xref: /netbsd-src/lib/libm/complex/catrigl.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: catrigl.c,v 1.1 2016/09/19 22:05:05 christos Exp $	*/
2 /*-
3  * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * The algorithm is very close to that in "Implementing the complex arcsine
30  * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
31  * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
32  * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
33  * http://dl.acm.org/citation.cfm?id=275324.
34  *
35  * The code for catrig.c contains complete comments.
36  */
37 #include <sys/cdefs.h>
38 __RCSID("$NetBSD: catrigl.c,v 1.1 2016/09/19 22:05:05 christos Exp $");
39 
40 #include "namespace.h"
41 #ifdef __weak_alias
42 __weak_alias(casinl, _casinl)
43 #endif
44 #ifdef __weak_alias
45 __weak_alias(catanl, _catanl)
46 #endif
47 
48 
49 #include <complex.h>
50 #include <float.h>
51 #ifdef __HAVE_LONG_DOUBLE
52 
53 #include "math.h"
54 #include "math_private.h"
55 
56 #undef isinf
57 #define isinf(x)	(fabsl(x) == INFINITY)
58 #undef isnan
59 #define isnan(x)	((x) != (x))
60 #define	raise_inexact()	do { volatile float junk __unused = /*LINTED*/1 + tiny; } while(/*CONSTCOND*/0)
61 #undef signbit
62 #define signbit(x)	(__builtin_signbitl(x))
63 
64 #if __HAVE_LONG_DOUBLE + 0 == 128
65 // Ok
66 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
67 // XXX: Byte order
68 struct ieee_ext {
69 	uint64_t ext_frac;
70 	uint16_t ext_exp:15;
71 	uint16_t ext_sign:1;
72 	uint16_t ext_pad;
73 };
74 #define extu_exp	extu_ext.ext_exp
75 #define extu_sign	extu_ext.ext_sign
76 #define extu_frac	extu_ext.ext_frac
77 union ieee_ext_u {
78 	long double extu_ld;
79 	struct ieee_ext extu_ext;
80 };
81 #else
82 	#error "unsupported long double format"
83 #endif
84 
85 #define GET_LDBL_EXPSIGN(r, s) \
86     do { \
87 	    union ieee_ext_u u; \
88 	    u.extu_ld = s; \
89 	    r = u.extu_sign; \
90 	    r >>= EXT_EXPBITS - 1;
91     } while (/*CONSTCOND*/0)
92 #define SET_LDBL_EXPSIGN(r, s) \
93     do { \
94 	    union ieee_ext_u u; \
95 	    u.extu_ld = s; \
96 	    u.extu_exp &= __BITS(0, EXT_EXPBITS - 1); \
97 	    u.extu_exp |= r << (EXT_EXPBITS - 1); \
98 	    s = u.extu_ld; \
99     } while (/*CONSTCOND*/0)
100 
101 static const long double
102 A_crossover =		10,
103 B_crossover =		0.6417,
104 FOUR_SQRT_MIN =		0x1p-8189L,
105 QUARTER_SQRT_MAX =	0x1p8189L,
106 RECIP_EPSILON =		1/LDBL_EPSILON,
107 SQRT_MIN =		0x1p-8191L;
108 
109 static const long double
110 m_e =		2.71828182845904523536028747135266250e0L,	/* 0x15bf0a8b1457695355fb8ac404e7a.0p-111 */
111 m_ln2 =		6.93147180559945309417232121458176568e-1L,	/* 0x162e42fefa39ef35793c7673007e6.0p-113 */
112 pio2_hi =      1.5707963267948966192313216916397514L, /* pi/2 */
113 SQRT_3_EPSILON = 2.40370335797945490975336727199878124e-17L,	/*  0x1bb67ae8584caa73b25742d7078b8.0p-168 */
114 SQRT_6_EPSILON = 3.39934988877629587239082586223300391e-17L;	/*  0x13988e1409212e7d0321914321a55.0p-167 */
115 
116 static const volatile double
117 pio2_lo =               6.1232339957367659e-17; /*  0x11a62633145c07.0p-106 */
118 static const volatile float
119 tiny =			0x1p-100;
120 
121 static long double complex clog_for_large_values(long double complex z);
122 
123 inline static long double
124 f(long double a, long double b, long double hypot_a_b)
125 {
126 	if (b < 0)
127 		return ((hypot_a_b - b) / 2);
128 	if (b == 0)
129 		return (a / 2);
130 	return (a * a / (hypot_a_b + b) / 2);
131 }
132 
133 inline static void
134 do_hard_work(long double x, long double y, long double *rx, int *B_is_usable, long double *B, long double *sqrt_A2my2, long double *new_y)
135 {
136 	long double R, S, A;
137 	long double Am1, Amy;
138 
139 	R = hypotl(x, y+1);
140 	S = hypotl(x, y-1);
141 
142 	A = (R + S) / 2;
143 	if (A < 1)
144 		A = 1;
145 
146 	if (A < A_crossover) {
147 		if (y == 1 && x < LDBL_EPSILON*LDBL_EPSILON/128) {
148 			*rx = sqrtl(x);
149 		} else if (x >= LDBL_EPSILON * fabsl(y-1)) {
150 			Am1 = f(x, 1+y, R) + f(x, 1-y, S);
151 			*rx = log1pl(Am1 + sqrtl(Am1*(A+1)));
152 		} else if (y < 1) {
153 			*rx = x/sqrtl((1-y)*(1+y));
154 		} else {
155 			*rx = log1pl((y-1) + sqrtl((y-1)*(y+1)));
156 		}
157 	} else
158 		*rx = logl(A + sqrtl(A*A-1));
159 
160 	*new_y = y;
161 
162 	if (y < FOUR_SQRT_MIN) {
163 		*B_is_usable = 0;
164 		*sqrt_A2my2 = A * (2 / LDBL_EPSILON);
165 		*new_y= y * (2 / LDBL_EPSILON);
166 		return;
167 	}
168 
169 	*B = y/A;
170 	*B_is_usable = 1;
171 
172 	if (*B > B_crossover) {
173 		*B_is_usable = 0;
174 		if (y == 1 && x < LDBL_EPSILON/128) {
175 			*sqrt_A2my2 = sqrtl(x)*sqrtl((A+y)/2);
176 		} else if (x >= LDBL_EPSILON * fabsl(y-1)) {
177 			Amy = f(x, y+1, R) + f(x, y-1, S);
178 			*sqrt_A2my2 = sqrtl(Amy*(A+y));
179 		} else if (y > 1) {
180 			*sqrt_A2my2 = x * (4/LDBL_EPSILON/LDBL_EPSILON) * y /
181 			    sqrtl((y+1)*(y-1));
182 			*new_y = y * (4/LDBL_EPSILON/LDBL_EPSILON);
183 		} else {
184 			*sqrt_A2my2 = sqrtl((1-y)*(1+y));
185 		}
186 	}
187 }
188 
189 long double complex
190 casinhl(long double complex z)
191 {
192 	long double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
193 	int B_is_usable;
194 	long double complex w;
195 
196 	x = creall(z);
197 	y = cimagl(z);
198 	ax = fabsl(x);
199 	ay = fabsl(y);
200 
201 	if (isnan(x) || isnan(y)) {
202 		if (isinf(x))
203 			return (CMPLXL(x, y+y));
204 		if (isinf(y))
205 			return (CMPLXL(y, x+x));
206 		if (y == 0) return (CMPLXL(x+x, y));
207 		return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
208 	}
209 
210 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
211 		if (signbit(x) == 0)
212 			w = clog_for_large_values(z) + m_ln2;
213 		else
214 			w = clog_for_large_values(-z) + m_ln2;
215 		return (CMPLXL(copysignl(creall(w), x), copysignl(cimagl(w), y)));
216 	}
217 
218 	if (x == 0 && y == 0)
219 		return (z);
220 
221 	raise_inexact();
222 
223 	if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4)
224 		return (z);
225 
226 	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
227 	if (B_is_usable)
228 		ry = asinl(B);
229 	else
230 		ry = atan2l(new_y, sqrt_A2my2);
231 	return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
232 }
233 
234 long double complex
235 casinl(long double complex z)
236 {
237 	long double complex w = casinhl(CMPLXL(cimagl(z), creall(z)));
238 	return (CMPLXL(cimagl(w), creall(w)));
239 }
240 
241 long double complex
242 cacosl(long double complex z)
243 {
244 	long double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
245 	int sx, sy;
246 	int B_is_usable;
247 	long double complex w;
248 
249 	x = creall(z);
250 	y = cimagl(z);
251 	sx = signbit(x);
252 	sy = signbit(y);
253 	ax = fabsl(x);
254 	ay = fabsl(y);
255 
256 	if (isnan(x) || isnan(y)) {
257 		if (isinf(x))
258 			return (CMPLXL(y+y, -INFINITY));
259 		if (isinf(y))
260 			return (CMPLXL(x+x, -y));
261 		if (x == 0) return (CMPLXL(pio2_hi + pio2_lo, y+y));
262 		return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
263 	}
264 
265 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
266 		w = clog_for_large_values(z);
267 		rx = fabsl(cimagl(w));
268 		ry = creall(w) + m_ln2;
269 		if (sy == 0)
270 			ry = -ry;
271 		return (CMPLXL(rx, ry));
272 	}
273 
274 	if (x == 1 && y == 0)
275 		return (CMPLXL(0, -y));
276 
277 	raise_inexact();
278 
279 	if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4)
280 		return (CMPLXL(pio2_hi - (x - pio2_lo), -y));
281 
282 	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
283 	if (B_is_usable) {
284 		if (sx==0)
285 			rx = acosl(B);
286 		else
287 			rx = acosl(-B);
288 	} else {
289 		if (sx==0)
290 			rx = atan2l(sqrt_A2mx2, new_x);
291 		else
292 			rx = atan2l(sqrt_A2mx2, -new_x);
293 	}
294 	if (sy==0)
295 		ry = -ry;
296 	return (CMPLXL(rx, ry));
297 }
298 
299 long double complex
300 cacoshl(long double complex z)
301 {
302 	long double complex w;
303 	long double rx, ry;
304 
305 	w = cacosl(z);
306 	rx = creall(w);
307 	ry = cimagl(w);
308 	if (isnan(rx) && isnan(ry))
309 		return (CMPLXL(ry, rx));
310 	if (isnan(rx))
311 		return (CMPLXL(fabsl(ry), rx));
312 	if (isnan(ry))
313 		return (CMPLXL(ry, ry));
314 	return (CMPLXL(fabsl(ry), copysignl(rx, cimagl(z))));
315 }
316 
317 static long double complex
318 clog_for_large_values(long double complex z)
319 {
320 	long double x, y;
321 	long double ax, ay, t;
322 
323 	x = creall(z);
324 	y = cimagl(z);
325 	ax = fabsl(x);
326 	ay = fabsl(y);
327 	if (ax < ay) {
328 		t = ax;
329 		ax = ay;
330 		ay = t;
331 	}
332 
333 	if (ax > LDBL_MAX / 2)
334 		return (CMPLXL(logl(hypotl(x / m_e, y / m_e)) + 1, atan2l(y, x)));
335 
336 	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
337 		return (CMPLXL(logl(hypotl(x, y)), atan2l(y, x)));
338 
339 	return (CMPLXL(logl(ax*ax + ay*ay) / 2, atan2l(y, x)));
340 }
341 
342 inline static long double
343 sum_squares(long double x, long double y)
344 {
345 	if (y < SQRT_MIN)
346 		return (x*x);
347 
348 	return (x*x + y*y);
349 }
350 
351 inline static long double
352 real_part_reciprocal(long double x, long double y)
353 {
354 	long double scale;
355 	uint16_t hx, hy;
356 	int16_t ix, iy;
357 
358 	GET_LDBL_EXPSIGN(hx, x);
359 	ix = hx & 0x7fff;
360 	GET_LDBL_EXPSIGN(hy, y);
361 	iy = hy & 0x7fff;
362 #define	BIAS	(LDBL_MAX_EXP - 1)
363 #define	CUTOFF	(LDBL_MANT_DIG / 2 + 1)
364 	if (ix - iy >= CUTOFF || isinf(x))
365 		return (1/x);
366 	if (iy - ix >= CUTOFF)
367 		return (x/y/y);
368 	if (ix <= BIAS + LDBL_MAX_EXP / 2 - CUTOFF)
369 		return (x/(x*x + y*y));
370 	scale = 1;
371 	SET_LDBL_EXPSIGN(scale, 0x7fff - ix);
372 	x *= scale;
373 	y *= scale;
374 	return (x/(x*x + y*y) * scale);
375 }
376 
377 long double complex
378 catanhl(long double complex z)
379 {
380 	long double x, y, ax, ay, rx, ry;
381 
382 	x = creall(z);
383 	y = cimagl(z);
384 	ax = fabsl(x);
385 	ay = fabsl(y);
386 
387 	if (y == 0 && ax <= 1)
388 		return (CMPLXL(atanhl(x), y)); 	/* XXX need atanhl() */
389 
390 	if (x == 0)
391 		return (CMPLXL(x, atanl(y)));
392 
393 	if (isnan(x) || isnan(y)) {
394 		if (isinf(x))
395 			return (CMPLXL(copysignl(0, x), y+y));
396 		if (isinf(y))
397 			return (CMPLXL(copysignl(0, x), copysignl(pio2_hi + pio2_lo, y)));
398 		return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
399 	}
400 
401 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
402 		return (CMPLXL(real_part_reciprocal(x, y), copysignl(pio2_hi + pio2_lo, y)));
403 
404 	if (ax < SQRT_3_EPSILON/2 && ay < SQRT_3_EPSILON/2) {
405 		raise_inexact();
406 		return (z);
407 	}
408 
409 	if (ax == 1 && ay < LDBL_EPSILON) {
410 #if 0
411 		if (ay > 2*LDBL_MIN)
412 			rx = - logl(ay/2) / 2;
413 		else
414 #endif
415 			rx = - (logl(ay) - m_ln2) / 2;
416 	} else
417 		rx = log1pl(4*ax / sum_squares(ax-1, ay)) / 4;
418 
419 	if (ax == 1)
420 		ry = atan2l(2, -ay) / 2;
421 	else if (ay < LDBL_EPSILON)
422 		ry = atan2l(2*ay, (1-ax)*(1+ax)) / 2;
423 	else
424 		ry = atan2l(2*ay, (1-ax)*(1+ax) - ay*ay) / 2;
425 
426 	return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
427 }
428 
429 long double complex
430 catanl(long double complex z)
431 {
432 	long double complex w = catanhl(CMPLXL(cimagl(z), creall(z)));
433 	return (CMPLXL(cimagl(w), creall(w)));
434 }
435 
436 #else
437 __strong_alias(_casinl, casin)
438 __strong_alias(_catanl, catan)
439 __strong_alias(cacoshl, cacosh)
440 __strong_alias(cacosl, cacos)
441 __strong_alias(casinhl, casinh)
442 __strong_alias(catanhl, catanh)
443 #endif
444