n == 1) return(sign*y1(x));
278 	if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
279     /* (x >> n**2)
280      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
281      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
282      *	    Let s=sin(x), c=cos(x),
283      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
284      *
285      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
286      *		----------------------------------
287      *		   0	 s-c		 c+s
288      *		   1	-s-c 		-c+s
289      *		   2	-s+c		-c-s
290      *		   3	 s+c		 c-s
291      */
292 		switch (n&3) {
293 		    case 0: temp =  sin(x)-cos(x); break;
294 		    case 1: temp = -sin(x)-cos(x); break;
295 		    case 2: temp = -sin(x)+cos(x); break;
296 		    case 3: temp =  sin(x)+cos(x); break;
297 		}
298 		b = invsqrtpi*temp/sqrt(x);
299 	} else {
300 	    a = y0(x);
301 	    b = y1(x);
302 	/* quit if b is -inf */
303 	    for (i = 1; i < n && !finite(b); i++){
304 		temp = b;
305 		b = ((double)(i+i)/x)*b - a;
306 		a = temp;
307 	    }
308 	}
309 	if (!_IEEE && !finite(b))
310 		return (infnan(-sign * ERANGE));
311 	return ((sign > 0) ? b : -b);
312 }
313