1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 34 /* 35 * See bsdsrc/b_log.c for implementation details. 36 * 37 * bsdrc/b_log.c converted to long double by Steven G. Kargl. 38 */ 39 40 #include "math_private.h" 41 42 #define N 128 43 44 /* 45 * Coefficients in the polynomial approximation of log(1+f/F). 46 * Domain of x is [0,1./256] with 2**(-84.48) precision. 47 */ 48 static const union ieee_ext_u 49 a1u = LD80C(0xaaaaaaaaaaaaaaab, -4, 8.33333333333333333356e-02L), 50 a2u = LD80C(0xcccccccccccccd29, -7, 1.25000000000000000781e-02L), 51 a3u = LD80C(0x9249249241ed3764, -9, 2.23214285711721994134e-03L), 52 a4u = LD80C(0xe38e959e1e7e01cf, -12, 4.34030476540000360640e-04L); 53 #define A1 (a1u.extu_ld) 54 #define A2 (a2u.extu_ld) 55 #define A3 (a3u.extu_ld) 56 #define A4 (a4u.extu_ld) 57 58 /* 59 * Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128. 60 * Used for generation of extend precision logarithms. 61 * The constant 35184372088832 is 2^45, so the divide is exact. 62 * It ensures correct reading of logF_head, even for inaccurate 63 * decimal-to-binary conversion routines. (Everybody gets the 64 * right answer for integers less than 2^53.) 65 * Values for log(F) were generated using error < 10^-57 absolute 66 * with the bc -l package. 67 */ 68 69 static double logF_head[N+1] = { 70 0., 71 .007782140442060381246, 72 .015504186535963526694, 73 .023167059281547608406, 74 .030771658666765233647, 75 .038318864302141264488, 76 .045809536031242714670, 77 .053244514518837604555, 78 .060624621816486978786, 79 .067950661908525944454, 80 .075223421237524235039, 81 .082443669210988446138, 82 .089612158689760690322, 83 .096729626458454731618, 84 .103796793681567578460, 85 .110814366340264314203, 86 .117783035656430001836, 87 .124703478501032805070, 88 .131576357788617315236, 89 .138402322859292326029, 90 .145182009844575077295, 91 .151916042025732167530, 92 .158605030176659056451, 93 .165249572895390883786, 94 .171850256926518341060, 95 .178407657472689606947, 96 .184922338493834104156, 97 .191394852999565046047, 98 .197825743329758552135, 99 .204215541428766300668, 100 .210564769107350002741, 101 .216873938300523150246, 102 .223143551314024080056, 103 .229374101064877322642, 104 .235566071312860003672, 105 .241719936886966024758, 106 .247836163904594286577, 107 .253915209980732470285, 108 .259957524436686071567, 109 .265963548496984003577, 110 .271933715484010463114, 111 .277868451003087102435, 112 .283768173130738432519, 113 .289633292582948342896, 114 .295464212893421063199, 115 .301261330578199704177, 116 .307025035294827830512, 117 .312755710004239517729, 118 .318453731118097493890, 119 .324119468654316733591, 120 .329753286372579168528, 121 .335355541920762334484, 122 .340926586970454081892, 123 .346466767346100823488, 124 .351976423156884266063, 125 .357455888922231679316, 126 .362905493689140712376, 127 .368325561158599157352, 128 .373716409793814818840, 129 .379078352934811846353, 130 .384411698910298582632, 131 .389716751140440464951, 132 .394993808240542421117, 133 .400243164127459749579, 134 .405465108107819105498, 135 .410659924985338875558, 136 .415827895143593195825, 137 .420969294644237379543, 138 .426084395310681429691, 139 .431173464818130014464, 140 .436236766774527495726, 141 .441274560805140936281, 142 .446287102628048160113, 143 .451274644139630254358, 144 .456237433481874177232, 145 .461175715122408291790, 146 .466089729924533457960, 147 .470979715219073113985, 148 .475845904869856894947, 149 .480688529345570714212, 150 .485507815781602403149, 151 .490303988045525329653, 152 .495077266798034543171, 153 .499827869556611403822, 154 .504556010751912253908, 155 .509261901790523552335, 156 .513945751101346104405, 157 .518607764208354637958, 158 .523248143765158602036, 159 .527867089620485785417, 160 .532464798869114019908, 161 .537041465897345915436, 162 .541597282432121573947, 163 .546132437597407260909, 164 .550647117952394182793, 165 .555141507540611200965, 166 .559615787935399566777, 167 .564070138285387656651, 168 .568504735352689749561, 169 .572919753562018740922, 170 .577315365035246941260, 171 .581691739635061821900, 172 .586049045003164792433, 173 .590387446602107957005, 174 .594707107746216934174, 175 .599008189645246602594, 176 .603290851438941899687, 177 .607555250224322662688, 178 .611801541106615331955, 179 .616029877215623855590, 180 .620240409751204424537, 181 .624433288012369303032, 182 .628608659422752680256, 183 .632766669570628437213, 184 .636907462236194987781, 185 .641031179420679109171, 186 .645137961373620782978, 187 .649227946625615004450, 188 .653301272011958644725, 189 .657358072709030238911, 190 .661398482245203922502, 191 .665422632544505177065, 192 .669430653942981734871, 193 .673422675212350441142, 194 .677398823590920073911, 195 .681359224807238206267, 196 .685304003098281100392, 197 .689233281238557538017, 198 .693147180560117703862 199 }; 200 201 static double logF_tail[N+1] = { 202 0., 203 -.00000000000000543229938420049, 204 .00000000000000172745674997061, 205 -.00000000000001323017818229233, 206 -.00000000000001154527628289872, 207 -.00000000000000466529469958300, 208 .00000000000005148849572685810, 209 -.00000000000002532168943117445, 210 -.00000000000005213620639136504, 211 -.00000000000001819506003016881, 212 .00000000000006329065958724544, 213 .00000000000008614512936087814, 214 -.00000000000007355770219435028, 215 .00000000000009638067658552277, 216 .00000000000007598636597194141, 217 .00000000000002579999128306990, 218 -.00000000000004654729747598444, 219 -.00000000000007556920687451336, 220 .00000000000010195735223708472, 221 -.00000000000017319034406422306, 222 -.00000000000007718001336828098, 223 .00000000000010980754099855238, 224 -.00000000000002047235780046195, 225 -.00000000000008372091099235912, 226 .00000000000014088127937111135, 227 .00000000000012869017157588257, 228 .00000000000017788850778198106, 229 .00000000000006440856150696891, 230 .00000000000016132822667240822, 231 -.00000000000007540916511956188, 232 -.00000000000000036507188831790, 233 .00000000000009120937249914984, 234 .00000000000018567570959796010, 235 -.00000000000003149265065191483, 236 -.00000000000009309459495196889, 237 .00000000000017914338601329117, 238 -.00000000000001302979717330866, 239 .00000000000023097385217586939, 240 .00000000000023999540484211737, 241 .00000000000015393776174455408, 242 -.00000000000036870428315837678, 243 .00000000000036920375082080089, 244 -.00000000000009383417223663699, 245 .00000000000009433398189512690, 246 .00000000000041481318704258568, 247 -.00000000000003792316480209314, 248 .00000000000008403156304792424, 249 -.00000000000034262934348285429, 250 .00000000000043712191957429145, 251 -.00000000000010475750058776541, 252 -.00000000000011118671389559323, 253 .00000000000037549577257259853, 254 .00000000000013912841212197565, 255 .00000000000010775743037572640, 256 .00000000000029391859187648000, 257 -.00000000000042790509060060774, 258 .00000000000022774076114039555, 259 .00000000000010849569622967912, 260 -.00000000000023073801945705758, 261 .00000000000015761203773969435, 262 .00000000000003345710269544082, 263 -.00000000000041525158063436123, 264 .00000000000032655698896907146, 265 -.00000000000044704265010452446, 266 .00000000000034527647952039772, 267 -.00000000000007048962392109746, 268 .00000000000011776978751369214, 269 -.00000000000010774341461609578, 270 .00000000000021863343293215910, 271 .00000000000024132639491333131, 272 .00000000000039057462209830700, 273 -.00000000000026570679203560751, 274 .00000000000037135141919592021, 275 -.00000000000017166921336082431, 276 -.00000000000028658285157914353, 277 -.00000000000023812542263446809, 278 .00000000000006576659768580062, 279 -.00000000000028210143846181267, 280 .00000000000010701931762114254, 281 .00000000000018119346366441110, 282 .00000000000009840465278232627, 283 -.00000000000033149150282752542, 284 -.00000000000018302857356041668, 285 -.00000000000016207400156744949, 286 .00000000000048303314949553201, 287 -.00000000000071560553172382115, 288 .00000000000088821239518571855, 289 -.00000000000030900580513238244, 290 -.00000000000061076551972851496, 291 .00000000000035659969663347830, 292 .00000000000035782396591276383, 293 -.00000000000046226087001544578, 294 .00000000000062279762917225156, 295 .00000000000072838947272065741, 296 .00000000000026809646615211673, 297 -.00000000000010960825046059278, 298 .00000000000002311949383800537, 299 -.00000000000058469058005299247, 300 -.00000000000002103748251144494, 301 -.00000000000023323182945587408, 302 -.00000000000042333694288141916, 303 -.00000000000043933937969737844, 304 .00000000000041341647073835565, 305 .00000000000006841763641591466, 306 .00000000000047585534004430641, 307 .00000000000083679678674757695, 308 -.00000000000085763734646658640, 309 .00000000000021913281229340092, 310 -.00000000000062242842536431148, 311 -.00000000000010983594325438430, 312 .00000000000065310431377633651, 313 -.00000000000047580199021710769, 314 -.00000000000037854251265457040, 315 .00000000000040939233218678664, 316 .00000000000087424383914858291, 317 .00000000000025218188456842882, 318 -.00000000000003608131360422557, 319 -.00000000000050518555924280902, 320 .00000000000078699403323355317, 321 -.00000000000067020876961949060, 322 .00000000000016108575753932458, 323 .00000000000058527188436251509, 324 -.00000000000035246757297904791, 325 -.00000000000018372084495629058, 326 .00000000000088606689813494916, 327 .00000000000066486268071468700, 328 .00000000000063831615170646519, 329 .00000000000025144230728376072, 330 -.00000000000017239444525614834 331 }; 332 /* 333 * Extra precision variant, returning struct {double a, b;}; 334 * log(x) = a + b to 63 bits, with 'a' rounded to 24 bits. 335 */ 336 static struct LDouble 337 __log__LD(long double x) 338 { 339 int m, j; 340 long double F, f, g, q, u, v, u1, u2; 341 struct LDouble r; 342 343 /* 344 * Argument reduction: 1 <= g < 2; x/2^m = g; 345 * y = F*(1 + f/F) for |f| <= 2^-8 346 */ 347 g = frexpl(x, &m); 348 g *= 2; 349 m--; 350 if (m == DBL_MIN_EXP - 1) { 351 j = ilogbl(g); 352 m += j; 353 g = ldexpl(g, -j); 354 } 355 j = N * (g - 1) + 0.5L; 356 F = (1.L / N) * j + 1; 357 f = g - F; 358 359 g = 1 / (2 * F + f); 360 u = 2 * f * g; 361 v = u * u; 362 q = u * v * (A1 + v * (A2 + v * (A3 + v * A4))); 363 if (m | j) { 364 u1 = u + 513; 365 u1 -= 513; 366 } else { 367 u1 = (float)u; 368 } 369 u2 = (2 * (f - F * u1) - u1 * f) * g; 370 371 u1 += m * (long double)logF_head[N] + logF_head[j]; 372 373 u2 += logF_tail[j]; 374 u2 += q; 375 u2 += logF_tail[N] * m; 376 r.a = (float)(u1 + u2); /* Only difference is here. */ 377 r.b = (u1 - r.a) + u2; 378 return (r); 379 } 380