xref: /netbsd-src/lib/libm/noieee_src/n_j0.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: n_j0.c,v 1.6 2003/08/07 16:44:51 agc Exp $	*/
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 #if 0
33 static char sccsid[] = "@(#)j0.c	8.2 (Berkeley) 11/30/93";
34 #endif
35 #endif /* not lint */
36 
37 /*
38  * 16 December 1992
39  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
40  */
41 
42 /*
43  * ====================================================
44  * Copyright (C) 1992 by Sun Microsystems, Inc.
45  *
46  * Developed at SunPro, a Sun Microsystems, Inc. business.
47  * Permission to use, copy, modify, and distribute this
48  * software is freely granted, provided that this notice
49  * is preserved.
50  * ====================================================
51  *
52  * ******************* WARNING ********************
53  * This is an alpha version of SunPro's FDLIBM (Freely
54  * Distributable Math Library) for IEEE double precision
55  * arithmetic. FDLIBM is a basic math library written
56  * in C that runs on machines that conform to IEEE
57  * Standard 754/854. This alpha version is distributed
58  * for testing purpose. Those who use this software
59  * should report any bugs to
60  *
61  *		fdlibm-comments@sunpro.eng.sun.com
62  *
63  * -- K.C. Ng, Oct 12, 1992
64  * ************************************************
65  */
66 
67 /* double j0(double x), y0(double x)
68  * Bessel function of the first and second kinds of order zero.
69  * Method -- j0(x):
70  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
71  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
72  *	   for x in (0,2)
73  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
74  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
75  *	   for x in (2,inf)
76  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
77  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
78  *	   as follow:
79  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
80  *			= 1/sqrt(2) * (cos(x) + sin(x))
81  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
82  *			= 1/sqrt(2) * (sin(x) - cos(x))
83  * 	   (To avoid cancellation, use
84  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
85  * 	    to compute the worse one.)
86  *
87  *	3 Special cases
88  *		j0(nan)= nan
89  *		j0(0) = 1
90  *		j0(inf) = 0
91  *
92  * Method -- y0(x):
93  *	1. For x<2.
94  *	   Since
95  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
96  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
97  *	   We use the following function to approximate y0,
98  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
99  *	   where
100  *		U(z) = u0 + u1*z + ... + u6*z^6
101  *		V(z) = 1  + v1*z + ... + v4*z^4
102  *	   with absolute approximation error bounded by 2**-72.
103  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
104  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
105  *	2. For x>=2.
106  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
107  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
108  *	   by the method mentioned above.
109  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
110  */
111 
112 #include "mathimpl.h"
113 #include <float.h>
114 #include <errno.h>
115 
116 #if defined(__vax__) || defined(tahoe)
117 #define _IEEE	0
118 #else
119 #define _IEEE	1
120 #define infnan(x) (0.0)
121 #endif
122 
123 static double pzero (double), qzero (double);
124 
125 static const double
126 huge 	= 1e300,
127 zero    = 0.0,
128 one	= 1.0,
129 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
130 tpi	= 0.636619772367581343075535053490057448,
131  		/* R0/S0 on [0, 2.00] */
132 r02 =   1.562499999999999408594634421055018003102e-0002,
133 r03 =  -1.899792942388547334476601771991800712355e-0004,
134 r04 =   1.829540495327006565964161150603950916854e-0006,
135 r05 =  -4.618326885321032060803075217804816988758e-0009,
136 s01 =   1.561910294648900170180789369288114642057e-0002,
137 s02 =   1.169267846633374484918570613449245536323e-0004,
138 s03 =   5.135465502073181376284426245689510134134e-0007,
139 s04 =   1.166140033337900097836930825478674320464e-0009;
140 
141 double
142 j0(double x)
143 {
144 	double z, s,c,ss,cc,r,u,v;
145 
146 	if (!finite(x)) {
147 		if (_IEEE) return one/(x*x);
148 		else return (0);
149 	}
150 	x = fabs(x);
151 	if (x >= 2.0) {	/* |x| >= 2.0 */
152 		s = sin(x);
153 		c = cos(x);
154 		ss = s-c;
155 		cc = s+c;
156 		if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
157 		    z = -cos(x+x);
158 		    if ((s*c)<zero) cc = z/ss;
159 		    else 	    ss = z/cc;
160 		}
161 	/*
162 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
163 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
164 	 */
165 		if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
166 			z = (invsqrtpi*cc)/sqrt(x);
167 		else {
168 		    u = pzero(x); v = qzero(x);
169 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
170 		}
171 		return z;
172 	}
173 	if (x < 1.220703125e-004) {		   /* |x| < 2**-13 */
174 	    if (huge+x > one) {			   /* raise inexact if x != 0 */
175 	        if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
176 			return one;
177 	        else return (one - 0.25*x*x);
178 	    }
179 	}
180 	z = x*x;
181 	r =  z*(r02+z*(r03+z*(r04+z*r05)));
182 	s =  one+z*(s01+z*(s02+z*(s03+z*s04)));
183 	if (x < one) {			/* |x| < 1.00 */
184 	    return (one + z*(-0.25+(r/s)));
185 	} else {
186 	    u = 0.5*x;
187 	    return ((one+u)*(one-u)+z*(r/s));
188 	}
189 }
190 
191 static const double
192 u00 =  -7.380429510868722527422411862872999615628e-0002,
193 u01 =   1.766664525091811069896442906220827182707e-0001,
194 u02 =  -1.381856719455968955440002438182885835344e-0002,
195 u03 =   3.474534320936836562092566861515617053954e-0004,
196 u04 =  -3.814070537243641752631729276103284491172e-0006,
197 u05 =   1.955901370350229170025509706510038090009e-0008,
198 u06 =  -3.982051941321034108350630097330144576337e-0011,
199 v01 =   1.273048348341237002944554656529224780561e-0002,
200 v02 =   7.600686273503532807462101309675806839635e-0005,
201 v03 =   2.591508518404578033173189144579208685163e-0007,
202 v04 =   4.411103113326754838596529339004302243157e-0010;
203 
204 double
205 y0(double x)
206 {
207 	double z, s, c, ss, cc, u, v;
208     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
209 	if (!finite(x)) {
210 		if (_IEEE)
211 			return (one/(x+x*x));
212 		else
213 			return (0);
214 	}
215         if (x == 0) {
216 		if (_IEEE)	return (-one/zero);
217 		else		return(infnan(-ERANGE));
218 	}
219         if (x<0) {
220 		if (_IEEE)	return (zero/zero);
221 		else		return (infnan(EDOM));
222 	}
223         if (x >= 2.00) {	/* |x| >= 2.0 */
224         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
225          * where x0 = x-pi/4
226          *      Better formula:
227          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
228          *                      =  1/sqrt(2) * (sin(x) + cos(x))
229          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
230          *                      =  1/sqrt(2) * (sin(x) - cos(x))
231          * To avoid cancellation, use
232          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
233          * to compute the worse one.
234          */
235                 s = sin(x);
236                 c = cos(x);
237                 ss = s-c;
238                 cc = s+c;
239 	/*
240 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
241 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
242 	 */
243                 if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
244                     z = -cos(x+x);
245                     if ((s*c)<zero) cc = z/ss;
246                     else            ss = z/cc;
247                 }
248                 if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
249 			z = (invsqrtpi*ss)/sqrt(x);
250                 else {
251                     u = pzero(x); v = qzero(x);
252                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
253                 }
254                 return z;
255 	}
256 	if (x <= 7.450580596923828125e-009) {		/* x < 2**-27 */
257 	    return (u00 + tpi*log(x));
258 	}
259 	z = x*x;
260 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
261 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
262 	return (u/v + tpi*(j0(x)*log(x)));
263 }
264 
265 /* The asymptotic expansions of pzero is
266  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
267  * For x >= 2, We approximate pzero by
268  * 	pzero(x) = 1 + (R/S)
269  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
270  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
271  * and
272  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
273  */
274 static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
275    0.0,
276   -7.031249999999003994151563066182798210142e-0002,
277   -8.081670412753498508883963849859423939871e+0000,
278   -2.570631056797048755890526455854482662510e+0002,
279   -2.485216410094288379417154382189125598962e+0003,
280   -5.253043804907295692946647153614119665649e+0003,
281 };
282 static const double ps8[5] = {
283    1.165343646196681758075176077627332052048e+0002,
284    3.833744753641218451213253490882686307027e+0003,
285    4.059785726484725470626341023967186966531e+0004,
286    1.167529725643759169416844015694440325519e+0005,
287    4.762772841467309430100106254805711722972e+0004,
288 };
289 
290 static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
291   -1.141254646918944974922813501362824060117e-0011,
292   -7.031249408735992804117367183001996028304e-0002,
293   -4.159610644705877925119684455252125760478e+0000,
294   -6.767476522651671942610538094335912346253e+0001,
295   -3.312312996491729755731871867397057689078e+0002,
296   -3.464333883656048910814187305901796723256e+0002,
297 };
298 static const double ps5[5] = {
299    6.075393826923003305967637195319271932944e+0001,
300    1.051252305957045869801410979087427910437e+0003,
301    5.978970943338558182743915287887408780344e+0003,
302    9.625445143577745335793221135208591603029e+0003,
303    2.406058159229391070820491174867406875471e+0003,
304 };
305 
306 static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
307   -2.547046017719519317420607587742992297519e-0009,
308   -7.031196163814817199050629727406231152464e-0002,
309   -2.409032215495295917537157371488126555072e+0000,
310   -2.196597747348830936268718293366935843223e+0001,
311   -5.807917047017375458527187341817239891940e+0001,
312   -3.144794705948885090518775074177485744176e+0001,
313 };
314 static const double ps3[5] = {
315    3.585603380552097167919946472266854507059e+0001,
316    3.615139830503038919981567245265266294189e+0002,
317    1.193607837921115243628631691509851364715e+0003,
318    1.127996798569074250675414186814529958010e+0003,
319    1.735809308133357510239737333055228118910e+0002,
320 };
321 
322 static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
323   -8.875343330325263874525704514800809730145e-0008,
324   -7.030309954836247756556445443331044338352e-0002,
325   -1.450738467809529910662233622603401167409e+0000,
326   -7.635696138235277739186371273434739292491e+0000,
327   -1.119316688603567398846655082201614524650e+0001,
328   -3.233645793513353260006821113608134669030e+0000,
329 };
330 static const double ps2[5] = {
331    2.222029975320888079364901247548798910952e+0001,
332    1.362067942182152109590340823043813120940e+0002,
333    2.704702786580835044524562897256790293238e+0002,
334    1.538753942083203315263554770476850028583e+0002,
335    1.465761769482561965099880599279699314477e+0001,
336 };
337 
338 static double
339 pzero(double x)
340 {
341 	const double *p,*q;
342 	double z,r,s;
343 	if (x >= 8.00)			   {p = pr8; q= ps8;}
344 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
345 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
346 	else /* if (x >= 2.00) */	   {p = pr2; q= ps2;}
347 	z = one/(x*x);
348 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
349 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
350 	return one+ r/s;
351 }
352 
353 
354 /* For x >= 8, the asymptotic expansions of qzero is
355  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
356  * We approximate pzero by
357  * 	qzero(x) = s*(-1.25 + (R/S))
358  * where  R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
359  * 	  S = 1 + qs0*s^2 + ... + qs5*s^12
360  * and
361  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
362  */
363 static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
364    0.0,
365    7.324218749999350414479738504551775297096e-0002,
366    1.176820646822526933903301695932765232456e+0001,
367    5.576733802564018422407734683549251364365e+0002,
368    8.859197207564685717547076568608235802317e+0003,
369    3.701462677768878501173055581933725704809e+0004,
370 };
371 static const double qs8[6] = {
372    1.637760268956898345680262381842235272369e+0002,
373    8.098344946564498460163123708054674227492e+0003,
374    1.425382914191204905277585267143216379136e+0005,
375    8.033092571195144136565231198526081387047e+0005,
376    8.405015798190605130722042369969184811488e+0005,
377   -3.438992935378666373204500729736454421006e+0005,
378 };
379 
380 static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
381    1.840859635945155400568380711372759921179e-0011,
382    7.324217666126847411304688081129741939255e-0002,
383    5.835635089620569401157245917610984757296e+0000,
384    1.351115772864498375785526599119895942361e+0002,
385    1.027243765961641042977177679021711341529e+0003,
386    1.989977858646053872589042328678602481924e+0003,
387 };
388 static const double qs5[6] = {
389    8.277661022365377058749454444343415524509e+0001,
390    2.077814164213929827140178285401017305309e+0003,
391    1.884728877857180787101956800212453218179e+0004,
392    5.675111228949473657576693406600265778689e+0004,
393    3.597675384251145011342454247417399490174e+0004,
394   -5.354342756019447546671440667961399442388e+0003,
395 };
396 
397 static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
398    4.377410140897386263955149197672576223054e-0009,
399    7.324111800429115152536250525131924283018e-0002,
400    3.344231375161707158666412987337679317358e+0000,
401    4.262184407454126175974453269277100206290e+0001,
402    1.708080913405656078640701512007621675724e+0002,
403    1.667339486966511691019925923456050558293e+0002,
404 };
405 static const double qs3[6] = {
406    4.875887297245871932865584382810260676713e+0001,
407    7.096892210566060535416958362640184894280e+0002,
408    3.704148226201113687434290319905207398682e+0003,
409    6.460425167525689088321109036469797462086e+0003,
410    2.516333689203689683999196167394889715078e+0003,
411   -1.492474518361563818275130131510339371048e+0002,
412 };
413 
414 static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
415    1.504444448869832780257436041633206366087e-0007,
416    7.322342659630792930894554535717104926902e-0002,
417    1.998191740938159956838594407540292600331e+0000,
418    1.449560293478857407645853071687125850962e+0001,
419    3.166623175047815297062638132537957315395e+0001,
420    1.625270757109292688799540258329430963726e+0001,
421 };
422 static const double qs2[6] = {
423    3.036558483552191922522729838478169383969e+0001,
424    2.693481186080498724211751445725708524507e+0002,
425    8.447837575953201460013136756723746023736e+0002,
426    8.829358451124885811233995083187666981299e+0002,
427    2.126663885117988324180482985363624996652e+0002,
428   -5.310954938826669402431816125780738924463e+0000,
429 };
430 
431 static double
432 qzero(double x)
433 {
434 	const double *p,*q;
435 	double s,r,z;
436 	if (x >= 8.00)			   {p = qr8; q= qs8;}
437 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
438 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
439 	else /* if (x >= 2.00) */	   {p = qr2; q= qs2;}
440 	z = one/(x*x);
441 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
442 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
443 	return (-.125 + r/s)/x;
444 }
445