xref: /netbsd-src/lib/libm/arch/vax/n_argred.S (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1/*	$NetBSD: n_argred.S,v 1.1 1995/10/10 23:40:21 ragge Exp $	*/
2/*
3 * Copyright (c) 1985, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by the University of
17 *	California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)argred.s	8.1 (Berkeley) 6/4/93
35 */
36
37/*
38 *  libm$argred implements Bob Corbett's argument reduction and
39 *  libm$sincos implements Peter Tang's double precision sin/cos.
40 *
41 *  Note: The two entry points libm$argred and libm$sincos are meant
42 *        to be used only by _sin, _cos and _tan.
43 *
44 * method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett
45 * S. McDonald, April 4,  1985
46 */
47	.globl	libm$argred
48	.globl	libm$sincos
49	.text
50	.align	1
51
52libm$argred:
53/*
54 *  Compare the argument with the largest possible that can
55 *  be reduced by table lookup.  r3 := |x|  will be used in  table_lookup .
56 */
57	movd	r0,r3
58	bgeq	abs1
59	mnegd	r3,r3
60abs1:
61	cmpd	r3,$0d+4.55530934770520019583e+01
62	blss	small_arg
63	jsb	trigred
64	rsb
65small_arg:
66	jsb	table_lookup
67	rsb
68/*
69 *  At this point,
70 *	   r0  contains the quadrant number, 0, 1, 2, or 3;
71 *	r2/r1  contains the reduced argument as a D-format number;
72 *  	   r3  contains a F-format extension to the reduced argument;
73 *          r4  contains a  0 or 1  corresponding to a  sin or cos  entry.
74 */
75libm$sincos:
76/*
77 *  Compensate for a cosine entry by adding one to the quadrant number.
78 */
79	addl2	r4,r0
80/*
81 *  Polyd clobbers  r5-r0 ;  save  X  in  r7/r6 .
82 *  This can be avoided by rewriting  trigred .
83 */
84	movd	r1,r6
85/*
86 *  Likewise, save  alpha  in  r8 .
87 *  This can be avoided by rewriting  trigred .
88 */
89	movf	r3,r8
90/*
91 *  Odd or even quadrant?  cosine if odd, sine otherwise.
92 *  Save  floor(quadrant/2) in  r9  ; it determines the final sign.
93 */
94	rotl	$-1,r0,r9
95	blss	cosine
96sine:
97	muld2	r1,r1		# Xsq = X * X
98	cmpw	$0x2480,r1	# [zl] Xsq > 2^-56?
99	blss	1f		# [zl] yes, go ahead and do polyd
100	clrq	r1		# [zl] work around 11/780 FPA polyd bug
1011:
102	polyd	r1,$7,sin_coef	# Q = P(Xsq) , of deg 7
103	mulf3	$0f3.0,r8,r4	# beta = 3 * alpha
104	mulf2	r0,r4		# beta = Q * beta
105	addf2	r8,r4		# beta = alpha + beta
106	muld2	r6,r0		# S(X) = X * Q
107/*	cvtfd	r4,r4		... r5 = 0 after a polyd. */
108	addd2	r4,r0		# S(X) = beta + S(X)
109	addd2	r6,r0		# S(X) = X + S(X)
110	brb	done
111cosine:
112	muld2	r6,r6		# Xsq = X * X
113	beql	zero_arg
114	mulf2	r1,r8		# beta = X * alpha
115	polyd	r6,$7,cos_coef	/* Q = P'(Xsq) , of deg 7 */
116	subd3	r0,r8,r0	# beta = beta - Q
117	subw2	$0x80,r6	# Xsq = Xsq / 2
118	addd2	r0,r6		# Xsq = Xsq + beta
119zero_arg:
120	subd3	r6,$0d1.0,r0	# C(X) = 1 - Xsq
121done:
122	blbc	r9,even
123	mnegd	r0,r0
124even:
125	rsb
126
127.data
128.align	2
129
130sin_coef:
131	.double	0d-7.53080332264191085773e-13	# s7 = 2^-29 -1.a7f2504ffc49f8..
132	.double	0d+1.60573519267703489121e-10	# s6 = 2^-21  1.611adaede473c8..
133	.double	0d-2.50520965150706067211e-08	# s5 = 2^-1a -1.ae644921ed8382..
134	.double	0d+2.75573191800593885716e-06	# s4 = 2^-13  1.71de3a4b884278..
135	.double	0d-1.98412698411850507950e-04	# s3 = 2^-0d -1.a01a01a0125e7d..
136	.double	0d+8.33333333333325688985e-03	# s2 = 2^-07  1.11111111110e50
137	.double	0d-1.66666666666666664354e-01	# s1 = 2^-03 -1.55555555555554
138	.double	0d+0.00000000000000000000e+00	# s0 = 0
139
140cos_coef:
141	.double	0d-1.13006966202629430300e-11	# s7 = 2^-25 -1.8D9BA04D1374BE..
142	.double	0d+2.08746646574796004700e-09	# s6 = 2^-1D  1.1EE632650350BA..
143	.double	0d-2.75573073031284417300e-07	# s5 = 2^-16 -1.27E4F31411719E..
144	.double	0d+2.48015872682668025200e-05	# s4 = 2^-10  1.A01A0196B902E8..
145	.double	0d-1.38888888888464709200e-03	# s3 = 2^-0A -1.6C16C16C11FACE..
146	.double	0d+4.16666666666664761400e-02	# s2 = 2^-05  1.5555555555539E
147	.double	0d+0.00000000000000000000e+00	# s1 = 0
148	.double	0d+0.00000000000000000000e+00	# s0 = 0
149
150/*
151 *  Multiples of  pi/2  expressed as the sum of three doubles,
152 *
153 *  trailing:	n * pi/2 ,  n = 0, 1, 2, ..., 29
154 *			trailing[n] ,
155 *
156 *  middle:	n * pi/2 ,  n = 0, 1, 2, ..., 29
157 *			middle[n]   ,
158 *
159 *  leading:	n * pi/2 ,  n = 0, 1, 2, ..., 29
160 *			leading[n]  ,
161 *
162 *	where
163 *		leading[n]  := (n * pi/2)  rounded,
164 *		middle[n]   := (n * pi/2  -  leading[n])  rounded,
165 *		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .
166 */
167trailing:
168	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  trailing
169	.double	0d+4.33590506506189049611e-35	#  1 * pi/2  trailing
170	.double	0d+8.67181013012378099223e-35	#  2 * pi/2  trailing
171	.double	0d+1.30077151951856714215e-34	#  3 * pi/2  trailing
172	.double	0d+1.73436202602475619845e-34	#  4 * pi/2  trailing
173	.double	0d-1.68390735624352669192e-34	#  5 * pi/2  trailing
174	.double	0d+2.60154303903713428430e-34	#  6 * pi/2  trailing
175	.double	0d-8.16726343231148352150e-35	#  7 * pi/2  trailing
176	.double	0d+3.46872405204951239689e-34	#  8 * pi/2  trailing
177	.double	0d+3.90231455855570147991e-34	#  9 * pi/2  trailing
178	.double	0d-3.36781471248705338384e-34	# 10 * pi/2  trailing
179	.double	0d-1.06379439835298071785e-33	# 11 * pi/2  trailing
180	.double	0d+5.20308607807426856861e-34	# 12 * pi/2  trailing
181	.double	0d+5.63667658458045770509e-34	# 13 * pi/2  trailing
182	.double	0d-1.63345268646229670430e-34	# 14 * pi/2  trailing
183	.double	0d-1.19986217995610764801e-34	# 15 * pi/2  trailing
184	.double	0d+6.93744810409902479378e-34	# 16 * pi/2  trailing
185	.double	0d-8.03640094449267300110e-34	# 17 * pi/2  trailing
186	.double	0d+7.80462911711140295982e-34	# 18 * pi/2  trailing
187	.double	0d-7.16921993148029483506e-34	# 19 * pi/2  trailing
188	.double	0d-6.73562942497410676769e-34	# 20 * pi/2  trailing
189	.double	0d-6.30203891846791677593e-34	# 21 * pi/2  trailing
190	.double	0d-2.12758879670596143570e-33	# 22 * pi/2  trailing
191	.double	0d+2.53800212047402350390e-33	# 23 * pi/2  trailing
192	.double	0d+1.04061721561485371372e-33	# 24 * pi/2  trailing
193	.double	0d+6.11729905311472319056e-32	# 25 * pi/2  trailing
194	.double	0d+1.12733531691609154102e-33	# 26 * pi/2  trailing
195	.double	0d-3.70049587943078297272e-34	# 27 * pi/2  trailing
196	.double	0d-3.26690537292459340860e-34	# 28 * pi/2  trailing
197	.double	0d-1.14812616507957271361e-34	# 29 * pi/2  trailing
198
199middle:
200	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  middle
201	.double	0d+5.72118872610983179676e-18	#  1 * pi/2  middle
202	.double	0d+1.14423774522196635935e-17	#  2 * pi/2  middle
203	.double	0d-3.83475850529283316309e-17	#  3 * pi/2  middle
204	.double	0d+2.28847549044393271871e-17	#  4 * pi/2  middle
205	.double	0d-2.69052076007086676522e-17	#  5 * pi/2  middle
206	.double	0d-7.66951701058566632618e-17	#  6 * pi/2  middle
207	.double	0d-1.54628301484890040587e-17	#  7 * pi/2  middle
208	.double	0d+4.57695098088786543741e-17	#  8 * pi/2  middle
209	.double	0d+1.07001849766246313192e-16	#  9 * pi/2  middle
210	.double	0d-5.38104152014173353044e-17	# 10 * pi/2  middle
211	.double	0d-2.14622680169080983801e-16	# 11 * pi/2  middle
212	.double	0d-1.53390340211713326524e-16	# 12 * pi/2  middle
213	.double	0d-9.21580002543456677056e-17	# 13 * pi/2  middle
214	.double	0d-3.09256602969780081173e-17	# 14 * pi/2  middle
215	.double	0d+3.03066796603896507006e-17	# 15 * pi/2  middle
216	.double	0d+9.15390196177573087482e-17	# 16 * pi/2  middle
217	.double	0d+1.52771359575124969107e-16	# 17 * pi/2  middle
218	.double	0d+2.14003699532492626384e-16	# 18 * pi/2  middle
219	.double	0d-1.68853170360202329427e-16	# 19 * pi/2  middle
220	.double	0d-1.07620830402834670609e-16	# 20 * pi/2  middle
221	.double	0d+3.97700719404595604379e-16	# 21 * pi/2  middle
222	.double	0d-4.29245360338161967602e-16	# 22 * pi/2  middle
223	.double	0d-3.68013020380794313406e-16	# 23 * pi/2  middle
224	.double	0d-3.06780680423426653047e-16	# 24 * pi/2  middle
225	.double	0d-2.45548340466059054318e-16	# 25 * pi/2  middle
226	.double	0d-1.84316000508691335411e-16	# 26 * pi/2  middle
227	.double	0d-1.23083660551323675053e-16	# 27 * pi/2  middle
228	.double	0d-6.18513205939560162346e-17	# 28 * pi/2  middle
229	.double	0d-6.18980636588357585202e-19	# 29 * pi/2  middle
230
231leading:
232	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  leading
233	.double	0d+1.57079632679489661351e+00	#  1 * pi/2  leading
234	.double	0d+3.14159265358979322702e+00	#  2 * pi/2  leading
235	.double	0d+4.71238898038468989604e+00	#  3 * pi/2  leading
236	.double	0d+6.28318530717958645404e+00	#  4 * pi/2  leading
237	.double	0d+7.85398163397448312306e+00	#  5 * pi/2  leading
238	.double	0d+9.42477796076937979208e+00	#  6 * pi/2  leading
239	.double	0d+1.09955742875642763501e+01	#  7 * pi/2  leading
240	.double	0d+1.25663706143591729081e+01	#  8 * pi/2  leading
241	.double	0d+1.41371669411540694661e+01	#  9 * pi/2  leading
242	.double	0d+1.57079632679489662461e+01	# 10 * pi/2  leading
243	.double	0d+1.72787595947438630262e+01	# 11 * pi/2  leading
244	.double	0d+1.88495559215387595842e+01	# 12 * pi/2  leading
245	.double	0d+2.04203522483336561422e+01	# 13 * pi/2  leading
246	.double	0d+2.19911485751285527002e+01	# 14 * pi/2  leading
247	.double	0d+2.35619449019234492582e+01	# 15 * pi/2  leading
248	.double	0d+2.51327412287183458162e+01	# 16 * pi/2  leading
249	.double	0d+2.67035375555132423742e+01	# 17 * pi/2  leading
250	.double	0d+2.82743338823081389322e+01	# 18 * pi/2  leading
251	.double	0d+2.98451302091030359342e+01	# 19 * pi/2  leading
252	.double	0d+3.14159265358979324922e+01	# 20 * pi/2  leading
253	.double	0d+3.29867228626928286062e+01	# 21 * pi/2  leading
254	.double	0d+3.45575191894877260523e+01	# 22 * pi/2  leading
255	.double	0d+3.61283155162826226103e+01	# 23 * pi/2  leading
256	.double	0d+3.76991118430775191683e+01	# 24 * pi/2  leading
257	.double	0d+3.92699081698724157263e+01	# 25 * pi/2  leading
258	.double	0d+4.08407044966673122843e+01	# 26 * pi/2  leading
259	.double	0d+4.24115008234622088423e+01	# 27 * pi/2  leading
260	.double	0d+4.39822971502571054003e+01	# 28 * pi/2  leading
261	.double	0d+4.55530934770520019583e+01	# 29 * pi/2  leading
262
263twoOverPi:
264	.double	0d+6.36619772367581343076e-01
265	.text
266	.align	1
267
268table_lookup:
269	muld3	r3,twoOverPi,r0
270	cvtrdl	r0,r0			# n = nearest int to ((2/pi)*|x|) rnded
271	mull3	$8,r0,r5
272	subd2	leading(r5),r3		# p = (|x| - leading n*pi/2) exactly
273	subd3	middle(r5),r3,r1	# q = (p - middle  n*pi/2) rounded
274	subd2	r1,r3			# r = (p - q)
275	subd2	middle(r5),r3		# r =  r - middle  n*pi/2
276	subd2	trailing(r5),r3		# r =  r - trailing n*pi/2  rounded
277/*
278 *  If the original argument was negative,
279 *  negate the reduce argument and
280 *  adjust the octant/quadrant number.
281 */
282	tstw	4(ap)
283	bgeq	abs2
284	mnegf	r1,r1
285	mnegf	r3,r3
286/*	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD */
287	subb3	r0,$4,r0
288abs2:
289/*
290 *  Clear all unneeded octant/quadrant bits.
291 */
292/*	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD */
293	bicb2	$0xfc,r0
294	rsb
295/*
296 *						p.0
297 */
298	.text
299	.align	2
300/*
301 * Only 256 (actually 225) bits of 2/pi are needed for VAX double
302 * precision; this was determined by enumerating all the nearest
303 * machine integer multiples of pi/2 using continued fractions.
304 * (8a8d3673775b7ff7 required the most bits.)		-S.McD
305 */
306	.long	0
307	.long	0
308	.long	0xaef1586d
309	.long	0x9458eaf7
310	.long	0x10e4107f
311	.long	0xd8a5664f
312	.long	0x4d377036
313	.long	0x09d5f47d
314	.long	0x91054a7f
315	.long	0xbe60db93
316bits2opi:
317	.long	0x00000028
318	.long	0
319/*
320 *  Note: wherever you see the word `octant', read `quadrant'.
321 *  Currently this code is set up for  pi/2  argument reduction.
322 *  By uncommenting/commenting the appropriate lines, it will
323 *  also serve as a  pi/4  argument reduction code.
324 */
325
326/*						p.1
327 *  Trigred  preforms argument reduction
328 *  for the trigonometric functions.  It
329 *  takes one input argument, a D-format
330 *  number in  r1/r0 .  The magnitude of
331 *  the input argument must be greater
332 *  than or equal to  1/2 .  Trigred produces
333 *  three results:  the number of the octant
334 *  occupied by the argument, the reduced
335 *  argument, and an extension of the
336 *  reduced argument.  The octant number is
337 *  returned in  r0 .  The reduced argument
338 *  is returned as a D-format number in
339 *  r2/r1 .  An 8 bit extension of the
340 *  reduced argument is returned as an
341 *  F-format number in r3.
342 *						p.2
343 */
344trigred:
345/*
346 *  Save the sign of the input argument.
347 */
348	movw	r0,-(sp)
349/*
350 *  Extract the exponent field.
351 */
352	extzv	$7,$7,r0,r2
353/*
354 *  Convert the fraction part of the input
355 *  argument into a quadword integer.
356 */
357	bicw2	$0xff80,r0
358	bisb2	$0x80,r0	# -S.McD
359	rotl	$16,r0,r0
360	rotl	$16,r1,r1
361/*
362 *  If  r1  is negative, add  1  to  r0 .  This
363 *  adjustment is made so that the two's
364 *  complement multiplications done later
365 *  will produce unsigned results.
366 */
367	bgeq	posmid
368	incl	r0
369posmid:
370/*						p.3
371 *
372 *  Set  r3  to the address of the first quadword
373 *  used to obtain the needed portion of  2/pi .
374 *  The address is longword aligned to ensure
375 *  efficient access.
376 */
377	ashl	$-3,r2,r3
378	bicb2	$3,r3
379	subl3	r3,$bits2opi,r3
380/*
381 *  Set  r2  to the size of the shift needed to
382 *  obtain the correct portion of  2/pi .
383 */
384	bicb2	$0xe0,r2
385/*						p.4
386 *
387 *  Move the needed  128  bits of  2/pi  into
388 *  r11 - r8 .  Adjust the numbers to allow
389 *  for unsigned multiplication.
390 */
391	ashq	r2,(r3),r10
392
393	subl2	$4,r3
394	ashq	r2,(r3),r9
395	bgeq	signoff1
396	incl	r11
397signoff1:
398	subl2	$4,r3
399	ashq	r2,(r3),r8
400	bgeq	signoff2
401	incl	r10
402signoff2:
403	subl2	$4,r3
404	ashq	r2,(r3),r7
405	bgeq	signoff3
406	incl	r9
407signoff3:
408/*						p.5
409 *
410 *  Multiply the contents of  r0/r1  by the
411 *  slice of  2/pi  in  r11 - r8 .
412 */
413	emul	r0,r8,$0,r4
414	emul	r0,r9,r5,r5
415	emul	r0,r10,r6,r6
416
417	emul	r1,r8,$0,r7
418	emul	r1,r9,r8,r8
419	emul	r1,r10,r9,r9
420	emul	r1,r11,r10,r10
421
422	addl2	r4,r8
423	adwc	r5,r9
424	adwc	r6,r10
425/*						p.6
426 *
427 *  If there are more than five leading zeros
428 *  after the first two quotient bits or if there
429 *  are more than five leading ones after the first
430 *  two quotient bits, generate more fraction bits.
431 *  Otherwise, branch to code to produce the result.
432 */
433	bicl3	$0xc1ffffff,r10,r4
434	beql	more1
435	cmpl	$0x3e000000,r4
436	bneq	result
437more1:
438/*						p.7
439 *
440 *  generate another  32  result bits.
441 */
442	subl2	$4,r3
443	ashq	r2,(r3),r5
444	bgeq	signoff4
445
446	emul	r1,r6,$0,r4
447	addl2	r1,r5
448	emul	r0,r6,r5,r5
449	addl2	r0,r6
450	brb	addbits1
451
452signoff4:
453	emul	r1,r6,$0,r4
454	emul	r0,r6,r5,r5
455
456addbits1:
457	addl2	r5,r7
458	adwc	r6,r8
459	adwc	$0,r9
460	adwc	$0,r10
461/*						p.8
462 *
463 *  Check for massive cancellation.
464 */
465	bicl3	$0xc0000000,r10,r6
466/*	bneq	more2			-S.McD  Test was backwards */
467	beql	more2
468	cmpl	$0x3fffffff,r6
469	bneq	result
470more2:
471/*						p.9
472 *
473 *  If massive cancellation has occurred,
474 *  generate another  24  result bits.
475 *  Testing has shown there will always be
476 *  enough bits after this point.
477 */
478	subl2	$4,r3
479	ashq	r2,(r3),r5
480	bgeq	signoff5
481
482	emul	r0,r6,r4,r5
483	addl2	r0,r6
484	brb	addbits2
485
486signoff5:
487	emul	r0,r6,r4,r5
488
489addbits2:
490	addl2	r6,r7
491	adwc	$0,r8
492	adwc	$0,r9
493	adwc	$0,r10
494/*						p.10
495 *
496 *  The following code produces the reduced
497 *  argument from the product bits contained
498 *  in  r10 - r7 .
499 */
500result:
501/*
502 *  Extract the octant number from  r10 .
503 */
504/*	extzv	$29,$3,r10,r0	...used for  pi/4  reduction -S.McD */
505	extzv	$30,$2,r10,r0
506/*
507 *  Clear the octant bits in  r10 .
508 */
509/*	bicl2	$0xe0000000,r10	...used for  pi/4  reduction -S.McD */
510	bicl2	$0xc0000000,r10
511/*
512 *  Zero the sign flag.
513 */
514	clrl	r5
515/*						p.11
516 *
517 *  Check to see if the fraction is greater than
518 *  or equal to one-half.  If it is, add one
519 *  to the octant number, set the sign flag
520 *  on, and replace the fraction with  1 minus
521 *  the fraction.
522 */
523/*	bitl	$0x10000000,r10		...used for  pi/4  reduction -S.McD */
524	bitl	$0x20000000,r10
525	beql	small
526	incl	r0
527	incl	r5
528/*	subl3	r10,$0x1fffffff,r10	...used for  pi/4  reduction -S.McD */
529	subl3	r10,$0x3fffffff,r10
530	mcoml	r9,r9
531	mcoml	r8,r8
532	mcoml	r7,r7
533small:
534/*						p.12
535 *
536 *  Test whether the first  29  bits of the ...used for  pi/4  reduction -S.McD
537 *  Test whether the first  30  bits of the
538 *  fraction are zero.
539 */
540	tstl	r10
541	beql	tiny
542/*
543 *  Find the position of the first one bit in  r10 .
544 */
545	cvtld	r10,r1
546	extzv	$7,$7,r1,r1
547/*
548 *  Compute the size of the shift needed.
549 */
550	subl3	r1,$32,r6
551/*
552 *  Shift up the high order  64  bits of the
553 *  product.
554 */
555	ashq	r6,r9,r10
556	ashq	r6,r8,r9
557	brb	mult
558/*						p.13
559 *
560 *  Test to see if the sign bit of  r9  is on.
561 */
562tiny:
563	tstl	r9
564	bgeq	tinier
565/*
566 *  If it is, shift the product bits up  32  bits.
567 */
568	movl	$32,r6
569	movq	r8,r10
570	tstl	r10
571	brb	mult
572/*						p.14
573 *
574 *  Test whether  r9  is zero.  It is probably
575 *  impossible for both  r10  and  r9  to be
576 *  zero, but until proven to be so, the test
577 *  must be made.
578 */
579tinier:
580	beql	zero
581/*
582 *  Find the position of the first one bit in  r9 .
583 */
584	cvtld	r9,r1
585	extzv	$7,$7,r1,r1
586/*
587 *  Compute the size of the shift needed.
588 */
589	subl3	r1,$32,r1
590	addl3	$32,r1,r6
591/*
592 *  Shift up the high order  64  bits of the
593 *  product.
594 */
595	ashq	r1,r8,r10
596	ashq	r1,r7,r9
597	brb	mult
598/*						p.15
599 *
600 *  The following code sets the reduced
601 *  argument to zero.
602 */
603zero:
604	clrl	r1
605	clrl	r2
606	clrl	r3
607	brw	return
608/*						p.16
609 *
610 *  At this point,  r0  contains the octant number,
611 *  r6  indicates the number of bits the fraction
612 *  has been shifted,  r5  indicates the sign of
613 *  the fraction,  r11/r10  contain the high order
614 *  64  bits of the fraction, and the condition
615 *  codes indicate where the sign bit of  r10
616 *  is on.  The following code multiplies the
617 *  fraction by  pi/2 .
618 */
619mult:
620/*
621 *  Save  r11/r10  in  r4/r1 .		-S.McD
622 */
623	movl	r11,r4
624	movl	r10,r1
625/*
626 *  If the sign bit of  r10  is on, add  1  to  r11 .
627 */
628	bgeq	signoff6
629	incl	r11
630signoff6:
631/*						p.17
632 *
633 *  Move  pi/2  into  r3/r2 .
634 */
635	movq	$0xc90fdaa22168c235,r2
636/*
637 *  Multiply the fraction by the portion of  pi/2
638 *  in  r2 .
639 */
640	emul	r2,r10,$0,r7
641	emul	r2,r11,r8,r7
642/*
643 *  Multiply the fraction by the portion of  pi/2
644 *  in  r3 .
645 */
646	emul	r3,r10,$0,r9
647	emul	r3,r11,r10,r10
648/*
649 *  Add the product bits together.
650 */
651	addl2	r7,r9
652	adwc	r8,r10
653	adwc	$0,r11
654/*
655 *  Compensate for not sign extending  r8  above.-S.McD
656 */
657	tstl	r8
658	bgeq	signoff6a
659	decl	r11
660signoff6a:
661/*
662 *  Compensate for  r11/r10  being unsigned.	-S.McD
663 */
664	addl2	r2,r10
665	adwc	r3,r11
666/*
667 *  Compensate for  r3/r2  being unsigned.	-S.McD
668 */
669	addl2	r1,r10
670	adwc	r4,r11
671/*						p.18
672 *
673 *  If the sign bit of  r11  is zero, shift the
674 *  product bits up one bit and increment  r6 .
675 */
676	blss	signon
677	incl	r6
678	ashq	$1,r10,r10
679	tstl	r9
680	bgeq	signoff7
681	incl	r10
682signoff7:
683signon:
684/*						p.19
685 *
686 *  Shift the  56  most significant product
687 *  bits into  r9/r8 .  The sign extension
688 *  will be handled later.
689 */
690	ashq	$-8,r10,r8
691/*
692 *  Convert the low order  8  bits of  r10
693 *  into an F-format number.
694 */
695	cvtbf	r10,r3
696/*
697 *  If the result of the conversion was
698 *  negative, add  1  to  r9/r8 .
699 */
700	bgeq	chop
701	incl	r8
702	adwc	$0,r9
703/*
704 *  If  r9  is now zero, branch to special
705 *  code to handle that possibility.
706 */
707	beql	carryout
708chop:
709/*						p.20
710 *
711 *  Convert the number in  r9/r8  into
712 *  D-format number in  r2/r1 .
713 */
714	rotl	$16,r8,r2
715	rotl	$16,r9,r1
716/*
717 *  Set the exponent field to the appropriate
718 *  value.  Note that the extra bits created by
719 *  sign extension are now eliminated.
720 */
721	subw3	r6,$131,r6
722	insv	r6,$7,$9,r1
723/*
724 *  Set the exponent field of the F-format
725 *  number in  r3  to the appropriate value.
726 */
727	tstf	r3
728	beql	return
729/*	extzv	$7,$8,r3,r4	-S.McD */
730	extzv	$7,$7,r3,r4
731	addw2	r4,r6
732/*	subw2	$217,r6		-S.McD */
733	subw2	$64,r6
734	insv	r6,$7,$8,r3
735	brb	return
736/*						p.21
737 *
738 *  The following code generates the appropriate
739 *  result for the unlikely possibility that
740 *  rounding the number in  r9/r8  resulted in
741 *  a carry out.
742 */
743carryout:
744	clrl	r1
745	clrl	r2
746	subw3	r6,$132,r6
747	insv	r6,$7,$9,r1
748	tstf	r3
749	beql	return
750	extzv	$7,$8,r3,r4
751	addw2	r4,r6
752	subw2	$218,r6
753	insv	r6,$7,$8,r3
754/*						p.22
755 *
756 *  The following code makes an needed
757 *  adjustments to the signs of the
758 *  results or to the octant number, and
759 *  then returns.
760 */
761return:
762/*
763 *  Test if the fraction was greater than or
764 *  equal to  1/2 .  If so, negate the reduced
765 *  argument.
766 */
767	blbc	r5,signoff8
768	mnegf	r1,r1
769	mnegf	r3,r3
770signoff8:
771/*						p.23
772 *
773 *  If the original argument was negative,
774 *  negate the reduce argument and
775 *  adjust the octant number.
776 */
777	tstw	(sp)+
778	bgeq	signoff9
779	mnegf	r1,r1
780	mnegf	r3,r3
781/*	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD */
782	subb3	r0,$4,r0
783signoff9:
784/*
785 *  Clear all unneeded octant bits.
786 *
787 *	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD */
788	bicb2	$0xfc,r0
789/*
790 *  Return.
791 */
792	rsb
793