xref: /netbsd-src/lib/libm/arch/vax/n_sqrt.S (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1/*	$NetBSD: n_sqrt.S,v 1.9 2014/03/06 11:00:17 martin Exp $	*/
2/*
3 * Copyright (c) 1985, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	@(#)sqrt.s	8.1 (Berkeley) 6/4/93
31 */
32
33#include <machine/asm.h>
34
35#ifdef WEAK_ALIAS
36WEAK_ALIAS(sqrtl, sqrt)
37#endif
38
39/*
40 * double sqrt(arg)   revised August 15,1982
41 * double arg;
42 * if(arg<0.0) { _errno = EDOM; return(<a reserved operand>); }
43 * if arg is a reserved operand it is returned as it is
44 * W. Kahan's magic square root
45 * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82
46 *
47 * entry points:_d_sqrt		address of double arg is on the stack
48 *		_sqrt		double arg is on the stack
49 */
50	.set	EDOM,33
51
52ENTRY(d_sqrt, 0x003c)		# save %r5,%r4,%r3,%r2
53	movq	*4(%ap),%r0
54	jbr  	dsqrt2
55
56ENTRY(sqrt, 0x003c)		# save %r5,%r4,%r3,%r2
57	movq    4(%ap),%r0
58
59dsqrt2:	bicw3	$0x807f,%r0,%r2	# check exponent of input
60	jeql	noexp		# biased exponent is zero -> 0.0 or reserved
61	bsbb	__libm_dsqrt_r5_lcl
62noexp:	ret
63
64/* **************************** internal procedure */
65
66	.hidden __libm_dsqrt_r5
67ALTENTRY(__libm_dsqrt_r5)
68	halt
69	halt
70__libm_dsqrt_r5_lcl:
71				/* ENTRY POINT FOR cdabs and cdsqrt	*/
72				/* returns double square root scaled by	*/
73				/* 2^%r6	*/
74
75	movd	%r0,%r4
76	jleq	nonpos		# argument is not positive
77	movzwl	%r4,%r2
78	ashl	$-1,%r2,%r0
79	addw2	$0x203c,%r0	# %r0 has magic initial approximation
80/*
81 * Do two steps of Heron's rule
82 * ((arg/guess) + guess) / 2 = better guess
83 */
84	divf3	%r0,%r4,%r2
85	addf2	%r2,%r0
86	subw2	$0x80,%r0	# divide by two
87
88	divf3	%r0,%r4,%r2
89	addf2	%r2,%r0
90	subw2	$0x80,%r0	# divide by two
91
92/* Scale argument and approximation to prevent over/underflow */
93
94	bicw3	$0x807f,%r4,%r1
95	subw2	$0x4080,%r1		# %r1 contains scaling factor
96	subw2	%r1,%r4
97	movl	%r0,%r2
98	subw2	%r1,%r2
99
100/* Cubic step
101 *
102 * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation,
103 * a is approximation, and n is the original argument.
104 * (let s be scale factor in the following comments)
105 */
106	clrl	%r1
107	clrl	%r3
108	muld2	%r0,%r2			# %r2:%r3 = a*a/s
109	subd2	%r2,%r4			# %r4:%r5 = n/s - a*a/s
110	addw2	$0x100,%r2		# %r2:%r3 = 4*a*a/s
111	addd2	%r4,%r2			# %r2:%r3 = n/s + 3*a*a/s
112	muld2	%r0,%r4			# %r4:%r5 = a*n/s - a*a*a/s
113	divd2	%r2,%r4			# %r4:%r5 = a*(n-a*a)/(n+3*a*a)
114	addw2	$0x80,%r4		# %r4:%r5 = 2*a*(n-a*a)/(n+3*a*a)
115	addd2	%r4,%r0			# %r0:%r1 = a + 2*a*(n-a*a)/(n+3*a*a)
116	rsb				# DONE!
117nonpos:
118	jneq	negarg
119	ret				# argument and root are zero
120negarg:
121	pushl	$EDOM
122	calls	$1,_C_LABEL(infnan)	# generate the reserved op fault
123	ret
124
125ENTRY(sqrtf, 0)
126	cvtfd	4(%ap),-(%sp)
127	calls	$2,_C_LABEL(sqrt)
128	cvtdf	%r0,%r0
129	ret
130