xref: /netbsd-src/lib/libm/noieee_src/n_gamma.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*      $NetBSD: n_gamma.c,v 1.8 2012/06/08 11:13:33 abs Exp $ */
2 /*-
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 #if 0
33 static char sccsid[] = "@(#)gamma.c	8.1 (Berkeley) 6/4/93";
34 #endif
35 #endif /* not lint */
36 
37 /*
38  * This code by P. McIlroy, Oct 1992;
39  *
40  * The financial support of UUNET Communications Services is gratefully
41  * acknowledged.
42  */
43 
44 #include <math.h>
45 #include "mathimpl.h"
46 #include <errno.h>
47 
48 /* METHOD:
49  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
50  * 	At negative integers, return +Inf, and set errno.
51  *
52  * x < 6.5:
53  *	Use argument reduction G(x+1) = xG(x) to reach the
54  *	range [1.066124,2.066124].  Use a rational
55  *	approximation centered at the minimum (x0+1) to
56  *	ensure monotonicity.
57  *
58  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
59  *	adjusted for equal-ripples:
60  *
61  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
62  *
63  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
64  *	avoid premature round-off.
65  *
66  * Special values:
67  *	non-positive integer:	Set overflow trap; return +Inf;
68  *	x > 171.63:		Set overflow trap; return +Inf;
69  *	NaN: 			Set invalid trap;  return NaN
70  *
71  * Accuracy: Gamma(x) is accurate to within
72  *	x > 0:  error provably < 0.9ulp.
73  *	Maximum observed in 1,000,000 trials was .87ulp.
74  *	x < 0:
75  *	Maximum observed error < 4ulp in 1,000,000 trials.
76  */
77 
78 static double neg_gam (double);
79 static double small_gam (double);
80 static double smaller_gam (double);
81 static struct Double large_gam (double);
82 static struct Double ratfun_gam (double, double);
83 
84 /*
85  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
86  * [1.066.., 2.066..] accurate to 4.25e-19.
87  */
88 #define LEFT -.3955078125	/* left boundary for rat. approx */
89 #define x0 .461632144968362356785	/* xmin - 1 */
90 
91 #define a0_hi 0.88560319441088874992
92 #define a0_lo -.00000000000000004996427036469019695
93 #define P0	 6.21389571821820863029017800727e-01
94 #define P1	 2.65757198651533466104979197553e-01
95 #define P2	 5.53859446429917461063308081748e-03
96 #define P3	 1.38456698304096573887145282811e-03
97 #define P4	 2.40659950032711365819348969808e-03
98 #define Q0	 1.45019531250000000000000000000e+00
99 #define Q1	 1.06258521948016171343454061571e+00
100 #define Q2	-2.07474561943859936441469926649e-01
101 #define Q3	-1.46734131782005422506287573015e-01
102 #define Q4	 3.07878176156175520361557573779e-02
103 #define Q5	 5.12449347980666221336054633184e-03
104 #define Q6	-1.76012741431666995019222898833e-03
105 #define Q7	 9.35021023573788935372153030556e-05
106 #define Q8	 6.13275507472443958924745652239e-06
107 /*
108  * Constants for large x approximation (x in [6, Inf])
109  * (Accurate to 2.8*10^-19 absolute)
110  */
111 #define lns2pi_hi 0.418945312500000
112 #define lns2pi_lo -.000006779295327258219670263595
113 #define Pa0	 8.33333333333333148296162562474e-02
114 #define Pa1	-2.77777777774548123579378966497e-03
115 #define Pa2	 7.93650778754435631476282786423e-04
116 #define Pa3	-5.95235082566672847950717262222e-04
117 #define Pa4	 8.41428560346653702135821806252e-04
118 #define Pa5	-1.89773526463879200348872089421e-03
119 #define Pa6	 5.69394463439411649408050664078e-03
120 #define Pa7	-1.44705562421428915453880392761e-02
121 
122 static const double zero = 0., one = 1.0, tiny = _TINY;
123 /*
124  * TRUNC sets trailing bits in a floating-point number to zero.
125  * is a temporary variable.
126  */
127 #if defined(__vax__) || defined(tahoe)
128 #define _IEEE		0
129 #define TRUNC(x)	x = (double) (float) (x)
130 #else
131 static int endian;
132 #define _IEEE		1
133 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
134 #define infnan(x)	0.0
135 #endif
136 
137 double
138 gamma(double x)
139 {
140 	double b;
141 	struct Double u;
142 #if _IEEE
143 	int endian = (*(int *) &one) ? 1 : 0;
144 #endif
145 
146 	if (x >= 6) {
147 		if(x > 171.63)
148 			return(one/zero);
149 		u = large_gam(x);
150 		return(__exp__D(u.a, u.b));
151 	} else if (x >= 1.0 + LEFT + x0) {
152 		return (small_gam(x));
153 	} else if (x > 1.e-17) {
154 		return (smaller_gam(x));
155 	} else if (x > -1.e-17) {
156 		if (x == 0.0) {
157 			if (!_IEEE) return (infnan(ERANGE));
158 			else return (one/x);
159 		}
160 		b =one+1e-20;		/* Raise inexact flag. ??? -ragge */
161 		return (one/x);
162 	} else if (!finite(x)) {
163 		if (_IEEE)		/* x = NaN, -Inf */
164 			return (x*x);
165 		else
166 			return (infnan(EDOM));
167 	 } else
168 		return (neg_gam(x));
169 }
170 /*
171  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
172  */
173 static struct Double
174 large_gam(double x)
175 {
176 	double z, p;
177 	struct Double t, u, v;
178 
179 	z = one/(x*x);
180 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
181 	p = p/x;
182 
183 	u = __log__D(x);
184 	u.a -= one;
185 	v.a = (x -= .5);
186 	TRUNC(v.a);
187 	v.b = x - v.a;
188 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
189 	t.b = v.b*u.a + x*u.b;
190 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
191 	t.b += lns2pi_lo; t.b += p;
192 	u.a = lns2pi_hi + t.b; u.a += t.a;
193 	u.b = t.a - u.a;
194 	u.b += lns2pi_hi; u.b += t.b;
195 	return (u);
196 }
197 /*
198  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
199  * It also has correct monotonicity.
200  */
201 static double
202 small_gam(double x)
203 {
204 	double y, ym1, t;
205 	struct Double yy, r;
206 	y = x - one;
207 	ym1 = y - one;
208 	if (y <= 1.0 + (LEFT + x0)) {
209 		yy = ratfun_gam(y - x0, 0);
210 		return (yy.a + yy.b);
211 	}
212 	r.a = y;
213 	TRUNC(r.a);
214 	yy.a = r.a - one;
215 	y = ym1;
216 	yy.b = r.b = y - yy.a;
217 	/* Argument reduction: G(x+1) = x*G(x) */
218 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
219 		t = r.a*yy.a;
220 		r.b = r.a*yy.b + y*r.b;
221 		r.a = t;
222 		TRUNC(r.a);
223 		r.b += (t - r.a);
224 	}
225 	/* Return r*gamma(y). */
226 	yy = ratfun_gam(y - x0, 0);
227 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
228 	y += yy.a*r.a;
229 	return (y);
230 }
231 /*
232  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
233  */
234 static double
235 smaller_gam(double x)
236 {
237 	double t, d;
238 	struct Double r, xx;
239 	if (x < x0 + LEFT) {
240 		t = x, TRUNC(t);
241 		d = (t+x)*(x-t);
242 		t *= t;
243 		xx.a = (t + x), TRUNC(xx.a);
244 		xx.b = x - xx.a; xx.b += t; xx.b += d;
245 		t = (one-x0); t += x;
246 		d = (one-x0); d -= t; d += x;
247 		x = xx.a + xx.b;
248 	} else {
249 		xx.a =  x, TRUNC(xx.a);
250 		xx.b = x - xx.a;
251 		t = x - x0;
252 		d = (-x0 -t); d += x;
253 	}
254 	r = ratfun_gam(t, d);
255 	d = r.a/x, TRUNC(d);
256 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
257 	return (d + r.a/x);
258 }
259 /*
260  * returns (z+c)^2 * P(z)/Q(z) + a0
261  */
262 static struct Double
263 ratfun_gam(double z, double c)
264 {
265 	double p, q;
266 	struct Double r, t;
267 
268 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
269 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
270 
271 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
272 	p = p/q;
273 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
274 	t.b = (z - t.a) + c;
275 	t.b *= (t.a + z);
276 	q = (t.a *= t.a);		/* t = (z+c)^2 */
277 	TRUNC(t.a);
278 	t.b += (q - t.a);
279 	r.a = p, TRUNC(r.a);		/* r = P/Q */
280 	r.b = p - r.a;
281 	t.b = t.b*p + t.a*r.b + a0_lo;
282 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
283 	r.a = t.a + a0_hi, TRUNC(r.a);
284 	r.b = ((a0_hi-r.a) + t.a) + t.b;
285 	return (r);			/* r = a0 + t */
286 }
287 
288 static double
289 neg_gam(double x)
290 {
291 	int sgn = 1;
292 	struct Double lg, lsine;
293 	double y, z;
294 
295 	y = floor(x + .5);
296 	if (y == x) {		/* Negative integer. */
297 		if(!_IEEE)
298 			return (infnan(ERANGE));
299 		else
300 			return (one/zero);
301 	}
302 	z = fabs(x - y);
303 	y = .5*ceil(x);
304 	if (y == ceil(y))
305 		sgn = -1;
306 	if (z < .25)
307 		z = sin(M_PI*z);
308 	else
309 		z = cos(M_PI*(0.5-z));
310 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
311 	if (x < -170) {
312 		if (x < -190)
313 			return ((double)sgn*tiny*tiny);
314 		y = one - x;		/* exact: 128 < |x| < 255 */
315 		lg = large_gam(y);
316 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
317 		lg.a -= lsine.a;		/* exact (opposite signs) */
318 		lg.b -= lsine.b;
319 		y = -(lg.a + lg.b);
320 		z = (y + lg.a) + lg.b;
321 		y = __exp__D(y, z);
322 		if (sgn < 0) y = -y;
323 		return (y);
324 	}
325 	y = one-x;
326 	if (one-y == x)
327 		y = gamma(y);
328 	else		/* 1-x is inexact */
329 		y = -x*gamma(-x);
330 	if (sgn < 0) y = -y;
331 	return (M_PI / (y*z));
332 }
333