xref: /netbsd-src/lib/libm/ld80/b_tgammal.c (revision b0c6c153909fe2ba392c312e6735dc2dc0f2de99)
1cfe182f3Schristos /*-
2cfe182f3Schristos  * SPDX-License-Identifier: BSD-3-Clause
3cfe182f3Schristos  *
4cfe182f3Schristos  * Copyright (c) 1992, 1993
5cfe182f3Schristos  *	The Regents of the University of California.  All rights reserved.
6cfe182f3Schristos  *
7cfe182f3Schristos  * Redistribution and use in source and binary forms, with or without
8cfe182f3Schristos  * modification, are permitted provided that the following conditions
9cfe182f3Schristos  * are met:
10cfe182f3Schristos  * 1. Redistributions of source code must retain the above copyright
11cfe182f3Schristos  *    notice, this list of conditions and the following disclaimer.
12cfe182f3Schristos  * 2. Redistributions in binary form must reproduce the above copyright
13cfe182f3Schristos  *    notice, this list of conditions and the following disclaimer in the
14cfe182f3Schristos  *    documentation and/or other materials provided with the distribution.
15cfe182f3Schristos  * 3. Neither the name of the University nor the names of its contributors
16cfe182f3Schristos  *    may be used to endorse or promote products derived from this software
17cfe182f3Schristos  *    without specific prior written permission.
18cfe182f3Schristos  *
19cfe182f3Schristos  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20cfe182f3Schristos  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21cfe182f3Schristos  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22cfe182f3Schristos  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23cfe182f3Schristos  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24cfe182f3Schristos  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25cfe182f3Schristos  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26cfe182f3Schristos  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27cfe182f3Schristos  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28cfe182f3Schristos  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29cfe182f3Schristos  * SUCH DAMAGE.
30cfe182f3Schristos  */
31cfe182f3Schristos 
32cfe182f3Schristos /*
33cfe182f3Schristos  * The original code, FreeBSD's old svn r93211, contain the following
34cfe182f3Schristos  * attribution:
35cfe182f3Schristos  *
36cfe182f3Schristos  *    This code by P. McIlroy, Oct 1992;
37cfe182f3Schristos  *
38cfe182f3Schristos  *    The financial support of UUNET Communications Services is greatfully
39cfe182f3Schristos  *    acknowledged.
40cfe182f3Schristos  *
41cfe182f3Schristos  * bsdrc/b_tgamma.c converted to long double by Steven G. Kargl.
42cfe182f3Schristos  */
43cfe182f3Schristos 
44*1bb3b9e1Skre #include <sys/cdefs.h>
45*1bb3b9e1Skre 
46cfe182f3Schristos /*
47cfe182f3Schristos  * See bsdsrc/t_tgamma.c for implementation details.
48cfe182f3Schristos  */
49cfe182f3Schristos 
50cfe182f3Schristos #include <float.h>
51cfe182f3Schristos 
52cfe182f3Schristos #if LDBL_MAX_EXP != 0x4000
53cfe182f3Schristos #error "Unsupported long double format"
54cfe182f3Schristos #endif
55cfe182f3Schristos 
56cfe182f3Schristos #include "math.h"
57cfe182f3Schristos #include "math_private.h"
58cfe182f3Schristos 
59cfe182f3Schristos /* Used in b_log.c and below. */
60cfe182f3Schristos struct LDouble {
61cfe182f3Schristos 	long double a;
62cfe182f3Schristos 	long double b;
63cfe182f3Schristos };
64cfe182f3Schristos 
65cfe182f3Schristos #include "b_logl.c"
66cfe182f3Schristos #include "b_expl.c"
67cfe182f3Schristos 
68cfe182f3Schristos static const double zero = 0.;
69cfe182f3Schristos static const volatile double tiny = 1e-300;
70cfe182f3Schristos /*
71cfe182f3Schristos  * x >= 6
72cfe182f3Schristos  *
73cfe182f3Schristos  * Use the asymptotic approximation (Stirling's formula) adjusted for
74cfe182f3Schristos  * equal-ripples:
75cfe182f3Schristos  *
76cfe182f3Schristos  * log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
77cfe182f3Schristos  *
78cfe182f3Schristos  * Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
79cfe182f3Schristos  * premature round-off.
80cfe182f3Schristos  *
81cfe182f3Schristos  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
82cfe182f3Schristos  */
83cfe182f3Schristos 
84cfe182f3Schristos /*
85cfe182f3Schristos  * The following is a decomposition of 0.5 * (log(2*pi) - 1) into the
86cfe182f3Schristos  * first 12 bits in ln2pi_hi and the trailing 64 bits in ln2pi_lo.  The
87cfe182f3Schristos  * variables are clearly misnamed.
88cfe182f3Schristos  */
89cfe182f3Schristos static const union ieee_ext_u
90cfe182f3Schristos ln2pi_hiu = LD80C(0xd680000000000000,  -2,  4.18945312500000000000e-01L),
91cfe182f3Schristos ln2pi_lou = LD80C(0xe379b414b596d687, -18, -6.77929532725821967032e-06L);
92cfe182f3Schristos #define	ln2pi_hi	(ln2pi_hiu.extu_ld)
93cfe182f3Schristos #define	ln2pi_lo	(ln2pi_lou.extu_ld)
94cfe182f3Schristos 
95cfe182f3Schristos static const union ieee_ext_u
96cfe182f3Schristos     Pa0u = LD80C(0xaaaaaaaaaaaaaaaa,  -4,  8.33333333333333333288e-02L),
97cfe182f3Schristos     Pa1u = LD80C(0xb60b60b60b5fcd59,  -9, -2.77777777777776516326e-03L),
98cfe182f3Schristos     Pa2u = LD80C(0xd00d00cffbb47014, -11,  7.93650793635429639018e-04L),
99cfe182f3Schristos     Pa3u = LD80C(0x9c09c07c0805343e, -11, -5.95238087960599252215e-04L),
100cfe182f3Schristos     Pa4u = LD80C(0xdca8d31f8e6e5e8f, -11,  8.41749082509607342883e-04L),
101cfe182f3Schristos     Pa5u = LD80C(0xfb4d4289632f1638, -10, -1.91728055205541624556e-03L),
102cfe182f3Schristos     Pa6u = LD80C(0xd15a4ba04078d3f8,  -8,  6.38893788027752396194e-03L),
103cfe182f3Schristos     Pa7u = LD80C(0xe877283110bcad95,  -6, -2.83771309846297590312e-02L),
104cfe182f3Schristos     Pa8u = LD80C(0x8da97eed13717af8,  -3,  1.38341887683837576925e-01L),
105cfe182f3Schristos     Pa9u = LD80C(0xf093b1c1584e30ce,  -2, -4.69876818515470146031e-01L);
106cfe182f3Schristos #define	Pa0	(Pa0u.extu_ld)
107cfe182f3Schristos #define	Pa1	(Pa1u.extu_ld)
108cfe182f3Schristos #define	Pa2	(Pa2u.extu_ld)
109cfe182f3Schristos #define	Pa3	(Pa3u.extu_ld)
110cfe182f3Schristos #define	Pa4	(Pa4u.extu_ld)
111cfe182f3Schristos #define	Pa5	(Pa5u.extu_ld)
112cfe182f3Schristos #define	Pa6	(Pa6u.extu_ld)
113cfe182f3Schristos #define	Pa7	(Pa7u.extu_ld)
114cfe182f3Schristos #define	Pa8	(Pa8u.extu_ld)
115cfe182f3Schristos #define	Pa9	(Pa9u.extu_ld)
116cfe182f3Schristos 
117cfe182f3Schristos static struct LDouble
large_gam(long double x)118cfe182f3Schristos large_gam(long double x)
119cfe182f3Schristos {
120cfe182f3Schristos 	long double p, z, thi, tlo, xhi, xlo;
121cfe182f3Schristos 	struct LDouble u;
122cfe182f3Schristos 
123cfe182f3Schristos 	z = 1 / (x * x);
124cfe182f3Schristos 	p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 +
125cfe182f3Schristos 	    z * (Pa6 + z * (Pa7 + z * (Pa8 + z * Pa9))))))));
126cfe182f3Schristos 	p = p / x;
127cfe182f3Schristos 
128cfe182f3Schristos 	u = __log__LD(x);
129cfe182f3Schristos 	u.a -= 1;
130cfe182f3Schristos 
131cfe182f3Schristos 	/* Split (x - 0.5) in high and low parts. */
132cfe182f3Schristos 	x -= 0.5L;
133cfe182f3Schristos 	xhi = (float)x;
134cfe182f3Schristos 	xlo = x - xhi;
135cfe182f3Schristos 
136cfe182f3Schristos 	/* Compute  t = (x-.5)*(log(x)-1) in extra precision. */
137cfe182f3Schristos 	thi = xhi * u.a;
138cfe182f3Schristos 	tlo = xlo * u.a + x * u.b;
139cfe182f3Schristos 
140cfe182f3Schristos 	/* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
141cfe182f3Schristos 	tlo += ln2pi_lo;
142cfe182f3Schristos 	tlo += p;
143cfe182f3Schristos 	u.a = ln2pi_hi + tlo;
144cfe182f3Schristos 	u.a += thi;
145cfe182f3Schristos 	u.b = thi - u.a;
146cfe182f3Schristos 	u.b += ln2pi_hi;
147cfe182f3Schristos 	u.b += tlo;
148cfe182f3Schristos 	return (u);
149cfe182f3Schristos }
150cfe182f3Schristos /*
151cfe182f3Schristos  * Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
152cfe182f3Schristos  * [1.066.., 2.066..] accurate to 4.25e-19.
153cfe182f3Schristos  *
154cfe182f3Schristos  * Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
155cfe182f3Schristos  */
156cfe182f3Schristos static const union ieee_ext_u
157cfe182f3Schristos     a0_hiu = LD80C(0xe2b6e4153a57746c,  -1, 8.85603194410888700265e-01L),
158cfe182f3Schristos     a0_lou = LD80C(0x851566d40f32c76d, -66, 1.40907742727049706207e-20L);
159cfe182f3Schristos #define	a0_hi	(a0_hiu.extu_ld)
160cfe182f3Schristos #define	a0_lo	(a0_lou.extu_ld)
161cfe182f3Schristos 
162cfe182f3Schristos static const union ieee_ext_u
163cfe182f3Schristos P0u = LD80C(0xdb629fb9bbdc1c1d,    -2,  4.28486815855585429733e-01L),
164cfe182f3Schristos P1u = LD80C(0xe6f4f9f5641aa6be,    -3,  2.25543885805587730552e-01L),
165cfe182f3Schristos P2u = LD80C(0xead1bd99fdaf7cc1,    -6,  2.86644652514293482381e-02L),
166cfe182f3Schristos P3u = LD80C(0x9ccc8b25838ab1e0,    -8,  4.78512567772456362048e-03L),
167cfe182f3Schristos P4u = LD80C(0x8f0c4383ef9ce72a,    -9,  2.18273781132301146458e-03L),
168cfe182f3Schristos P5u = LD80C(0xe732ab2c0a2778da,   -13,  2.20487522485636008928e-04L),
169cfe182f3Schristos P6u = LD80C(0xce70b27ca822b297,   -16,  2.46095923774929264284e-05L),
170cfe182f3Schristos P7u = LD80C(0xa309e2e16fb63663,   -19,  2.42946473022376182921e-06L),
171cfe182f3Schristos P8u = LD80C(0xaf9c110efb2c633d,   -23,  1.63549217667765869987e-07L),
172cfe182f3Schristos Q1u = LD80C(0xd4d7422719f48f15,    -1,  8.31409582658993993626e-01L),
173cfe182f3Schristos Q2u = LD80C(0xe13138ea404f1268,    -5, -5.49785826915643198508e-02L),
174cfe182f3Schristos Q3u = LD80C(0xd1c6cc91989352c0,    -4, -1.02429960435139887683e-01L),
175cfe182f3Schristos Q4u = LD80C(0xa7e9435a84445579,    -7,  1.02484853505908820524e-02L),
176cfe182f3Schristos Q5u = LD80C(0x83c7c34db89b7bda,    -8,  4.02161632832052872697e-03L),
177cfe182f3Schristos Q6u = LD80C(0xbed06bf6e1c14e5b,   -11, -7.27898206351223022157e-04L),
178cfe182f3Schristos Q7u = LD80C(0xef05bf841d4504c0,   -18,  7.12342421869453515194e-06L),
179cfe182f3Schristos Q8u = LD80C(0xf348d08a1ff53cb1,   -19,  3.62522053809474067060e-06L);
180cfe182f3Schristos #define	P0	(P0u.extu_ld)
181cfe182f3Schristos #define	P1	(P1u.extu_ld)
182cfe182f3Schristos #define	P2	(P2u.extu_ld)
183cfe182f3Schristos #define	P3	(P3u.extu_ld)
184cfe182f3Schristos #define	P4	(P4u.extu_ld)
185cfe182f3Schristos #define	P5	(P5u.extu_ld)
186cfe182f3Schristos #define	P6	(P6u.extu_ld)
187cfe182f3Schristos #define	P7	(P7u.extu_ld)
188cfe182f3Schristos #define	P8	(P8u.extu_ld)
189cfe182f3Schristos #define	Q1	(Q1u.extu_ld)
190cfe182f3Schristos #define	Q2	(Q2u.extu_ld)
191cfe182f3Schristos #define	Q3	(Q3u.extu_ld)
192cfe182f3Schristos #define	Q4	(Q4u.extu_ld)
193cfe182f3Schristos #define	Q5	(Q5u.extu_ld)
194cfe182f3Schristos #define	Q6	(Q6u.extu_ld)
195cfe182f3Schristos #define	Q7	(Q7u.extu_ld)
196cfe182f3Schristos #define	Q8	(Q8u.extu_ld)
197cfe182f3Schristos 
198cfe182f3Schristos static struct LDouble
ratfun_gam(long double z,long double c)199cfe182f3Schristos ratfun_gam(long double z, long double c)
200cfe182f3Schristos {
201cfe182f3Schristos 	long double p, q, thi, tlo;
202cfe182f3Schristos 	struct LDouble r;
203cfe182f3Schristos 
204cfe182f3Schristos 	q = 1  + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 +
205cfe182f3Schristos 	    z * (Q6 + z * (Q7 + z * Q8)))))));
206cfe182f3Schristos 	p = P0 + z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 +
207cfe182f3Schristos 	    z * (P6 + z * (P7 + z * P8)))))));
208cfe182f3Schristos 	p = p / q;
209cfe182f3Schristos 
210cfe182f3Schristos 	/* Split z into high and low parts. */
211cfe182f3Schristos 	thi = (float)z;
212cfe182f3Schristos 	tlo = (z - thi) + c;
213cfe182f3Schristos 	tlo *= (thi + z);
214cfe182f3Schristos 
215cfe182f3Schristos 	/* Split (z+c)^2 into high and low parts. */
216cfe182f3Schristos 	thi *= thi;
217cfe182f3Schristos 	q = thi;
218cfe182f3Schristos 	thi = (float)thi;
219cfe182f3Schristos 	tlo += (q - thi);
220cfe182f3Schristos 
221cfe182f3Schristos 	/* Split p/q into high and low parts. */
222cfe182f3Schristos 	r.a = (float)p;
223cfe182f3Schristos 	r.b = p - r.a;
224cfe182f3Schristos 
225cfe182f3Schristos 	tlo = tlo * p + thi * r.b + a0_lo;
226cfe182f3Schristos 	thi *= r.a;				/* t = (z+c)^2*(P/Q) */
227cfe182f3Schristos 	r.a = (float)(thi + a0_hi);
228cfe182f3Schristos 	r.b = ((a0_hi - r.a) + thi) + tlo;
229cfe182f3Schristos 	return (r);				/* r = a0 + t */
230cfe182f3Schristos }
231cfe182f3Schristos /*
232cfe182f3Schristos  * x < 6
233cfe182f3Schristos  *
234cfe182f3Schristos  * Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
235cfe182f3Schristos  * 2.066124].  Use a rational approximation centered at the minimum
236cfe182f3Schristos  * (x0+1) to ensure monotonicity.
237cfe182f3Schristos  *
238cfe182f3Schristos  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
239cfe182f3Schristos  * It also has correct monotonicity.
240cfe182f3Schristos  */
241cfe182f3Schristos static const union ieee_ext_u
242cfe182f3Schristos   xm1u = LD80C(0xec5b0c6ad7c7edc3, -2, 4.61632144968362341254e-01L);
243cfe182f3Schristos #define	x0	(xm1u.extu_ld)
244cfe182f3Schristos 
245cfe182f3Schristos static const double
246cfe182f3Schristos     left = -0.3955078125;	/* left boundary for rat. approx */
247cfe182f3Schristos 
248cfe182f3Schristos static long double
small_gam(long double x)249cfe182f3Schristos small_gam(long double x)
250cfe182f3Schristos {
251cfe182f3Schristos 	long double t, y, ym1;
252cfe182f3Schristos 	struct LDouble yy, r;
253cfe182f3Schristos 
254cfe182f3Schristos 	y = x - 1;
255cfe182f3Schristos 
256cfe182f3Schristos 	if (y <= 1 + (left + x0)) {
257cfe182f3Schristos 		yy = ratfun_gam(y - x0, 0);
258cfe182f3Schristos 		return (yy.a + yy.b);
259cfe182f3Schristos 	}
260cfe182f3Schristos 
261cfe182f3Schristos 	r.a = (float)y;
262cfe182f3Schristos 	yy.a = r.a - 1;
263cfe182f3Schristos 	y = y - 1 ;
264cfe182f3Schristos 	r.b = yy.b = y - yy.a;
265cfe182f3Schristos 
266cfe182f3Schristos 	/* Argument reduction: G(x+1) = x*G(x) */
267cfe182f3Schristos 	for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) {
268cfe182f3Schristos 		t = r.a * yy.a;
269cfe182f3Schristos 		r.b = r.a * yy.b + y * r.b;
270cfe182f3Schristos 		r.a = (float)t;
271cfe182f3Schristos 		r.b += (t - r.a);
272cfe182f3Schristos 	}
273cfe182f3Schristos 
274cfe182f3Schristos 	/* Return r*tgamma(y). */
275cfe182f3Schristos 	yy = ratfun_gam(y - x0, 0);
276cfe182f3Schristos 	y = r.b * (yy.a + yy.b) + r.a * yy.b;
277cfe182f3Schristos 	y += yy.a * r.a;
278cfe182f3Schristos 	return (y);
279cfe182f3Schristos }
280cfe182f3Schristos /*
281cfe182f3Schristos  * Good on (0, 1+x0+left].  Accurate to 1 ulp.
282cfe182f3Schristos  */
283cfe182f3Schristos static long double
smaller_gam(long double x)284cfe182f3Schristos smaller_gam(long double x)
285cfe182f3Schristos {
286cfe182f3Schristos 	long double d, t, xhi, xlo;
287cfe182f3Schristos 	struct LDouble r;
288cfe182f3Schristos 
289cfe182f3Schristos 	if (x < x0 + left) {
290cfe182f3Schristos 		t = (float)x;
291cfe182f3Schristos 		d = (t + x) * (x - t);
292cfe182f3Schristos 		t *= t;
293cfe182f3Schristos 		xhi = (float)(t + x);
294cfe182f3Schristos 		xlo = x - xhi;
295cfe182f3Schristos 		xlo += t;
296cfe182f3Schristos 		xlo += d;
297cfe182f3Schristos 		t = 1 - x0;
298cfe182f3Schristos 		t += x;
299cfe182f3Schristos 		d = 1 - x0;
300cfe182f3Schristos 		d -= t;
301cfe182f3Schristos 		d += x;
302cfe182f3Schristos 		x = xhi + xlo;
303cfe182f3Schristos 	} else {
304cfe182f3Schristos 		xhi = (float)x;
305cfe182f3Schristos 		xlo = x - xhi;
306cfe182f3Schristos 		t = x - x0;
307cfe182f3Schristos 		d = - x0 - t;
308cfe182f3Schristos 		d += x;
309cfe182f3Schristos 	}
310cfe182f3Schristos 
311cfe182f3Schristos 	r = ratfun_gam(t, d);
312cfe182f3Schristos 	d = (float)(r.a / x);
313cfe182f3Schristos 	r.a -= d * xhi;
314cfe182f3Schristos 	r.a -= d * xlo;
315cfe182f3Schristos 	r.a += r.b;
316cfe182f3Schristos 
317cfe182f3Schristos 	return (d + r.a / x);
318cfe182f3Schristos }
319cfe182f3Schristos /*
320cfe182f3Schristos  * x < 0
321cfe182f3Schristos  *
322cfe182f3Schristos  * Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
323cfe182f3Schristos  * At negative integers, return NaN and raise invalid.
324cfe182f3Schristos  */
325cfe182f3Schristos static const union ieee_ext_u
326cfe182f3Schristos piu = LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L);
327cfe182f3Schristos #define	pi	(piu.extu_ld)
328cfe182f3Schristos 
329cfe182f3Schristos static long double
neg_gam(long double x)330cfe182f3Schristos neg_gam(long double x)
331cfe182f3Schristos {
332cfe182f3Schristos 	int sgn = 1;
333cfe182f3Schristos 	long double y, z;
334cfe182f3Schristos 
335cfe182f3Schristos 	y = ceill(x);
336cfe182f3Schristos 	if (y == x)		/* Negative integer. */
337cfe182f3Schristos 		return ((x - x) / zero);
338cfe182f3Schristos 
339cfe182f3Schristos 	z = y - x;
340cfe182f3Schristos 	if (z > 0.5)
341cfe182f3Schristos 		z = 1 - z;
342cfe182f3Schristos 
343cfe182f3Schristos 	y = y / 2;
344cfe182f3Schristos 	if (y == ceill(y))
345cfe182f3Schristos 		sgn = -1;
346cfe182f3Schristos 
347cfe182f3Schristos 	if (z < 0.25)
348cfe182f3Schristos 		z = sinpil(z);
349cfe182f3Schristos 	else
350cfe182f3Schristos 		z = cospil(0.5 - z);
351cfe182f3Schristos 
352cfe182f3Schristos 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
353cfe182f3Schristos 	if (x < -1753) {
354cfe182f3Schristos 
355cfe182f3Schristos 		if (x < -1760)
356cfe182f3Schristos 			return (sgn * tiny * tiny);
357cfe182f3Schristos 		y = expl(lgammal(x) / 2);
358cfe182f3Schristos 		y *= y;
359cfe182f3Schristos 		return (sgn < 0 ? -y : y);
360cfe182f3Schristos 	}
361cfe182f3Schristos 
362cfe182f3Schristos 
363cfe182f3Schristos 	y = 1 - x;
364cfe182f3Schristos 	if (1 - y == x)
365cfe182f3Schristos 		y = tgammal(y);
366cfe182f3Schristos 	else		/* 1-x is inexact */
367cfe182f3Schristos 		y = - x * tgammal(-x);
368cfe182f3Schristos 
369cfe182f3Schristos 	if (sgn < 0) y = -y;
370cfe182f3Schristos 	return (pi / (y * z));
371cfe182f3Schristos }
372cfe182f3Schristos /*
373cfe182f3Schristos  * xmax comes from lgamma(xmax) - emax * log(2) = 0.
374cfe182f3Schristos  * static const float  xmax = 35.040095f
375cfe182f3Schristos  * static const double xmax = 171.624376956302725;
376cfe182f3Schristos  * ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
377cfe182f3Schristos  * ld128: 1.75554834290446291700388921607020320e+03L,
378cfe182f3Schristos  *
379cfe182f3Schristos  * iota is a sloppy threshold to isolate x = 0.
380cfe182f3Schristos  */
381cfe182f3Schristos static const double xmax = 1755.54834290446291689;
382cfe182f3Schristos static const double iota = 0x1p-116;
383cfe182f3Schristos 
384cfe182f3Schristos long double
tgammal(long double x)385cfe182f3Schristos tgammal(long double x)
386cfe182f3Schristos {
387cfe182f3Schristos 	struct LDouble u;
388cfe182f3Schristos 
389cfe182f3Schristos 	ENTERI();
390cfe182f3Schristos 
391cfe182f3Schristos 	if (x >= 6) {
392cfe182f3Schristos 		if (x > xmax)
393cfe182f3Schristos 			RETURNI(x / zero);
394cfe182f3Schristos 		u = large_gam(x);
395cfe182f3Schristos 		RETURNI(__exp__LD(u.a, u.b));
396cfe182f3Schristos 	}
397cfe182f3Schristos 
398cfe182f3Schristos 	if (x >= 1 + left + x0)
399cfe182f3Schristos 		RETURNI(small_gam(x));
400cfe182f3Schristos 
401cfe182f3Schristos 	if (x > iota)
402cfe182f3Schristos 		RETURNI(smaller_gam(x));
403cfe182f3Schristos 
404cfe182f3Schristos 	if (x > -iota) {
405cfe182f3Schristos 		if (x != 0)
406cfe182f3Schristos 			u.a = 1 - tiny;	/* raise inexact */
407cfe182f3Schristos 		RETURNI(1 / x);
408cfe182f3Schristos 	}
409cfe182f3Schristos 
410cfe182f3Schristos 	if (!isfinite(x))
411cfe182f3Schristos 		RETURNI(x - x);		/* x is NaN or -Inf */
412cfe182f3Schristos 
413cfe182f3Schristos 	RETURNI(neg_gam(x));
414cfe182f3Schristos }
415