xref: /netbsd-src/lib/libm/noieee_src/n_asincos.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: n_asincos.c,v 1.7 2003/08/07 16:44:50 agc Exp $	*/
2 /*
3  * Copyright (c) 1985, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 #if 0
33 static char sccsid[] = "@(#)asincos.c	8.1 (Berkeley) 6/4/93";
34 #endif
35 #endif /* not lint */
36 
37 /* ASIN(X)
38  * RETURNS ARC SINE OF X
39  * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
40  * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
41  *
42  * Required system supported functions:
43  *	copysign(x,y)
44  *	sqrt(x)
45  *
46  * Required kernel function:
47  *	atan2(y,x)
48  *
49  * Method :
50  *	asin(x) = atan2(x,sqrt(1-x*x)); for better accuracy, 1-x*x is
51  *		  computed as follows
52  *			1-x*x                     if x <  0.5,
53  *			2*(1-|x|)-(1-|x|)*(1-|x|) if x >= 0.5.
54  *
55  * Special cases:
56  *	if x is NaN, return x itself;
57  *	if |x|>1, return NaN.
58  *
59  * Accuracy:
60  * 1)  If atan2() uses machine PI, then
61  *
62  *	asin(x) returns (PI/pi) * (the exact arc sine of x) nearly rounded;
63  *	and PI is the exact pi rounded to machine precision (see atan2 for
64  *      details):
65  *
66  *	in decimal:
67  *		pi = 3.141592653589793 23846264338327 .....
68  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
69  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
70  *
71  *	in hexadecimal:
72  *		pi = 3.243F6A8885A308D313198A2E....
73  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
74  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
75  *
76  *	In a test run with more than 200,000 random arguments on a VAX, the
77  *	maximum observed error in ulps (units in the last place) was
78  *	2.06 ulps.      (comparing against (PI/pi)*(exact asin(x)));
79  *
80  * 2)  If atan2() uses true pi, then
81  *
82  *	asin(x) returns the exact asin(x) with error below about 2 ulps.
83  *
84  *	In a test run with more than 1,024,000 random arguments on a VAX, the
85  *	maximum observed error in ulps (units in the last place) was
86  *      1.99 ulps.
87  */
88 
89 #include "mathimpl.h"
90 
91 double
92 asin(double x)
93 {
94 	double s,t,one=1.0;
95 #if !defined(__vax__)&&!defined(tahoe)
96 	if(x!=x) return(x);	/* x is NaN */
97 #endif	/* !defined(__vax__)&&!defined(tahoe) */
98 	s=copysign(x,one);
99 	if(s <= 0.5)
100 	    return(atan2(x,sqrt(one-x*x)));
101 	else
102 	    { t=one-s; s=t+t; return(atan2(x,sqrt(s-t*t))); }
103 
104 }
105 
106 /* ACOS(X)
107  * RETURNS ARC COS OF X
108  * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
109  * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
110  *
111  * Required system supported functions:
112  *	copysign(x,y)
113  *	sqrt(x)
114  *
115  * Required kernel function:
116  *	atan2(y,x)
117  *
118  * Method :
119  *			      ________
120  *                           / 1 - x
121  *	acos(x) = 2*atan2(  / -------- , 1 ) .
122  *                        \/   1 + x
123  *
124  * Special cases:
125  *	if x is NaN, return x itself;
126  *	if |x|>1, return NaN.
127  *
128  * Accuracy:
129  * 1)  If atan2() uses machine PI, then
130  *
131  *	acos(x) returns (PI/pi) * (the exact arc cosine of x) nearly rounded;
132  *	and PI is the exact pi rounded to machine precision (see atan2 for
133  *      details):
134  *
135  *	in decimal:
136  *		pi = 3.141592653589793 23846264338327 .....
137  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
138  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
139  *
140  *	in hexadecimal:
141  *		pi = 3.243F6A8885A308D313198A2E....
142  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
143  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
144  *
145  *	In a test run with more than 200,000 random arguments on a VAX, the
146  *	maximum observed error in ulps (units in the last place) was
147  *	2.07 ulps.      (comparing against (PI/pi)*(exact acos(x)));
148  *
149  * 2)  If atan2() uses true pi, then
150  *
151  *	acos(x) returns the exact acos(x) with error below about 2 ulps.
152  *
153  *	In a test run with more than 1,024,000 random arguments on a VAX, the
154  *	maximum observed error in ulps (units in the last place) was
155  *	2.15 ulps.
156  */
157 
158 double
159 acos(double x)
160 {
161 	double t,one=1.0;
162 #if !defined(__vax__)&&!defined(tahoe)
163 	if(x!=x) return(x);
164 #endif	/* !defined(__vax__)&&!defined(tahoe) */
165 	if( x != -1.0)
166 	    t=atan2(sqrt((one-x)/(one+x)),one);
167 	else
168 	    t=atan2(one,0.0);	/* t = PI/2 */
169 	return(t+t);
170 }
171