xref: /netbsd-src/lib/libm/noieee_src/n_exp.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*      $NetBSD: n_exp.c,v 1.1 1995/10/10 23:36:44 ragge Exp $ */
2 /*
3  * Copyright (c) 1985, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #ifndef lint
36 static char sccsid[] = "@(#)exp.c	8.1 (Berkeley) 6/4/93";
37 #endif /* not lint */
38 
39 /* EXP(X)
40  * RETURN THE EXPONENTIAL OF X
41  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
42  * CODED IN C BY K.C. NG, 1/19/85;
43  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
44  *
45  * Required system supported functions:
46  *	scalb(x,n)
47  *	copysign(x,y)
48  *	finite(x)
49  *
50  * Method:
51  *	1. Argument Reduction: given the input x, find r and integer k such
52  *	   that
53  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
54  *	   r will be represented as r := z+c for better accuracy.
55  *
56  *	2. Compute exp(r) by
57  *
58  *		exp(r) = 1 + r + r*R1/(2-R1),
59  *	   where
60  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
61  *
62  *	3. exp(x) = 2^k * exp(r) .
63  *
64  * Special cases:
65  *	exp(INF) is INF, exp(NaN) is NaN;
66  *	exp(-INF)=  0;
67  *	for finite argument, only exp(0)=1 is exact.
68  *
69  * Accuracy:
70  *	exp(x) returns the exponential of x nearly rounded. In a test run
71  *	with 1,156,000 random arguments on a VAX, the maximum observed
72  *	error was 0.869 ulps (units in the last place).
73  *
74  * Constants:
75  * The hexadecimal values are the intended ones for the following constants.
76  * The decimal values may be used, provided that the compiler will convert
77  * from decimal to binary accurately enough to produce the hexadecimal values
78  * shown.
79  */
80 
81 #include "mathimpl.h"
82 
83 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
84 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
85 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
86 vc(lntiny,-9.5654310917272452386E1   ,4f01,c3bf,33af,d72e,   7,-.BF4F01D72E33AF)
87 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
88 vc(p1,     1.6666666666666602251E-1  ,aaaa,3f2a,a9f1,aaaa,  -2, .AAAAAAAAAAA9F1)
89 vc(p2,    -2.7777777777015591216E-3  ,0b60,bc36,ec94,b5f5,  -8,-.B60B60B5F5EC94)
90 vc(p3,     6.6137563214379341918E-5  ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
91 vc(p4,    -1.6533902205465250480E-6  ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
92 vc(p5,     4.1381367970572387085E-8  ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
93 
94 #ifdef vccast
95 #define    ln2hi    vccast(ln2hi)
96 #define    ln2lo    vccast(ln2lo)
97 #define   lnhuge    vccast(lnhuge)
98 #define   lntiny    vccast(lntiny)
99 #define   invln2    vccast(invln2)
100 #define       p1    vccast(p1)
101 #define       p2    vccast(p2)
102 #define       p3    vccast(p3)
103 #define       p4    vccast(p4)
104 #define       p5    vccast(p5)
105 #endif
106 
107 ic(p1,     1.6666666666666601904E-1,  -3,  1.555555555553E)
108 ic(p2,    -2.7777777777015593384E-3,  -9, -1.6C16C16BEBD93)
109 ic(p3,     6.6137563214379343612E-5, -14,  1.1566AAF25DE2C)
110 ic(p4,    -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
111 ic(p5,     4.1381367970572384604E-8, -25,  1.6376972BEA4D0)
112 ic(ln2hi,  6.9314718036912381649E-1,  -1,  1.62E42FEE00000)
113 ic(ln2lo,  1.9082149292705877000E-10,-33,  1.A39EF35793C76)
114 ic(lnhuge, 7.1602103751842355450E2,    9,  1.6602B15B7ECF2)
115 ic(lntiny,-7.5137154372698068983E2,    9, -1.77AF8EBEAE354)
116 ic(invln2, 1.4426950408889633870E0,    0,  1.71547652B82FE)
117 
118 double exp(x)
119 double x;
120 {
121 	double  z,hi,lo,c;
122 	int k;
123 
124 #if !defined(vax)&&!defined(tahoe)
125 	if(x!=x) return(x);	/* x is NaN */
126 #endif	/* !defined(vax)&&!defined(tahoe) */
127 	if( x <= lnhuge ) {
128 		if( x >= lntiny ) {
129 
130 		    /* argument reduction : x --> x - k*ln2 */
131 
132 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
133 
134 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
135 
136 			hi=x-k*ln2hi;
137 			x=hi-(lo=k*ln2lo);
138 
139 		    /* return 2^k*[1+x+x*c/(2+c)]  */
140 			z=x*x;
141 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
142 			return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
143 
144 		}
145 		/* end of x > lntiny */
146 
147 		else
148 		     /* exp(-big#) underflows to zero */
149 		     if(finite(x))  return(scalb(1.0,-5000));
150 
151 		     /* exp(-INF) is zero */
152 		     else return(0.0);
153 	}
154 	/* end of x < lnhuge */
155 
156 	else
157 	/* exp(INF) is INF, exp(+big#) overflows to INF */
158 	    return( finite(x) ?  scalb(1.0,5000)  : x);
159 }
160 
161 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
162 
163 double __exp__D(x, c)
164 double x, c;
165 {
166 	double  z,hi,lo, t;
167 	int k;
168 
169 #if !defined(vax)&&!defined(tahoe)
170 	if (x!=x) return(x);	/* x is NaN */
171 #endif	/* !defined(vax)&&!defined(tahoe) */
172 	if ( x <= lnhuge ) {
173 		if ( x >= lntiny ) {
174 
175 		    /* argument reduction : x --> x - k*ln2 */
176 			z = invln2*x;
177 			k = z + copysign(.5, x);
178 
179 		    /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
180 
181 			hi=(x-k*ln2hi);			/* Exact. */
182 			x= hi - (lo = k*ln2lo-c);
183 		    /* return 2^k*[1+x+x*c/(2+c)]  */
184 			z=x*x;
185 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
186 			c = (x*c)/(2.0-c);
187 
188 			return  scalb(1.+(hi-(lo - c)), k);
189 		}
190 		/* end of x > lntiny */
191 
192 		else
193 		     /* exp(-big#) underflows to zero */
194 		     if(finite(x))  return(scalb(1.0,-5000));
195 
196 		     /* exp(-INF) is zero */
197 		     else return(0.0);
198 	}
199 	/* end of x < lnhuge */
200 
201 	else
202 	/* exp(INF) is INF, exp(+big#) overflows to INF */
203 	    return( finite(x) ?  scalb(1.0,5000)  : x);
204 }
205