xref: /netbsd-src/lib/libm/noieee_src/n_j1.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: n_j1.c,v 1.1 1995/10/10 23:36:53 ragge Exp $	*/
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 static char sccsid[] = "@(#)j1.c	8.2 (Berkeley) 11/30/93";
37 #endif /* not lint */
38 
39 /*
40  * 16 December 1992
41  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
42  */
43 
44 /*
45  * ====================================================
46  * Copyright (C) 1992 by Sun Microsystems, Inc.
47  *
48  * Developed at SunPro, a Sun Microsystems, Inc. business.
49  * Permission to use, copy, modify, and distribute this
50  * software is freely granted, provided that this notice
51  * is preserved.
52  * ====================================================
53  *
54  * ******************* WARNING ********************
55  * This is an alpha version of SunPro's FDLIBM (Freely
56  * Distributable Math Library) for IEEE double precision
57  * arithmetic. FDLIBM is a basic math library written
58  * in C that runs on machines that conform to IEEE
59  * Standard 754/854. This alpha version is distributed
60  * for testing purpose. Those who use this software
61  * should report any bugs to
62  *
63  *		fdlibm-comments@sunpro.eng.sun.com
64  *
65  * -- K.C. Ng, Oct 12, 1992
66  * ************************************************
67  */
68 
69 /* double j1(double x), y1(double x)
70  * Bessel function of the first and second kinds of order zero.
71  * Method -- j1(x):
72  *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
73  *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
74  *	   for x in (0,2)
75  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
76  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
77  *	   for x in (2,inf)
78  * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
79  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
80  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
81  *	   as follows:
82  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
83  *			=  1/sqrt(2) * (sin(x) - cos(x))
84  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
85  *			= -1/sqrt(2) * (sin(x) + cos(x))
86  * 	   (To avoid cancellation, use
87  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
88  * 	    to compute the worse one.)
89  *
90  *	3 Special cases
91  *		j1(nan)= nan
92  *		j1(0) = 0
93  *		j1(inf) = 0
94  *
95  * Method -- y1(x):
96  *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
97  *	2. For x<2.
98  *	   Since
99  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
100  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
101  *	   We use the following function to approximate y1,
102  *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
103  *	   where for x in [0,2] (abs err less than 2**-65.89)
104  *		U(z) = u0 + u1*z + ... + u4*z^4
105  *		V(z) = 1  + v1*z + ... + v5*z^5
106  *	   Note: For tiny x, 1/x dominate y1 and hence
107  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
108  *	3. For x>=2.
109  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
110  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
111  *	   by method mentioned above.
112  */
113 
114 #include <math.h>
115 #include <float.h>
116 #include <errno.h>
117 
118 #if defined(vax) || defined(tahoe)
119 #define _IEEE	0
120 #else
121 #define _IEEE	1
122 #define infnan(x) (0.0)
123 #endif
124 
125 static double pone(), qone();
126 
127 static double
128 huge    = 1e300,
129 zero    = 0.0,
130 one	= 1.0,
131 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
132 tpi	= 0.636619772367581343075535053490057448,
133 
134 	/* R0/S0 on [0,2] */
135 r00 =  -6.250000000000000020842322918309200910191e-0002,
136 r01 =   1.407056669551897148204830386691427791200e-0003,
137 r02 =  -1.599556310840356073980727783817809847071e-0005,
138 r03 =   4.967279996095844750387702652791615403527e-0008,
139 s01 =   1.915375995383634614394860200531091839635e-0002,
140 s02 =   1.859467855886309024045655476348872850396e-0004,
141 s03 =   1.177184640426236767593432585906758230822e-0006,
142 s04 =   5.046362570762170559046714468225101016915e-0009,
143 s05 =   1.235422744261379203512624973117299248281e-0011;
144 
145 #define two_129	6.80564733841876926e+038	/* 2^129 */
146 #define two_m54	5.55111512312578270e-017	/* 2^-54 */
147 double j1(x)
148 	double x;
149 {
150 	double z, s,c,ss,cc,r,u,v,y;
151 	y = fabs(x);
152 	if (!finite(x))			/* Inf or NaN */
153 		if (_IEEE && x != x)
154 			return(x);
155 		else
156 			return (copysign(x, zero));
157 	y = fabs(x);
158 	if (y >= 2)			/* |x| >= 2.0 */
159 	{
160 		s = sin(y);
161 		c = cos(y);
162 		ss = -s-c;
163 		cc = s-c;
164 		if (y < .5*DBL_MAX) {  	/* make sure y+y not overflow */
165 		    z = cos(y+y);
166 		    if ((s*c)<zero) cc = z/ss;
167 		    else 	    ss = z/cc;
168 		}
169 	/*
170 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
171 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
172 	 */
173 #if !defined(vax) && !defined(tahoe)
174 		if (y > two_129)	 /* x > 2^129 */
175 			z = (invsqrtpi*cc)/sqrt(y);
176 		else
177 #endif /* defined(vax) || defined(tahoe) */
178 		{
179 		    u = pone(y); v = qone(y);
180 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
181 		}
182 		if (x < 0) return -z;
183 		else  	 return  z;
184 	}
185 	if (y < 7.450580596923828125e-009) {	/* |x|<2**-27 */
186 	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
187 	}
188 	z = x*x;
189 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
190 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
191 	r *= x;
192 	return (x*0.5+r/s);
193 }
194 
195 static double u0[5] = {
196   -1.960570906462389484206891092512047539632e-0001,
197    5.044387166398112572026169863174882070274e-0002,
198   -1.912568958757635383926261729464141209569e-0003,
199    2.352526005616105109577368905595045204577e-0005,
200    -9.190991580398788465315411784276789663849e-0008,
201 };
202 static double v0[5] = {
203    1.991673182366499064031901734535479833387e-0002,
204    2.025525810251351806268483867032781294682e-0004,
205    1.356088010975162198085369545564475416398e-0006,
206    6.227414523646214811803898435084697863445e-0009,
207    1.665592462079920695971450872592458916421e-0011,
208 };
209 
210 double y1(x)
211 	double x;
212 {
213 	double z, s, c, ss, cc, u, v;
214     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
215 	if (!finite(x))
216 		if (!_IEEE) return (infnan(EDOM));
217 		else if (x < 0)
218 			return(zero/zero);
219 		else if (x > 0)
220 			return (0);
221 		else
222 			return(x);
223 	if (x <= 0) {
224 		if (_IEEE && x == 0) return -one/zero;
225 		else if(x == 0) return(infnan(-ERANGE));
226 		else if(_IEEE) return (zero/zero);
227 		else return(infnan(EDOM));
228 	}
229         if (x >= 2)			 /* |x| >= 2.0 */
230 	{
231                 s = sin(x);
232                 c = cos(x);
233                 ss = -s-c;
234                 cc = s-c;
235 		if (x < .5 * DBL_MAX)	/* make sure x+x not overflow */
236 		{
237                     z = cos(x+x);
238                     if ((s*c)>zero) cc = z/ss;
239                     else            ss = z/cc;
240                 }
241         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
242          * where x0 = x-3pi/4
243          *      Better formula:
244          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
245          *                      =  1/sqrt(2) * (sin(x) - cos(x))
246          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
247          *                      = -1/sqrt(2) * (cos(x) + sin(x))
248          * To avoid cancellation, use
249          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
250          * to compute the worse one.
251          */
252                 if (_IEEE && x>two_129)
253 			z = (invsqrtpi*ss)/sqrt(x);
254                 else {
255                     u = pone(x); v = qone(x);
256                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
257                 }
258                 return z;
259         }
260         if (x <= two_m54) {    /* x < 2**-54 */
261             return (-tpi/x);
262         }
263         z = x*x;
264         u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
265         v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
266         return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
267 }
268 
269 /* For x >= 8, the asymptotic expansions of pone is
270  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
271  * We approximate pone by
272  * 	pone(x) = 1 + (R/S)
273  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
274  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
275  * and
276  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
277  */
278 
279 static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
280    0.0,
281    1.171874999999886486643746274751925399540e-0001,
282    1.323948065930735690925827997575471527252e+0001,
283    4.120518543073785433325860184116512799375e+0002,
284    3.874745389139605254931106878336700275601e+0003,
285    7.914479540318917214253998253147871806507e+0003,
286 };
287 static double ps8[5] = {
288    1.142073703756784104235066368252692471887e+0002,
289    3.650930834208534511135396060708677099382e+0003,
290    3.695620602690334708579444954937638371808e+0004,
291    9.760279359349508334916300080109196824151e+0004,
292    3.080427206278887984185421142572315054499e+0004,
293 };
294 
295 static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
296    1.319905195562435287967533851581013807103e-0011,
297    1.171874931906140985709584817065144884218e-0001,
298    6.802751278684328781830052995333841452280e+0000,
299    1.083081829901891089952869437126160568246e+0002,
300    5.176361395331997166796512844100442096318e+0002,
301    5.287152013633375676874794230748055786553e+0002,
302 };
303 static double ps5[5] = {
304    5.928059872211313557747989128353699746120e+0001,
305    9.914014187336144114070148769222018425781e+0002,
306    5.353266952914879348427003712029704477451e+0003,
307    7.844690317495512717451367787640014588422e+0003,
308    1.504046888103610723953792002716816255382e+0003,
309 };
310 
311 static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
312    3.025039161373736032825049903408701962756e-0009,
313    1.171868655672535980750284752227495879921e-0001,
314    3.932977500333156527232725812363183251138e+0000,
315    3.511940355916369600741054592597098912682e+0001,
316    9.105501107507812029367749771053045219094e+0001,
317    4.855906851973649494139275085628195457113e+0001,
318 };
319 static double ps3[5] = {
320    3.479130950012515114598605916318694946754e+0001,
321    3.367624587478257581844639171605788622549e+0002,
322    1.046871399757751279180649307467612538415e+0003,
323    8.908113463982564638443204408234739237639e+0002,
324    1.037879324396392739952487012284401031859e+0002,
325 };
326 
327 static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
328    1.077108301068737449490056513753865482831e-0007,
329    1.171762194626833490512746348050035171545e-0001,
330    2.368514966676087902251125130227221462134e+0000,
331    1.224261091482612280835153832574115951447e+0001,
332    1.769397112716877301904532320376586509782e+0001,
333    5.073523125888185399030700509321145995160e+0000,
334 };
335 static double ps2[5] = {
336    2.143648593638214170243114358933327983793e+0001,
337    1.252902271684027493309211410842525120355e+0002,
338    2.322764690571628159027850677565128301361e+0002,
339    1.176793732871470939654351793502076106651e+0002,
340    8.364638933716182492500902115164881195742e+0000,
341 };
342 
343 static double pone(x)
344 	double x;
345 {
346 	double *p,*q,z,r,s;
347 	if (x >= 8.0) 			   {p = pr8; q= ps8;}
348 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
349 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
350 	else /* if (x >= 2.0) */	   {p = pr2; q= ps2;}
351 	z = one/(x*x);
352 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
353 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
354 	return (one + r/s);
355 }
356 
357 
358 /* For x >= 8, the asymptotic expansions of qone is
359  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
360  * We approximate pone by
361  * 	qone(x) = s*(0.375 + (R/S))
362  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
363  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
364  * and
365  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
366  */
367 
368 static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
369    0.0,
370   -1.025390624999927207385863635575804210817e-0001,
371   -1.627175345445899724355852152103771510209e+0001,
372   -7.596017225139501519843072766973047217159e+0002,
373   -1.184980667024295901645301570813228628541e+0004,
374   -4.843851242857503225866761992518949647041e+0004,
375 };
376 static double qs8[6] = {
377    1.613953697007229231029079421446916397904e+0002,
378    7.825385999233484705298782500926834217525e+0003,
379    1.338753362872495800748094112937868089032e+0005,
380    7.196577236832409151461363171617204036929e+0005,
381    6.666012326177764020898162762642290294625e+0005,
382   -2.944902643038346618211973470809456636830e+0005,
383 };
384 
385 static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
386   -2.089799311417640889742251585097264715678e-0011,
387   -1.025390502413754195402736294609692303708e-0001,
388   -8.056448281239359746193011295417408828404e+0000,
389   -1.836696074748883785606784430098756513222e+0002,
390   -1.373193760655081612991329358017247355921e+0003,
391   -2.612444404532156676659706427295870995743e+0003,
392 };
393 static double qs5[6] = {
394    8.127655013843357670881559763225310973118e+0001,
395    1.991798734604859732508048816860471197220e+0003,
396    1.746848519249089131627491835267411777366e+0004,
397    4.985142709103522808438758919150738000353e+0004,
398    2.794807516389181249227113445299675335543e+0004,
399   -4.719183547951285076111596613593553911065e+0003,
400 };
401 
402 static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
403   -5.078312264617665927595954813341838734288e-0009,
404   -1.025378298208370901410560259001035577681e-0001,
405   -4.610115811394734131557983832055607679242e+0000,
406   -5.784722165627836421815348508816936196402e+0001,
407   -2.282445407376317023842545937526967035712e+0002,
408   -2.192101284789093123936441805496580237676e+0002,
409 };
410 static double qs3[6] = {
411    4.766515503237295155392317984171640809318e+0001,
412    6.738651126766996691330687210949984203167e+0002,
413    3.380152866795263466426219644231687474174e+0003,
414    5.547729097207227642358288160210745890345e+0003,
415    1.903119193388108072238947732674639066045e+0003,
416   -1.352011914443073322978097159157678748982e+0002,
417 };
418 
419 static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
420   -1.783817275109588656126772316921194887979e-0007,
421   -1.025170426079855506812435356168903694433e-0001,
422   -2.752205682781874520495702498875020485552e+0000,
423   -1.966361626437037351076756351268110418862e+0001,
424   -4.232531333728305108194363846333841480336e+0001,
425   -2.137192117037040574661406572497288723430e+0001,
426 };
427 static double qs2[6] = {
428    2.953336290605238495019307530224241335502e+0001,
429    2.529815499821905343698811319455305266409e+0002,
430    7.575028348686454070022561120722815892346e+0002,
431    7.393932053204672479746835719678434981599e+0002,
432    1.559490033366661142496448853793707126179e+0002,
433   -4.959498988226281813825263003231704397158e+0000,
434 };
435 
436 static double qone(x)
437 	double x;
438 {
439 	double *p,*q, s,r,z;
440 	if (x >= 8.0)			   {p = qr8; q= qs8;}
441 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
442 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
443 	else /* if (x >= 2.0) */	   {p = qr2; q= qs2;}
444 	z = one/(x*x);
445 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
446 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
447 	return (.375 + r/s)/x;
448 }
449