1*cfe182f3Schristos /*-
2*cfe182f3Schristos * SPDX-License-Identifier: BSD-2-Clause
3*cfe182f3Schristos *
4*cfe182f3Schristos * Copyright (c) 2007-2013 Bruce D. Evans
5*cfe182f3Schristos * All rights reserved.
6*cfe182f3Schristos *
7*cfe182f3Schristos * Redistribution and use in source and binary forms, with or without
8*cfe182f3Schristos * modification, are permitted provided that the following conditions
9*cfe182f3Schristos * are met:
10*cfe182f3Schristos * 1. Redistributions of source code must retain the above copyright
11*cfe182f3Schristos * notice unmodified, this list of conditions, and the following
12*cfe182f3Schristos * disclaimer.
13*cfe182f3Schristos * 2. Redistributions in binary form must reproduce the above copyright
14*cfe182f3Schristos * notice, this list of conditions and the following disclaimer in the
15*cfe182f3Schristos * documentation and/or other materials provided with the distribution.
16*cfe182f3Schristos *
17*cfe182f3Schristos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18*cfe182f3Schristos * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19*cfe182f3Schristos * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20*cfe182f3Schristos * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21*cfe182f3Schristos * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22*cfe182f3Schristos * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23*cfe182f3Schristos * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24*cfe182f3Schristos * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25*cfe182f3Schristos * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26*cfe182f3Schristos * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27*cfe182f3Schristos */
28*cfe182f3Schristos
29*cfe182f3Schristos #include <sys/cdefs.h>
30*cfe182f3Schristos /**
31*cfe182f3Schristos * Implementation of the natural logarithm of x for Intel 80-bit format.
32*cfe182f3Schristos *
33*cfe182f3Schristos * First decompose x into its base 2 representation:
34*cfe182f3Schristos *
35*cfe182f3Schristos * log(x) = log(X * 2**k), where X is in [1, 2)
36*cfe182f3Schristos * = log(X) + k * log(2).
37*cfe182f3Schristos *
38*cfe182f3Schristos * Let X = X_i + e, where X_i is the center of one of the intervals
39*cfe182f3Schristos * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
40*cfe182f3Schristos * and X is in this interval. Then
41*cfe182f3Schristos *
42*cfe182f3Schristos * log(X) = log(X_i + e)
43*cfe182f3Schristos * = log(X_i * (1 + e / X_i))
44*cfe182f3Schristos * = log(X_i) + log(1 + e / X_i).
45*cfe182f3Schristos *
46*cfe182f3Schristos * The values log(X_i) are tabulated below. Let d = e / X_i and use
47*cfe182f3Schristos *
48*cfe182f3Schristos * log(1 + d) = p(d)
49*cfe182f3Schristos *
50*cfe182f3Schristos * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
51*cfe182f3Schristos * suitably high degree.
52*cfe182f3Schristos *
53*cfe182f3Schristos * To get sufficiently small roundoff errors, k * log(2), log(X_i), and
54*cfe182f3Schristos * sometimes (if |k| is not large) the first term in p(d) must be evaluated
55*cfe182f3Schristos * and added up in extra precision. Extra precision is not needed for the
56*cfe182f3Schristos * rest of p(d). In the worst case when k = 0 and log(X_i) is 0, the final
57*cfe182f3Schristos * error is controlled mainly by the error in the second term in p(d). The
58*cfe182f3Schristos * error in this term itself is at most 0.5 ulps from the d*d operation in
59*cfe182f3Schristos * it. The error in this term relative to the first term is thus at most
60*cfe182f3Schristos * 0.5 * |-0.5| * |d| < 1.0/1024 ulps. We aim for an accumulated error of
61*cfe182f3Schristos * at most twice this at the point of the final rounding step. Thus the
62*cfe182f3Schristos * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps. Exhaustive
63*cfe182f3Schristos * testing of a float variant of this function showed a maximum final error
64*cfe182f3Schristos * of 0.5008 ulps. Non-exhaustive testing of a double variant of this
65*cfe182f3Schristos * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
66*cfe182f3Schristos *
67*cfe182f3Schristos * We made the maximum of |d| (and thus the total relative error and the
68*cfe182f3Schristos * degree of p(d)) small by using a large number of intervals. Using
69*cfe182f3Schristos * centers of intervals instead of endpoints reduces this maximum by a
70*cfe182f3Schristos * factor of 2 for a given number of intervals. p(d) is special only
71*cfe182f3Schristos * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
72*cfe182f3Schristos * naturally. The most accurate minimax polynomial of a given degree might
73*cfe182f3Schristos * be different, but then we wouldn't want it since we would have to do
74*cfe182f3Schristos * extra work to avoid roundoff error (especially for P0*d instead of d).
75*cfe182f3Schristos */
76*cfe182f3Schristos
77*cfe182f3Schristos #ifdef DEBUG
78*cfe182f3Schristos #include <fenv.h>
79*cfe182f3Schristos #endif
80*cfe182f3Schristos
81*cfe182f3Schristos #ifdef __FreeBSD__
82*cfe182f3Schristos #include "fpmath.h"
83*cfe182f3Schristos #endif
84*cfe182f3Schristos #include "math.h"
85*cfe182f3Schristos #define i386_SSE_GOOD
86*cfe182f3Schristos #ifndef NO_STRUCT_RETURN
87*cfe182f3Schristos #define STRUCT_RETURN
88*cfe182f3Schristos #endif
89*cfe182f3Schristos #include "math_private.h"
90*cfe182f3Schristos
91*cfe182f3Schristos #if !defined(NO_UTAB) && !defined(NO_UTABL)
92*cfe182f3Schristos #define USE_UTAB
93*cfe182f3Schristos #endif
94*cfe182f3Schristos
95*cfe182f3Schristos /*
96*cfe182f3Schristos * Domain [-0.005280, 0.004838], range ~[-5.1736e-22, 5.1738e-22]:
97*cfe182f3Schristos * |log(1 + d)/d - p(d)| < 2**-70.7
98*cfe182f3Schristos */
99*cfe182f3Schristos static const double
100*cfe182f3Schristos P2 = -0.5,
101*cfe182f3Schristos P3 = 3.3333333333333359e-1, /* 0x1555555555555a.0p-54 */
102*cfe182f3Schristos P4 = -2.5000000000004424e-1, /* -0x1000000000031d.0p-54 */
103*cfe182f3Schristos P5 = 1.9999999992970016e-1, /* 0x1999999972f3c7.0p-55 */
104*cfe182f3Schristos P6 = -1.6666666072191585e-1, /* -0x15555548912c09.0p-55 */
105*cfe182f3Schristos P7 = 1.4286227413310518e-1, /* 0x12494f9d9def91.0p-55 */
106*cfe182f3Schristos P8 = -1.2518388626763144e-1; /* -0x1006068cc0b97c.0p-55 */
107*cfe182f3Schristos
108*cfe182f3Schristos static volatile const double zero = 0;
109*cfe182f3Schristos
110*cfe182f3Schristos #define INTERVALS 128
111*cfe182f3Schristos #define LOG2_INTERVALS 7
112*cfe182f3Schristos #define TSIZE (INTERVALS + 1)
113*cfe182f3Schristos #define G(i) (T[(i)].G)
114*cfe182f3Schristos #define F_hi(i) (T[(i)].F_hi)
115*cfe182f3Schristos #define F_lo(i) (T[(i)].F_lo)
116*cfe182f3Schristos #define ln2_hi F_hi(TSIZE - 1)
117*cfe182f3Schristos #define ln2_lo F_lo(TSIZE - 1)
118*cfe182f3Schristos #define E(i) (U[(i)].E)
119*cfe182f3Schristos #define H(i) (U[(i)].H)
120*cfe182f3Schristos
121*cfe182f3Schristos static const struct {
122*cfe182f3Schristos float G; /* 1/(1 + i/128) rounded to 8/9 bits */
123*cfe182f3Schristos float F_hi; /* log(1 / G_i) rounded (see below) */
124*cfe182f3Schristos double F_lo; /* next 53 bits for log(1 / G_i) */
125*cfe182f3Schristos } T[TSIZE] = {
126*cfe182f3Schristos /*
127*cfe182f3Schristos * ln2_hi and each F_hi(i) are rounded to a number of bits that
128*cfe182f3Schristos * makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
129*cfe182f3Schristos *
130*cfe182f3Schristos * The last entry (for X just below 2) is used to define ln2_hi
131*cfe182f3Schristos * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
132*cfe182f3Schristos * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
133*cfe182f3Schristos * This is needed for accuracy when x is just below 1. (To avoid
134*cfe182f3Schristos * special cases, such x are "reduced" strangely to X just below
135*cfe182f3Schristos * 2 and dk = -1, and then the exact cancellation is needed
136*cfe182f3Schristos * because any the error from any non-exactness would be too
137*cfe182f3Schristos * large).
138*cfe182f3Schristos *
139*cfe182f3Schristos * We want to share this table between double precision and ld80,
140*cfe182f3Schristos * so the relevant range of dk is the larger one of ld80
141*cfe182f3Schristos * ([-16445, 16383]) and the relevant exactness requirement is
142*cfe182f3Schristos * the stricter one of double precision. The maximum number of
143*cfe182f3Schristos * bits in F_hi(i) that works is very dependent on i but has
144*cfe182f3Schristos * a minimum of 33. We only need about 12 bits in F_hi(i) for
145*cfe182f3Schristos * it to provide enough extra precision in double precision (11
146*cfe182f3Schristos * more than that are required for ld80).
147*cfe182f3Schristos *
148*cfe182f3Schristos * We round F_hi(i) to 24 bits so that it can have type float,
149*cfe182f3Schristos * mainly to minimize the size of the table. Using all 24 bits
150*cfe182f3Schristos * in a float for it automatically satisfies the above constraints.
151*cfe182f3Schristos */
152*cfe182f3Schristos { 0x800000.0p-23, 0, 0 },
153*cfe182f3Schristos { 0xfe0000.0p-24, 0x8080ac.0p-30, -0x14ee431dae6675.0p-84 },
154*cfe182f3Schristos { 0xfc0000.0p-24, 0x8102b3.0p-29, -0x1db29ee2d83718.0p-84 },
155*cfe182f3Schristos { 0xfa0000.0p-24, 0xc24929.0p-29, 0x1191957d173698.0p-83 },
156*cfe182f3Schristos { 0xf80000.0p-24, 0x820aec.0p-28, 0x13ce8888e02e79.0p-82 },
157*cfe182f3Schristos { 0xf60000.0p-24, 0xa33577.0p-28, -0x17a4382ce6eb7c.0p-82 },
158*cfe182f3Schristos { 0xf48000.0p-24, 0xbc42cb.0p-28, -0x172a21161a1076.0p-83 },
159*cfe182f3Schristos { 0xf30000.0p-24, 0xd57797.0p-28, -0x1e09de07cb9589.0p-82 },
160*cfe182f3Schristos { 0xf10000.0p-24, 0xf7518e.0p-28, 0x1ae1eec1b036c5.0p-91 },
161*cfe182f3Schristos { 0xef0000.0p-24, 0x8cb9df.0p-27, -0x1d7355325d560e.0p-81 },
162*cfe182f3Schristos { 0xed8000.0p-24, 0x999ec0.0p-27, -0x1f9f02d256d503.0p-82 },
163*cfe182f3Schristos { 0xec0000.0p-24, 0xa6988b.0p-27, -0x16fc0a9d12c17a.0p-83 },
164*cfe182f3Schristos { 0xea0000.0p-24, 0xb80698.0p-27, 0x15d581c1e8da9a.0p-81 },
165*cfe182f3Schristos { 0xe80000.0p-24, 0xc99af3.0p-27, -0x1535b3ba8f150b.0p-83 },
166*cfe182f3Schristos { 0xe70000.0p-24, 0xd273b2.0p-27, 0x163786f5251af0.0p-85 },
167*cfe182f3Schristos { 0xe50000.0p-24, 0xe442c0.0p-27, 0x1bc4b2368e32d5.0p-84 },
168*cfe182f3Schristos { 0xe38000.0p-24, 0xf1b83f.0p-27, 0x1c6090f684e676.0p-81 },
169*cfe182f3Schristos { 0xe20000.0p-24, 0xff448a.0p-27, -0x1890aa69ac9f42.0p-82 },
170*cfe182f3Schristos { 0xe08000.0p-24, 0x8673f6.0p-26, 0x1b9985194b6b00.0p-80 },
171*cfe182f3Schristos { 0xdf0000.0p-24, 0x8d515c.0p-26, -0x1dc08d61c6ef1e.0p-83 },
172*cfe182f3Schristos { 0xdd8000.0p-24, 0x943a9e.0p-26, -0x1f72a2dac729b4.0p-82 },
173*cfe182f3Schristos { 0xdc0000.0p-24, 0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9.0p-80 },
174*cfe182f3Schristos { 0xda8000.0p-24, 0xa2315d.0p-26, -0x11b26121629c47.0p-82 },
175*cfe182f3Schristos { 0xd90000.0p-24, 0xa93f2f.0p-26, 0x1286d633e8e569.0p-81 },
176*cfe182f3Schristos { 0xd78000.0p-24, 0xb05988.0p-26, 0x16128eba936770.0p-84 },
177*cfe182f3Schristos { 0xd60000.0p-24, 0xb78094.0p-26, 0x16ead577390d32.0p-80 },
178*cfe182f3Schristos { 0xd50000.0p-24, 0xbc4c6c.0p-26, 0x151131ccf7c7b7.0p-81 },
179*cfe182f3Schristos { 0xd38000.0p-24, 0xc3890a.0p-26, -0x115e2cd714bd06.0p-80 },
180*cfe182f3Schristos { 0xd20000.0p-24, 0xcad2d7.0p-26, -0x1847f406ebd3b0.0p-82 },
181*cfe182f3Schristos { 0xd10000.0p-24, 0xcfb620.0p-26, 0x1c2259904d6866.0p-81 },
182*cfe182f3Schristos { 0xcf8000.0p-24, 0xd71653.0p-26, 0x1ece57a8d5ae55.0p-80 },
183*cfe182f3Schristos { 0xce0000.0p-24, 0xde843a.0p-26, -0x1f109d4bc45954.0p-81 },
184*cfe182f3Schristos { 0xcd0000.0p-24, 0xe37fde.0p-26, 0x1bc03dc271a74d.0p-81 },
185*cfe182f3Schristos { 0xcb8000.0p-24, 0xeb050c.0p-26, -0x1bf2badc0df842.0p-85 },
186*cfe182f3Schristos { 0xca0000.0p-24, 0xf29878.0p-26, -0x18efededd89fbe.0p-87 },
187*cfe182f3Schristos { 0xc90000.0p-24, 0xf7ad6f.0p-26, 0x1373ff977baa69.0p-81 },
188*cfe182f3Schristos { 0xc80000.0p-24, 0xfcc8e3.0p-26, 0x196766f2fb3283.0p-80 },
189*cfe182f3Schristos { 0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e.0p-79 },
190*cfe182f3Schristos { 0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f46.0p-79 },
191*cfe182f3Schristos { 0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a.0p-81 },
192*cfe182f3Schristos { 0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de9.0p-79 },
193*cfe182f3Schristos { 0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5148.0p-81 },
194*cfe182f3Schristos { 0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba4.0p-79 },
195*cfe182f3Schristos { 0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b731.0p-80 },
196*cfe182f3Schristos { 0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed73.0p-81 },
197*cfe182f3Schristos { 0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7.0p-79 },
198*cfe182f3Schristos { 0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c566.0p-79 },
199*cfe182f3Schristos { 0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb24.0p-81 },
200*cfe182f3Schristos { 0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698.0p-81 },
201*cfe182f3Schristos { 0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123616.0p-82 },
202*cfe182f3Schristos { 0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b2.0p-80 },
203*cfe182f3Schristos { 0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a424234.0p-79 },
204*cfe182f3Schristos { 0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a4.0p-83 },
205*cfe182f3Schristos { 0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770634.0p-79 },
206*cfe182f3Schristos { 0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b152.0p-82 },
207*cfe182f3Schristos { 0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f09.0p-80 },
208*cfe182f3Schristos { 0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad89.0p-79 },
209*cfe182f3Schristos { 0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf.0p-79 },
210*cfe182f3Schristos { 0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab90486409.0p-80 },
211*cfe182f3Schristos { 0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333.0p-79 },
212*cfe182f3Schristos { 0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fc0.0p-80 },
213*cfe182f3Schristos { 0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c9.0p-80 },
214*cfe182f3Schristos { 0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8.0p-79 },
215*cfe182f3Schristos { 0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a87.0p-81 },
216*cfe182f3Schristos { 0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3cb.0p-79 },
217*cfe182f3Schristos { 0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d.0p-81 },
218*cfe182f3Schristos { 0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac.0p-81 },
219*cfe182f3Schristos { 0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549e.0p-79 },
220*cfe182f3Schristos { 0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b61.0p-80 },
221*cfe182f3Schristos { 0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a3.0p-80 },
222*cfe182f3Schristos { 0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f1.0p-82 },
223*cfe182f3Schristos { 0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b68.0p-80 },
224*cfe182f3Schristos { 0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f57.0p-80 },
225*cfe182f3Schristos { 0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d9.0p-80 },
226*cfe182f3Schristos { 0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d4.0p-80 },
227*cfe182f3Schristos { 0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd.0p-79 },
228*cfe182f3Schristos { 0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f730190.0p-79 },
229*cfe182f3Schristos { 0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cd.0p-80 },
230*cfe182f3Schristos { 0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d.0p-81 },
231*cfe182f3Schristos { 0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af2.0p-79 },
232*cfe182f3Schristos { 0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e0.0p-84 },
233*cfe182f3Schristos { 0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade0.0p-79 },
234*cfe182f3Schristos { 0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1.0p-79 },
235*cfe182f3Schristos { 0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c53.0p-79 },
236*cfe182f3Schristos { 0x9a8000.0p-24, 0x814697.0p-24, -0x12ad3817004f3f.0p-78 },
237*cfe182f3Schristos { 0x9a0000.0p-24, 0x821b06.0p-24, -0x189fc53117f9e5.0p-81 },
238*cfe182f3Schristos { 0x990000.0p-24, 0x83c5f8.0p-24, 0x14cf15a048907b.0p-79 },
239*cfe182f3Schristos { 0x988000.0p-24, 0x849c7d.0p-24, 0x1cbb1d35fb8287.0p-78 },
240*cfe182f3Schristos { 0x978000.0p-24, 0x864ba6.0p-24, 0x1128639b814f9c.0p-78 },
241*cfe182f3Schristos { 0x970000.0p-24, 0x87244c.0p-24, 0x184733853300f0.0p-79 },
242*cfe182f3Schristos { 0x968000.0p-24, 0x87fdaa.0p-24, 0x109d23aef77dd6.0p-80 },
243*cfe182f3Schristos { 0x958000.0p-24, 0x89b293.0p-24, -0x1a81ef367a59de.0p-78 },
244*cfe182f3Schristos { 0x950000.0p-24, 0x8a8e20.0p-24, -0x121ad3dbb2f452.0p-78 },
245*cfe182f3Schristos { 0x948000.0p-24, 0x8b6a6a.0p-24, -0x1cfb981628af72.0p-79 },
246*cfe182f3Schristos { 0x938000.0p-24, 0x8d253a.0p-24, -0x1d21730ea76cfe.0p-79 },
247*cfe182f3Schristos { 0x930000.0p-24, 0x8e03c2.0p-24, 0x135cc00e566f77.0p-78 },
248*cfe182f3Schristos { 0x928000.0p-24, 0x8ee30d.0p-24, -0x10fcb5df257a26.0p-80 },
249*cfe182f3Schristos { 0x918000.0p-24, 0x90a3ee.0p-24, -0x16e171b15433d7.0p-79 },
250*cfe182f3Schristos { 0x910000.0p-24, 0x918587.0p-24, -0x1d050da07f3237.0p-79 },
251*cfe182f3Schristos { 0x908000.0p-24, 0x9267e7.0p-24, 0x1be03669a5268d.0p-79 },
252*cfe182f3Schristos { 0x8f8000.0p-24, 0x942f04.0p-24, 0x10b28e0e26c337.0p-79 },
253*cfe182f3Schristos { 0x8f0000.0p-24, 0x9513c3.0p-24, 0x1a1d820da57cf3.0p-78 },
254*cfe182f3Schristos { 0x8e8000.0p-24, 0x95f950.0p-24, -0x19ef8f13ae3cf1.0p-79 },
255*cfe182f3Schristos { 0x8e0000.0p-24, 0x96dfab.0p-24, -0x109e417a6e507c.0p-78 },
256*cfe182f3Schristos { 0x8d0000.0p-24, 0x98aed2.0p-24, 0x10d01a2c5b0e98.0p-79 },
257*cfe182f3Schristos { 0x8c8000.0p-24, 0x9997a2.0p-24, -0x1d6a50d4b61ea7.0p-78 },
258*cfe182f3Schristos { 0x8c0000.0p-24, 0x9a8145.0p-24, 0x1b3b190b83f952.0p-78 },
259*cfe182f3Schristos { 0x8b8000.0p-24, 0x9b6bbf.0p-24, 0x13a69fad7e7abe.0p-78 },
260*cfe182f3Schristos { 0x8b0000.0p-24, 0x9c5711.0p-24, -0x11cd12316f576b.0p-78 },
261*cfe182f3Schristos { 0x8a8000.0p-24, 0x9d433b.0p-24, 0x1c95c444b807a2.0p-79 },
262*cfe182f3Schristos { 0x898000.0p-24, 0x9f1e22.0p-24, -0x1b9c224ea698c3.0p-79 },
263*cfe182f3Schristos { 0x890000.0p-24, 0xa00ce1.0p-24, 0x125ca93186cf0f.0p-81 },
264*cfe182f3Schristos { 0x888000.0p-24, 0xa0fc80.0p-24, -0x1ee38a7bc228b3.0p-79 },
265*cfe182f3Schristos { 0x880000.0p-24, 0xa1ed00.0p-24, -0x1a0db876613d20.0p-78 },
266*cfe182f3Schristos { 0x878000.0p-24, 0xa2de62.0p-24, 0x193224e8516c01.0p-79 },
267*cfe182f3Schristos { 0x870000.0p-24, 0xa3d0a9.0p-24, 0x1fa28b4d2541ad.0p-79 },
268*cfe182f3Schristos { 0x868000.0p-24, 0xa4c3d6.0p-24, 0x1c1b5760fb4572.0p-78 },
269*cfe182f3Schristos { 0x858000.0p-24, 0xa6acea.0p-24, 0x1fed5d0f65949c.0p-80 },
270*cfe182f3Schristos { 0x850000.0p-24, 0xa7a2d4.0p-24, 0x1ad270c9d74936.0p-80 },
271*cfe182f3Schristos { 0x848000.0p-24, 0xa899ab.0p-24, 0x199ff15ce53266.0p-79 },
272*cfe182f3Schristos { 0x840000.0p-24, 0xa99171.0p-24, 0x1a19e15ccc45d2.0p-79 },
273*cfe182f3Schristos { 0x838000.0p-24, 0xaa8a28.0p-24, -0x121a14ec532b36.0p-80 },
274*cfe182f3Schristos { 0x830000.0p-24, 0xab83d1.0p-24, 0x1aee319980bff3.0p-79 },
275*cfe182f3Schristos { 0x828000.0p-24, 0xac7e6f.0p-24, -0x18ffd9e3900346.0p-80 },
276*cfe182f3Schristos { 0x820000.0p-24, 0xad7a03.0p-24, -0x1e4db102ce29f8.0p-80 },
277*cfe182f3Schristos { 0x818000.0p-24, 0xae768f.0p-24, 0x17c35c55a04a83.0p-81 },
278*cfe182f3Schristos { 0x810000.0p-24, 0xaf7415.0p-24, 0x1448324047019b.0p-78 },
279*cfe182f3Schristos { 0x808000.0p-24, 0xb07298.0p-24, -0x1750ee3915a198.0p-78 },
280*cfe182f3Schristos { 0x800000.0p-24, 0xb17218.0p-24, -0x105c610ca86c39.0p-81 },
281*cfe182f3Schristos };
282*cfe182f3Schristos
283*cfe182f3Schristos #ifdef USE_UTAB
284*cfe182f3Schristos static const struct {
285*cfe182f3Schristos float H; /* 1 + i/INTERVALS (exact) */
286*cfe182f3Schristos float E; /* H(i) * G(i) - 1 (exact) */
287*cfe182f3Schristos } U[TSIZE] = {
288*cfe182f3Schristos { 0x800000.0p-23, 0 },
289*cfe182f3Schristos { 0x810000.0p-23, -0x800000.0p-37 },
290*cfe182f3Schristos { 0x820000.0p-23, -0x800000.0p-35 },
291*cfe182f3Schristos { 0x830000.0p-23, -0x900000.0p-34 },
292*cfe182f3Schristos { 0x840000.0p-23, -0x800000.0p-33 },
293*cfe182f3Schristos { 0x850000.0p-23, -0xc80000.0p-33 },
294*cfe182f3Schristos { 0x860000.0p-23, -0xa00000.0p-36 },
295*cfe182f3Schristos { 0x870000.0p-23, 0x940000.0p-33 },
296*cfe182f3Schristos { 0x880000.0p-23, 0x800000.0p-35 },
297*cfe182f3Schristos { 0x890000.0p-23, -0xc80000.0p-34 },
298*cfe182f3Schristos { 0x8a0000.0p-23, 0xe00000.0p-36 },
299*cfe182f3Schristos { 0x8b0000.0p-23, 0x900000.0p-33 },
300*cfe182f3Schristos { 0x8c0000.0p-23, -0x800000.0p-35 },
301*cfe182f3Schristos { 0x8d0000.0p-23, -0xe00000.0p-33 },
302*cfe182f3Schristos { 0x8e0000.0p-23, 0x880000.0p-33 },
303*cfe182f3Schristos { 0x8f0000.0p-23, -0xa80000.0p-34 },
304*cfe182f3Schristos { 0x900000.0p-23, -0x800000.0p-35 },
305*cfe182f3Schristos { 0x910000.0p-23, 0x800000.0p-37 },
306*cfe182f3Schristos { 0x920000.0p-23, 0x900000.0p-35 },
307*cfe182f3Schristos { 0x930000.0p-23, 0xd00000.0p-35 },
308*cfe182f3Schristos { 0x940000.0p-23, 0xe00000.0p-35 },
309*cfe182f3Schristos { 0x950000.0p-23, 0xc00000.0p-35 },
310*cfe182f3Schristos { 0x960000.0p-23, 0xe00000.0p-36 },
311*cfe182f3Schristos { 0x970000.0p-23, -0x800000.0p-38 },
312*cfe182f3Schristos { 0x980000.0p-23, -0xc00000.0p-35 },
313*cfe182f3Schristos { 0x990000.0p-23, -0xd00000.0p-34 },
314*cfe182f3Schristos { 0x9a0000.0p-23, 0x880000.0p-33 },
315*cfe182f3Schristos { 0x9b0000.0p-23, 0xe80000.0p-35 },
316*cfe182f3Schristos { 0x9c0000.0p-23, -0x800000.0p-35 },
317*cfe182f3Schristos { 0x9d0000.0p-23, 0xb40000.0p-33 },
318*cfe182f3Schristos { 0x9e0000.0p-23, 0x880000.0p-34 },
319*cfe182f3Schristos { 0x9f0000.0p-23, -0xe00000.0p-35 },
320*cfe182f3Schristos { 0xa00000.0p-23, 0x800000.0p-33 },
321*cfe182f3Schristos { 0xa10000.0p-23, -0x900000.0p-36 },
322*cfe182f3Schristos { 0xa20000.0p-23, -0xb00000.0p-33 },
323*cfe182f3Schristos { 0xa30000.0p-23, -0xa00000.0p-36 },
324*cfe182f3Schristos { 0xa40000.0p-23, 0x800000.0p-33 },
325*cfe182f3Schristos { 0xa50000.0p-23, -0xf80000.0p-35 },
326*cfe182f3Schristos { 0xa60000.0p-23, 0x880000.0p-34 },
327*cfe182f3Schristos { 0xa70000.0p-23, -0x900000.0p-33 },
328*cfe182f3Schristos { 0xa80000.0p-23, -0x800000.0p-35 },
329*cfe182f3Schristos { 0xa90000.0p-23, 0x900000.0p-34 },
330*cfe182f3Schristos { 0xaa0000.0p-23, 0xa80000.0p-33 },
331*cfe182f3Schristos { 0xab0000.0p-23, -0xac0000.0p-34 },
332*cfe182f3Schristos { 0xac0000.0p-23, -0x800000.0p-37 },
333*cfe182f3Schristos { 0xad0000.0p-23, 0xf80000.0p-35 },
334*cfe182f3Schristos { 0xae0000.0p-23, 0xf80000.0p-34 },
335*cfe182f3Schristos { 0xaf0000.0p-23, -0xac0000.0p-33 },
336*cfe182f3Schristos { 0xb00000.0p-23, -0x800000.0p-33 },
337*cfe182f3Schristos { 0xb10000.0p-23, -0xb80000.0p-34 },
338*cfe182f3Schristos { 0xb20000.0p-23, -0x800000.0p-34 },
339*cfe182f3Schristos { 0xb30000.0p-23, -0xb00000.0p-35 },
340*cfe182f3Schristos { 0xb40000.0p-23, -0x800000.0p-35 },
341*cfe182f3Schristos { 0xb50000.0p-23, -0xe00000.0p-36 },
342*cfe182f3Schristos { 0xb60000.0p-23, -0x800000.0p-35 },
343*cfe182f3Schristos { 0xb70000.0p-23, -0xb00000.0p-35 },
344*cfe182f3Schristos { 0xb80000.0p-23, -0x800000.0p-34 },
345*cfe182f3Schristos { 0xb90000.0p-23, -0xb80000.0p-34 },
346*cfe182f3Schristos { 0xba0000.0p-23, -0x800000.0p-33 },
347*cfe182f3Schristos { 0xbb0000.0p-23, -0xac0000.0p-33 },
348*cfe182f3Schristos { 0xbc0000.0p-23, 0x980000.0p-33 },
349*cfe182f3Schristos { 0xbd0000.0p-23, 0xbc0000.0p-34 },
350*cfe182f3Schristos { 0xbe0000.0p-23, 0xe00000.0p-36 },
351*cfe182f3Schristos { 0xbf0000.0p-23, -0xb80000.0p-35 },
352*cfe182f3Schristos { 0xc00000.0p-23, -0x800000.0p-33 },
353*cfe182f3Schristos { 0xc10000.0p-23, 0xa80000.0p-33 },
354*cfe182f3Schristos { 0xc20000.0p-23, 0x900000.0p-34 },
355*cfe182f3Schristos { 0xc30000.0p-23, -0x800000.0p-35 },
356*cfe182f3Schristos { 0xc40000.0p-23, -0x900000.0p-33 },
357*cfe182f3Schristos { 0xc50000.0p-23, 0x820000.0p-33 },
358*cfe182f3Schristos { 0xc60000.0p-23, 0x800000.0p-38 },
359*cfe182f3Schristos { 0xc70000.0p-23, -0x820000.0p-33 },
360*cfe182f3Schristos { 0xc80000.0p-23, 0x800000.0p-33 },
361*cfe182f3Schristos { 0xc90000.0p-23, -0xa00000.0p-36 },
362*cfe182f3Schristos { 0xca0000.0p-23, -0xb00000.0p-33 },
363*cfe182f3Schristos { 0xcb0000.0p-23, 0x840000.0p-34 },
364*cfe182f3Schristos { 0xcc0000.0p-23, -0xd00000.0p-34 },
365*cfe182f3Schristos { 0xcd0000.0p-23, 0x800000.0p-33 },
366*cfe182f3Schristos { 0xce0000.0p-23, -0xe00000.0p-35 },
367*cfe182f3Schristos { 0xcf0000.0p-23, 0xa60000.0p-33 },
368*cfe182f3Schristos { 0xd00000.0p-23, -0x800000.0p-35 },
369*cfe182f3Schristos { 0xd10000.0p-23, 0xb40000.0p-33 },
370*cfe182f3Schristos { 0xd20000.0p-23, -0x800000.0p-35 },
371*cfe182f3Schristos { 0xd30000.0p-23, 0xaa0000.0p-33 },
372*cfe182f3Schristos { 0xd40000.0p-23, -0xe00000.0p-35 },
373*cfe182f3Schristos { 0xd50000.0p-23, 0x880000.0p-33 },
374*cfe182f3Schristos { 0xd60000.0p-23, -0xd00000.0p-34 },
375*cfe182f3Schristos { 0xd70000.0p-23, 0x9c0000.0p-34 },
376*cfe182f3Schristos { 0xd80000.0p-23, -0xb00000.0p-33 },
377*cfe182f3Schristos { 0xd90000.0p-23, -0x800000.0p-38 },
378*cfe182f3Schristos { 0xda0000.0p-23, 0xa40000.0p-33 },
379*cfe182f3Schristos { 0xdb0000.0p-23, -0xdc0000.0p-34 },
380*cfe182f3Schristos { 0xdc0000.0p-23, 0xc00000.0p-35 },
381*cfe182f3Schristos { 0xdd0000.0p-23, 0xca0000.0p-33 },
382*cfe182f3Schristos { 0xde0000.0p-23, -0xb80000.0p-34 },
383*cfe182f3Schristos { 0xdf0000.0p-23, 0xd00000.0p-35 },
384*cfe182f3Schristos { 0xe00000.0p-23, 0xc00000.0p-33 },
385*cfe182f3Schristos { 0xe10000.0p-23, -0xf40000.0p-34 },
386*cfe182f3Schristos { 0xe20000.0p-23, 0x800000.0p-37 },
387*cfe182f3Schristos { 0xe30000.0p-23, 0x860000.0p-33 },
388*cfe182f3Schristos { 0xe40000.0p-23, -0xc80000.0p-33 },
389*cfe182f3Schristos { 0xe50000.0p-23, -0xa80000.0p-34 },
390*cfe182f3Schristos { 0xe60000.0p-23, 0xe00000.0p-36 },
391*cfe182f3Schristos { 0xe70000.0p-23, 0x880000.0p-33 },
392*cfe182f3Schristos { 0xe80000.0p-23, -0xe00000.0p-33 },
393*cfe182f3Schristos { 0xe90000.0p-23, -0xfc0000.0p-34 },
394*cfe182f3Schristos { 0xea0000.0p-23, -0x800000.0p-35 },
395*cfe182f3Schristos { 0xeb0000.0p-23, 0xe80000.0p-35 },
396*cfe182f3Schristos { 0xec0000.0p-23, 0x900000.0p-33 },
397*cfe182f3Schristos { 0xed0000.0p-23, 0xe20000.0p-33 },
398*cfe182f3Schristos { 0xee0000.0p-23, -0xac0000.0p-33 },
399*cfe182f3Schristos { 0xef0000.0p-23, -0xc80000.0p-34 },
400*cfe182f3Schristos { 0xf00000.0p-23, -0x800000.0p-35 },
401*cfe182f3Schristos { 0xf10000.0p-23, 0x800000.0p-35 },
402*cfe182f3Schristos { 0xf20000.0p-23, 0xb80000.0p-34 },
403*cfe182f3Schristos { 0xf30000.0p-23, 0x940000.0p-33 },
404*cfe182f3Schristos { 0xf40000.0p-23, 0xc80000.0p-33 },
405*cfe182f3Schristos { 0xf50000.0p-23, -0xf20000.0p-33 },
406*cfe182f3Schristos { 0xf60000.0p-23, -0xc80000.0p-33 },
407*cfe182f3Schristos { 0xf70000.0p-23, -0xa20000.0p-33 },
408*cfe182f3Schristos { 0xf80000.0p-23, -0x800000.0p-33 },
409*cfe182f3Schristos { 0xf90000.0p-23, -0xc40000.0p-34 },
410*cfe182f3Schristos { 0xfa0000.0p-23, -0x900000.0p-34 },
411*cfe182f3Schristos { 0xfb0000.0p-23, -0xc80000.0p-35 },
412*cfe182f3Schristos { 0xfc0000.0p-23, -0x800000.0p-35 },
413*cfe182f3Schristos { 0xfd0000.0p-23, -0x900000.0p-36 },
414*cfe182f3Schristos { 0xfe0000.0p-23, -0x800000.0p-37 },
415*cfe182f3Schristos { 0xff0000.0p-23, -0x800000.0p-39 },
416*cfe182f3Schristos { 0x800000.0p-22, 0 },
417*cfe182f3Schristos };
418*cfe182f3Schristos #endif /* USE_UTAB */
419*cfe182f3Schristos
420*cfe182f3Schristos #ifdef STRUCT_RETURN
421*cfe182f3Schristos #define RETURN1(rp, v) do { \
422*cfe182f3Schristos (rp)->hi = (v); \
423*cfe182f3Schristos (rp)->lo_set = 0; \
424*cfe182f3Schristos return; \
425*cfe182f3Schristos } while (0)
426*cfe182f3Schristos
427*cfe182f3Schristos #define RETURN2(rp, h, l) do { \
428*cfe182f3Schristos (rp)->hi = (h); \
429*cfe182f3Schristos (rp)->lo = (l); \
430*cfe182f3Schristos (rp)->lo_set = 1; \
431*cfe182f3Schristos return; \
432*cfe182f3Schristos } while (0)
433*cfe182f3Schristos
434*cfe182f3Schristos struct ld {
435*cfe182f3Schristos long double hi;
436*cfe182f3Schristos long double lo;
437*cfe182f3Schristos int lo_set;
438*cfe182f3Schristos };
439*cfe182f3Schristos #else
440*cfe182f3Schristos #define RETURN1(rp, v) RETURNF(v)
441*cfe182f3Schristos #define RETURN2(rp, h, l) RETURNI((h) + (l))
442*cfe182f3Schristos #endif
443*cfe182f3Schristos
444*cfe182f3Schristos #ifdef STRUCT_RETURN
445*cfe182f3Schristos static inline __always_inline void
k_logl(long double x,struct ld * rp)446*cfe182f3Schristos k_logl(long double x, struct ld *rp)
447*cfe182f3Schristos #else
448*cfe182f3Schristos long double
449*cfe182f3Schristos logl(long double x)
450*cfe182f3Schristos #endif
451*cfe182f3Schristos {
452*cfe182f3Schristos long double d, dk, val_hi, val_lo, z;
453*cfe182f3Schristos uint64_t ix, lx;
454*cfe182f3Schristos int i, k;
455*cfe182f3Schristos uint16_t hx;
456*cfe182f3Schristos
457*cfe182f3Schristos EXTRACT_LDBL80_WORDS(hx, lx, x);
458*cfe182f3Schristos k = -16383;
459*cfe182f3Schristos #if 0 /* Hard to do efficiently. Don't do it until we support all modes. */
460*cfe182f3Schristos if (x == 1)
461*cfe182f3Schristos RETURN1(rp, 0); /* log(1) = +0 in all rounding modes */
462*cfe182f3Schristos #endif
463*cfe182f3Schristos if (hx == 0 || hx >= 0x8000) { /* zero, negative or subnormal? */
464*cfe182f3Schristos if (((hx & 0x7fff) | lx) == 0)
465*cfe182f3Schristos RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */
466*cfe182f3Schristos if (hx != 0)
467*cfe182f3Schristos /* log(neg or [pseudo-]NaN) = qNaN: */
468*cfe182f3Schristos RETURN1(rp, (x - x) / zero);
469*cfe182f3Schristos x *= 0x1.0p65; /* subnormal; scale up x */
470*cfe182f3Schristos /* including pseudo-subnormals */
471*cfe182f3Schristos EXTRACT_LDBL80_WORDS(hx, lx, x);
472*cfe182f3Schristos k = -16383 - 65;
473*cfe182f3Schristos } else if (hx >= 0x7fff || (lx & 0x8000000000000000ULL) == 0)
474*cfe182f3Schristos RETURN1(rp, x + x); /* log(Inf or NaN) = Inf or qNaN */
475*cfe182f3Schristos /* log(pseudo-Inf) = qNaN */
476*cfe182f3Schristos /* log(pseudo-NaN) = qNaN */
477*cfe182f3Schristos /* log(unnormal) = qNaN */
478*cfe182f3Schristos #ifndef STRUCT_RETURN
479*cfe182f3Schristos ENTERI();
480*cfe182f3Schristos #endif
481*cfe182f3Schristos k += hx;
482*cfe182f3Schristos ix = lx & 0x7fffffffffffffffULL;
483*cfe182f3Schristos dk = k;
484*cfe182f3Schristos
485*cfe182f3Schristos /* Scale x to be in [1, 2). */
486*cfe182f3Schristos SET_LDBL_EXPSIGN(x, 0x3fff);
487*cfe182f3Schristos
488*cfe182f3Schristos /* 0 <= i <= INTERVALS: */
489*cfe182f3Schristos #define L2I (64 - LOG2_INTERVALS)
490*cfe182f3Schristos i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
491*cfe182f3Schristos
492*cfe182f3Schristos /*
493*cfe182f3Schristos * -0.005280 < d < 0.004838. In particular, the infinite-
494*cfe182f3Schristos * precision |d| is <= 2**-7. Rounding of G(i) to 8 bits
495*cfe182f3Schristos * ensures that d is representable without extra precision for
496*cfe182f3Schristos * this bound on |d| (since when this calculation is expressed
497*cfe182f3Schristos * as x*G(i)-1, the multiplication needs as many extra bits as
498*cfe182f3Schristos * G(i) has and the subtraction cancels 8 bits). But for
499*cfe182f3Schristos * most i (107 cases out of 129), the infinite-precision |d|
500*cfe182f3Schristos * is <= 2**-8. G(i) is rounded to 9 bits for such i to give
501*cfe182f3Schristos * better accuracy (this works by improving the bound on |d|,
502*cfe182f3Schristos * which in turn allows rounding to 9 bits in more cases).
503*cfe182f3Schristos * This is only important when the original x is near 1 -- it
504*cfe182f3Schristos * lets us avoid using a special method to give the desired
505*cfe182f3Schristos * accuracy for such x.
506*cfe182f3Schristos */
507*cfe182f3Schristos if (/*CONSTCOND*/0)
508*cfe182f3Schristos /*NOTREACHED*/
509*cfe182f3Schristos d = x * G(i) - 1;
510*cfe182f3Schristos else {
511*cfe182f3Schristos #ifdef USE_UTAB
512*cfe182f3Schristos d = (x - H(i)) * G(i) + E(i);
513*cfe182f3Schristos #else
514*cfe182f3Schristos long double x_hi, x_lo;
515*cfe182f3Schristos float fx_hi;
516*cfe182f3Schristos
517*cfe182f3Schristos /*
518*cfe182f3Schristos * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
519*cfe182f3Schristos * G(i) has at most 9 bits, so the splitting point is not
520*cfe182f3Schristos * critical.
521*cfe182f3Schristos */
522*cfe182f3Schristos SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
523*cfe182f3Schristos x_hi = fx_hi;
524*cfe182f3Schristos x_lo = x - x_hi;
525*cfe182f3Schristos d = x_hi * G(i) - 1 + x_lo * G(i);
526*cfe182f3Schristos #endif
527*cfe182f3Schristos }
528*cfe182f3Schristos
529*cfe182f3Schristos /*
530*cfe182f3Schristos * Our algorithm depends on exact cancellation of F_lo(i) and
531*cfe182f3Schristos * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
532*cfe182f3Schristos * at the end of the table. This and other technical complications
533*cfe182f3Schristos * make it difficult to avoid the double scaling in (dk*ln2) *
534*cfe182f3Schristos * log(base) for base != e without losing more accuracy and/or
535*cfe182f3Schristos * efficiency than is gained.
536*cfe182f3Schristos */
537*cfe182f3Schristos z = d * d;
538*cfe182f3Schristos val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
539*cfe182f3Schristos (F_lo(i) + dk * ln2_lo + z * d * (d * P4 + P3)) + z * P2;
540*cfe182f3Schristos val_hi = d;
541*cfe182f3Schristos #ifdef DEBUG
542*cfe182f3Schristos if (fetestexcept(FE_UNDERFLOW))
543*cfe182f3Schristos breakpoint();
544*cfe182f3Schristos #endif
545*cfe182f3Schristos
546*cfe182f3Schristos _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
547*cfe182f3Schristos RETURN2(rp, val_hi, val_lo);
548*cfe182f3Schristos }
549*cfe182f3Schristos
550*cfe182f3Schristos long double
log1pl(long double x)551*cfe182f3Schristos log1pl(long double x)
552*cfe182f3Schristos {
553*cfe182f3Schristos long double d, d_hi, d_lo, dk, f_lo, val_hi, val_lo, z;
554*cfe182f3Schristos long double f_hi, twopminusk;
555*cfe182f3Schristos uint64_t ix, lx;
556*cfe182f3Schristos int i, k;
557*cfe182f3Schristos int16_t ax, hx;
558*cfe182f3Schristos
559*cfe182f3Schristos EXTRACT_LDBL80_WORDS(hx, lx, x);
560*cfe182f3Schristos if (hx < 0x3fff) { /* x < 1, or x neg NaN */
561*cfe182f3Schristos ax = hx & 0x7fff;
562*cfe182f3Schristos if (ax >= 0x3fff) { /* x <= -1, or x neg NaN */
563*cfe182f3Schristos if (ax == 0x3fff && lx == 0x8000000000000000ULL)
564*cfe182f3Schristos RETURNF(-1 / zero); /* log1p(-1) = -Inf */
565*cfe182f3Schristos /* log1p(x < 1, or x [pseudo-]NaN) = qNaN: */
566*cfe182f3Schristos RETURNF((x - x) / (x - x));
567*cfe182f3Schristos }
568*cfe182f3Schristos if (ax <= 0x3fbe) { /* |x| < 2**-64 */
569*cfe182f3Schristos if ((int)x == 0)
570*cfe182f3Schristos RETURNF(x); /* x with inexact if x != 0 */
571*cfe182f3Schristos }
572*cfe182f3Schristos f_hi = 1;
573*cfe182f3Schristos f_lo = x;
574*cfe182f3Schristos } else if (hx >= 0x7fff) { /* x +Inf or non-neg NaN */
575*cfe182f3Schristos RETURNF(x + x); /* log1p(Inf or NaN) = Inf or qNaN */
576*cfe182f3Schristos /* log1p(pseudo-Inf) = qNaN */
577*cfe182f3Schristos /* log1p(pseudo-NaN) = qNaN */
578*cfe182f3Schristos /* log1p(unnormal) = qNaN */
579*cfe182f3Schristos } else if (hx < 0x407f) { /* 1 <= x < 2**128 */
580*cfe182f3Schristos f_hi = x;
581*cfe182f3Schristos f_lo = 1;
582*cfe182f3Schristos } else { /* 2**128 <= x < +Inf */
583*cfe182f3Schristos f_hi = x;
584*cfe182f3Schristos f_lo = 0; /* avoid underflow of the P5 term */
585*cfe182f3Schristos }
586*cfe182f3Schristos ENTERI();
587*cfe182f3Schristos x = f_hi + f_lo;
588*cfe182f3Schristos f_lo = (f_hi - x) + f_lo;
589*cfe182f3Schristos
590*cfe182f3Schristos EXTRACT_LDBL80_WORDS(hx, lx, x);
591*cfe182f3Schristos k = -16383;
592*cfe182f3Schristos
593*cfe182f3Schristos k += hx;
594*cfe182f3Schristos ix = lx & 0x7fffffffffffffffULL;
595*cfe182f3Schristos dk = k;
596*cfe182f3Schristos
597*cfe182f3Schristos SET_LDBL_EXPSIGN(x, 0x3fff);
598*cfe182f3Schristos twopminusk = 1;
599*cfe182f3Schristos SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
600*cfe182f3Schristos f_lo *= twopminusk;
601*cfe182f3Schristos
602*cfe182f3Schristos i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
603*cfe182f3Schristos
604*cfe182f3Schristos /*
605*cfe182f3Schristos * x*G(i)-1 (with a reduced x) can be represented exactly, as
606*cfe182f3Schristos * above, but now we need to evaluate the polynomial on d =
607*cfe182f3Schristos * (x+f_lo)*G(i)-1 and extra precision is needed for that.
608*cfe182f3Schristos * Since x+x_lo is a hi+lo decomposition and subtracting 1
609*cfe182f3Schristos * doesn't lose too many bits, an inexact calculation for
610*cfe182f3Schristos * f_lo*G(i) is good enough.
611*cfe182f3Schristos */
612*cfe182f3Schristos if (/*CONSTCOND*/0)
613*cfe182f3Schristos /*NOTREACHED*/
614*cfe182f3Schristos d_hi = x * G(i) - 1;
615*cfe182f3Schristos else {
616*cfe182f3Schristos #ifdef USE_UTAB
617*cfe182f3Schristos d_hi = (x - H(i)) * G(i) + E(i);
618*cfe182f3Schristos #else
619*cfe182f3Schristos long double x_hi, x_lo;
620*cfe182f3Schristos float fx_hi;
621*cfe182f3Schristos
622*cfe182f3Schristos SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
623*cfe182f3Schristos x_hi = fx_hi;
624*cfe182f3Schristos x_lo = x - x_hi;
625*cfe182f3Schristos d_hi = x_hi * G(i) - 1 + x_lo * G(i);
626*cfe182f3Schristos #endif
627*cfe182f3Schristos }
628*cfe182f3Schristos d_lo = f_lo * G(i);
629*cfe182f3Schristos
630*cfe182f3Schristos /*
631*cfe182f3Schristos * This is _2sumF(d_hi, d_lo) inlined. The condition
632*cfe182f3Schristos * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
633*cfe182f3Schristos * always satisifed, so it is not clear that this works, but
634*cfe182f3Schristos * it works in practice. It works even if it gives a wrong
635*cfe182f3Schristos * normalized d_lo, since |d_lo| > |d_hi| implies that i is
636*cfe182f3Schristos * nonzero and d is tiny, so the F(i) term dominates d_lo.
637*cfe182f3Schristos * In float precision:
638*cfe182f3Schristos * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
639*cfe182f3Schristos * And if d is only a little tinier than that, we would have
640*cfe182f3Schristos * another underflow problem for the P3 term; this is also ruled
641*cfe182f3Schristos * out by exhaustive testing.)
642*cfe182f3Schristos */
643*cfe182f3Schristos d = d_hi + d_lo;
644*cfe182f3Schristos d_lo = d_hi - d + d_lo;
645*cfe182f3Schristos d_hi = d;
646*cfe182f3Schristos
647*cfe182f3Schristos z = d * d;
648*cfe182f3Schristos val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
649*cfe182f3Schristos (F_lo(i) + dk * ln2_lo + d_lo + z * d * (d * P4 + P3)) + z * P2;
650*cfe182f3Schristos val_hi = d_hi;
651*cfe182f3Schristos #ifdef DEBUG
652*cfe182f3Schristos if (fetestexcept(FE_UNDERFLOW))
653*cfe182f3Schristos breakpoint();
654*cfe182f3Schristos #endif
655*cfe182f3Schristos
656*cfe182f3Schristos _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
657*cfe182f3Schristos RETURNI(val_hi + val_lo);
658*cfe182f3Schristos }
659*cfe182f3Schristos
660*cfe182f3Schristos #ifdef STRUCT_RETURN
661*cfe182f3Schristos
662*cfe182f3Schristos long double
logl(long double x)663*cfe182f3Schristos logl(long double x)
664*cfe182f3Schristos {
665*cfe182f3Schristos struct ld r;
666*cfe182f3Schristos
667*cfe182f3Schristos ENTERI();
668*cfe182f3Schristos k_logl(x, &r);
669*cfe182f3Schristos RETURNSPI(&r);
670*cfe182f3Schristos }
671*cfe182f3Schristos
672*cfe182f3Schristos /* Use macros since GCC < 8 rejects static const expressions in initializers. */
673*cfe182f3Schristos #define invln10_hi 4.3429448190317999e-1 /* 0x1bcb7b1526e000.0p-54 */
674*cfe182f3Schristos #define invln10_lo 7.1842412889749798e-14 /* 0x1438ca9aadd558.0p-96 */
675*cfe182f3Schristos #define invln2_hi 1.4426950408887933e0 /* 0x171547652b8000.0p-52 */
676*cfe182f3Schristos #define invln2_lo 1.7010652264631490e-13 /* 0x17f0bbbe87fed0.0p-95 */
677*cfe182f3Schristos /* Let the compiler pre-calculate this sum to avoid FE_INEXACT at run time. */
678*cfe182f3Schristos static const double invln10_lo_plus_hi = invln10_lo + invln10_hi;
679*cfe182f3Schristos static const double invln2_lo_plus_hi = invln2_lo + invln2_hi;
680*cfe182f3Schristos
681*cfe182f3Schristos long double
log10l(long double x)682*cfe182f3Schristos log10l(long double x)
683*cfe182f3Schristos {
684*cfe182f3Schristos struct ld r;
685*cfe182f3Schristos long double hi, lo;
686*cfe182f3Schristos
687*cfe182f3Schristos ENTERI();
688*cfe182f3Schristos k_logl(x, &r);
689*cfe182f3Schristos if (!r.lo_set)
690*cfe182f3Schristos RETURNI(r.hi);
691*cfe182f3Schristos _2sumF(r.hi, r.lo);
692*cfe182f3Schristos hi = (float)r.hi;
693*cfe182f3Schristos lo = r.lo + (r.hi - hi);
694*cfe182f3Schristos RETURNI(invln10_hi * hi +
695*cfe182f3Schristos (invln10_lo_plus_hi * lo + invln10_lo * hi));
696*cfe182f3Schristos }
697*cfe182f3Schristos
698*cfe182f3Schristos long double
log2l(long double x)699*cfe182f3Schristos log2l(long double x)
700*cfe182f3Schristos {
701*cfe182f3Schristos struct ld r;
702*cfe182f3Schristos long double hi, lo;
703*cfe182f3Schristos
704*cfe182f3Schristos ENTERI();
705*cfe182f3Schristos k_logl(x, &r);
706*cfe182f3Schristos if (!r.lo_set)
707*cfe182f3Schristos RETURNI(r.hi);
708*cfe182f3Schristos _2sumF(r.hi, r.lo);
709*cfe182f3Schristos hi = (float)r.hi;
710*cfe182f3Schristos lo = r.lo + (r.hi - hi);
711*cfe182f3Schristos RETURNI(invln2_hi * hi +
712*cfe182f3Schristos (invln2_lo_plus_hi * lo + invln2_lo * hi));
713*cfe182f3Schristos }
714*cfe182f3Schristos
715*cfe182f3Schristos #endif /* STRUCT_RETURN */
716