xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision df0caa2637da0538ecdf6b878c4d08e684b43d8f)
1 /*	$NetBSD: kvm_proc.c,v 1.59 2005/05/11 17:41:52 jmc Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 #if defined(LIBC_SCCS) && !defined(lint)
74 #if 0
75 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
76 #else
77 __RCSID("$NetBSD: kvm_proc.c,v 1.59 2005/05/11 17:41:52 jmc Exp $");
78 #endif
79 #endif /* LIBC_SCCS and not lint */
80 
81 /*
82  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
83  * users of this code, so we've factored it out into a separate module.
84  * Thus, we keep this grunge out of the other kvm applications (i.e.,
85  * most other applications are interested only in open/close/read/nlist).
86  */
87 
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/exec.h>
93 #include <sys/stat.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <stdlib.h>
97 #include <stddef.h>
98 #include <string.h>
99 #include <unistd.h>
100 #include <nlist.h>
101 #include <kvm.h>
102 
103 #include <uvm/uvm_extern.h>
104 #include <uvm/uvm_amap.h>
105 
106 #include <sys/sysctl.h>
107 
108 #include <limits.h>
109 #include <db.h>
110 #include <paths.h>
111 
112 #include "kvm_private.h"
113 
114 /*
115  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
116  */
117 struct miniproc {
118 	struct	vmspace *p_vmspace;
119 	char	p_stat;
120 	struct	proc *p_paddr;
121 	pid_t	p_pid;
122 };
123 
124 /*
125  * Convert from struct proc and kinfo_proc{,2} to miniproc.
126  */
127 #define PTOMINI(kp, p) \
128 	do { \
129 		(p)->p_stat = (kp)->p_stat; \
130 		(p)->p_pid = (kp)->p_pid; \
131 		(p)->p_paddr = NULL; \
132 		(p)->p_vmspace = (kp)->p_vmspace; \
133 	} while (/*CONSTCOND*/0);
134 
135 #define KPTOMINI(kp, p) \
136 	do { \
137 		(p)->p_stat = (kp)->kp_proc.p_stat; \
138 		(p)->p_pid = (kp)->kp_proc.p_pid; \
139 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
140 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
141 	} while (/*CONSTCOND*/0);
142 
143 #define KP2TOMINI(kp, p) \
144 	do { \
145 		(p)->p_stat = (kp)->p_stat; \
146 		(p)->p_pid = (kp)->p_pid; \
147 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
148 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
149 	} while (/*CONSTCOND*/0);
150 
151 
152 #define KREAD(kd, addr, obj) \
153 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
154 
155 /* XXX: What uses these two functions? */
156 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
157 		    u_long *));
158 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
159 		    size_t));
160 
161 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
162 		    u_long *));
163 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
164 		    char *, size_t));
165 
166 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
167 		    int));
168 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
169 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
170 		    void (*)(struct ps_strings *, u_long *, int *)));
171 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
172 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
173 		    struct kinfo_proc *, int));
174 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
175 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
176 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
177 
178 
179 static char *
180 _kvm_ureadm(kd, p, va, cnt)
181 	kvm_t *kd;
182 	const struct miniproc *p;
183 	u_long va;
184 	u_long *cnt;
185 {
186 	int true = 1;
187 	u_long addr, head;
188 	u_long offset;
189 	struct vm_map_entry vme;
190 	struct vm_amap amap;
191 	struct vm_anon *anonp, anon;
192 	struct vm_page pg;
193 	u_long slot;
194 
195 	if (kd->swapspc == NULL) {
196 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
197 		if (kd->swapspc == NULL)
198 			return (NULL);
199 	}
200 
201 	/*
202 	 * Look through the address map for the memory object
203 	 * that corresponds to the given virtual address.
204 	 * The header just has the entire valid range.
205 	 */
206 	head = (u_long)&p->p_vmspace->vm_map.header;
207 	addr = head;
208 	while (true) {
209 		if (KREAD(kd, addr, &vme))
210 			return (NULL);
211 
212 		if (va >= vme.start && va < vme.end &&
213 		    vme.aref.ar_amap != NULL)
214 			break;
215 
216 		addr = (u_long)vme.next;
217 		if (addr == head)
218 			return (NULL);
219 	}
220 
221 	/*
222 	 * we found the map entry, now to find the object...
223 	 */
224 	if (vme.aref.ar_amap == NULL)
225 		return (NULL);
226 
227 	addr = (u_long)vme.aref.ar_amap;
228 	if (KREAD(kd, addr, &amap))
229 		return (NULL);
230 
231 	offset = va - vme.start;
232 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
233 	/* sanity-check slot number */
234 	if (slot > amap.am_nslot)
235 		return (NULL);
236 
237 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
238 	if (KREAD(kd, addr, &anonp))
239 		return (NULL);
240 
241 	addr = (u_long)anonp;
242 	if (KREAD(kd, addr, &anon))
243 		return (NULL);
244 
245 	addr = (u_long)anon.an_page;
246 	if (addr) {
247 		if (KREAD(kd, addr, &pg))
248 			return (NULL);
249 
250 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
251 		    (off_t)pg.phys_addr) != kd->nbpg)
252 			return (NULL);
253 	} else {
254 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
255 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
256 			return (NULL);
257 	}
258 
259 	/* Found the page. */
260 	offset %= kd->nbpg;
261 	*cnt = kd->nbpg - offset;
262 	return (&kd->swapspc[(size_t)offset]);
263 }
264 
265 char *
266 _kvm_uread(kd, p, va, cnt)
267 	kvm_t *kd;
268 	const struct proc *p;
269 	u_long va;
270 	u_long *cnt;
271 {
272 	struct miniproc mp;
273 
274 	PTOMINI(p, &mp);
275 	return (_kvm_ureadm(kd, &mp, va, cnt));
276 }
277 
278 /*
279  * Read proc's from memory file into buffer bp, which has space to hold
280  * at most maxcnt procs.
281  */
282 static int
283 kvm_proclist(kd, what, arg, p, bp, maxcnt)
284 	kvm_t *kd;
285 	int what, arg;
286 	struct proc *p;
287 	struct kinfo_proc *bp;
288 	int maxcnt;
289 {
290 	int cnt = 0;
291 	int nlwps;
292 	struct kinfo_lwp *kl;
293 	struct eproc eproc;
294 	struct pgrp pgrp;
295 	struct session sess;
296 	struct tty tty;
297 	struct proc proc;
298 
299 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
300 		if (KREAD(kd, (u_long)p, &proc)) {
301 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
302 			return (-1);
303 		}
304 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
305 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
306 			    &eproc.e_ucred)) {
307 				_kvm_err(kd, kd->program,
308 				    "can't read proc credentials at %p", p);
309 				return (-1);
310 			}
311 
312 		switch (what) {
313 
314 		case KERN_PROC_PID:
315 			if (proc.p_pid != (pid_t)arg)
316 				continue;
317 			break;
318 
319 		case KERN_PROC_UID:
320 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
321 				continue;
322 			break;
323 
324 		case KERN_PROC_RUID:
325 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
326 				continue;
327 			break;
328 		}
329 		/*
330 		 * We're going to add another proc to the set.  If this
331 		 * will overflow the buffer, assume the reason is because
332 		 * nprocs (or the proc list) is corrupt and declare an error.
333 		 */
334 		if (cnt >= maxcnt) {
335 			_kvm_err(kd, kd->program, "nprocs corrupt");
336 			return (-1);
337 		}
338 		/*
339 		 * gather eproc
340 		 */
341 		eproc.e_paddr = p;
342 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
343 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
344 			    proc.p_pgrp);
345 			return (-1);
346 		}
347 		eproc.e_sess = pgrp.pg_session;
348 		eproc.e_pgid = pgrp.pg_id;
349 		eproc.e_jobc = pgrp.pg_jobc;
350 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
351 			_kvm_err(kd, kd->program, "can't read session at %p",
352 			    pgrp.pg_session);
353 			return (-1);
354 		}
355 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
356 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
357 				_kvm_err(kd, kd->program,
358 				    "can't read tty at %p", sess.s_ttyp);
359 				return (-1);
360 			}
361 			eproc.e_tdev = tty.t_dev;
362 			eproc.e_tsess = tty.t_session;
363 			if (tty.t_pgrp != NULL) {
364 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
365 					_kvm_err(kd, kd->program,
366 					    "can't read tpgrp at %p",
367 					    tty.t_pgrp);
368 					return (-1);
369 				}
370 				eproc.e_tpgid = pgrp.pg_id;
371 			} else
372 				eproc.e_tpgid = -1;
373 		} else
374 			eproc.e_tdev = NODEV;
375 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
376 		eproc.e_sid = sess.s_sid;
377 		if (sess.s_leader == p)
378 			eproc.e_flag |= EPROC_SLEADER;
379 		/*
380 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
381 		 * from the first available LWP.
382 		 */
383 		kl = kvm_getlwps(kd, proc.p_pid,
384 		    (u_long)PTRTOUINT64(eproc.e_paddr),
385 		    sizeof(struct kinfo_lwp), &nlwps);
386 		if (kl) {
387 			if (nlwps > 0) {
388 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
389 			}
390 		}
391 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
392 		    sizeof(eproc.e_vm));
393 
394 		eproc.e_xsize = eproc.e_xrssize = 0;
395 		eproc.e_xccount = eproc.e_xswrss = 0;
396 
397 		switch (what) {
398 
399 		case KERN_PROC_PGRP:
400 			if (eproc.e_pgid != (pid_t)arg)
401 				continue;
402 			break;
403 
404 		case KERN_PROC_TTY:
405 			if ((proc.p_flag & P_CONTROLT) == 0 ||
406 			    eproc.e_tdev != (dev_t)arg)
407 				continue;
408 			break;
409 		}
410 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
411 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
412 		++bp;
413 		++cnt;
414 	}
415 	return (cnt);
416 }
417 
418 /*
419  * Build proc info array by reading in proc list from a crash dump.
420  * Return number of procs read.  maxcnt is the max we will read.
421  */
422 static int
423 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
424 	kvm_t *kd;
425 	int what, arg;
426 	u_long a_allproc;
427 	u_long a_zombproc;
428 	int maxcnt;
429 {
430 	struct kinfo_proc *bp = kd->procbase;
431 	int acnt, zcnt;
432 	struct proc *p;
433 
434 	if (KREAD(kd, a_allproc, &p)) {
435 		_kvm_err(kd, kd->program, "cannot read allproc");
436 		return (-1);
437 	}
438 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
439 	if (acnt < 0)
440 		return (acnt);
441 
442 	if (KREAD(kd, a_zombproc, &p)) {
443 		_kvm_err(kd, kd->program, "cannot read zombproc");
444 		return (-1);
445 	}
446 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
447 	    maxcnt - acnt);
448 	if (zcnt < 0)
449 		zcnt = 0;
450 
451 	return (acnt + zcnt);
452 }
453 
454 struct kinfo_proc2 *
455 kvm_getproc2(kd, op, arg, esize, cnt)
456 	kvm_t *kd;
457 	int op, arg;
458 	size_t esize;
459 	int *cnt;
460 {
461 	size_t size;
462 	int mib[6], st, nprocs;
463 	struct pstats pstats;
464 
465 	if (kd->procbase2 != NULL) {
466 		free(kd->procbase2);
467 		/*
468 		 * Clear this pointer in case this call fails.  Otherwise,
469 		 * kvm_close() will free it again.
470 		 */
471 		kd->procbase2 = NULL;
472 	}
473 
474 	if (ISSYSCTL(kd)) {
475 		size = 0;
476 		mib[0] = CTL_KERN;
477 		mib[1] = KERN_PROC2;
478 		mib[2] = op;
479 		mib[3] = arg;
480 		mib[4] = (int)esize;
481 		mib[5] = 0;
482 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
483 		if (st == -1) {
484 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
485 			return (NULL);
486 		}
487 
488 		mib[5] = (int) (size / esize);
489 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
490 		if (kd->procbase2 == NULL)
491 			return (NULL);
492 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
493 		if (st == -1) {
494 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
495 			return (NULL);
496 		}
497 		nprocs = (int) (size / esize);
498 	} else {
499 		char *kp2c;
500 		struct kinfo_proc *kp;
501 		struct kinfo_proc2 kp2, *kp2p;
502 		struct kinfo_lwp *kl;
503 		int i, nlwps;
504 
505 		kp = kvm_getprocs(kd, op, arg, &nprocs);
506 		if (kp == NULL)
507 			return (NULL);
508 
509 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
510 		kp2c = (char *)(void *)kd->procbase2;
511 		kp2p = &kp2;
512 		for (i = 0; i < nprocs; i++, kp++) {
513 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
514 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
515 			    sizeof(struct kinfo_lwp), &nlwps);
516 			/* We use kl[0] as the "representative" LWP */
517 			memset(kp2p, 0, sizeof(kp2));
518 			kp2p->p_forw = kl[0].l_forw;
519 			kp2p->p_back = kl[0].l_back;
520 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
521 			kp2p->p_addr = kl[0].l_addr;
522 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
523 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
524 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
525 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
526 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
527 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
528 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
529 			kp2p->p_tsess = 0;
530 			kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
531 
532 			kp2p->p_eflag = 0;
533 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
534 			kp2p->p_flag = kp->kp_proc.p_flag;
535 
536 			kp2p->p_pid = kp->kp_proc.p_pid;
537 
538 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
539 			kp2p->p_sid = kp->kp_eproc.e_sid;
540 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
541 
542 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
543 
544 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
545 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
546 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
547 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
548 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
549 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
550 
551 			/*CONSTCOND*/
552 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
553 			    MIN(sizeof(kp2p->p_groups),
554 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
555 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
556 
557 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
558 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
559 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
560 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
561 
562 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
563 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
564 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
565 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
566 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
567 			kp2p->p_swtime = kl[0].l_swtime;
568 			kp2p->p_slptime = kl[0].l_slptime;
569 #if 0 /* XXX thorpej */
570 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
571 #else
572 			kp2p->p_schedflags = 0;
573 #endif
574 
575 			kp2p->p_uticks = kp->kp_proc.p_uticks;
576 			kp2p->p_sticks = kp->kp_proc.p_sticks;
577 			kp2p->p_iticks = kp->kp_proc.p_iticks;
578 
579 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
580 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
581 
582 			kp2p->p_holdcnt = kl[0].l_holdcnt;
583 
584 			memcpy(&kp2p->p_siglist,
585 			    &kp->kp_proc.p_sigctx.ps_siglist,
586 			    sizeof(ki_sigset_t));
587 			memcpy(&kp2p->p_sigmask,
588 			    &kp->kp_proc.p_sigctx.ps_sigmask,
589 			    sizeof(ki_sigset_t));
590 			memcpy(&kp2p->p_sigignore,
591 			    &kp->kp_proc.p_sigctx.ps_sigignore,
592 			    sizeof(ki_sigset_t));
593 			memcpy(&kp2p->p_sigcatch,
594 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
595 			    sizeof(ki_sigset_t));
596 
597 			kp2p->p_stat = kp->kp_proc.p_stat;
598 			kp2p->p_priority = kl[0].l_priority;
599 			kp2p->p_usrpri = kl[0].l_usrpri;
600 			kp2p->p_nice = kp->kp_proc.p_nice;
601 
602 			kp2p->p_xstat = kp->kp_proc.p_xstat;
603 			kp2p->p_acflag = kp->kp_proc.p_acflag;
604 
605 			/*CONSTCOND*/
606 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
607 			    MIN(sizeof(kp2p->p_comm),
608 			    sizeof(kp->kp_proc.p_comm)));
609 
610 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
611 			    sizeof(kp2p->p_wmesg));
612 			kp2p->p_wchan = kl[0].l_wchan;
613 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
614 			    sizeof(kp2p->p_login));
615 
616 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
617 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
618 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
619 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
620 
621 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
622 
623 			kp2p->p_realflag = kp->kp_proc.p_flag;
624 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
625 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
626 			kp2p->p_realstat = kp->kp_proc.p_stat;
627 
628 			if (P_ZOMBIE(&kp->kp_proc) ||
629 			    kp->kp_proc.p_stats == NULL ||
630 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
631 				kp2p->p_uvalid = 0;
632 			} else {
633 				kp2p->p_uvalid = 1;
634 
635 				kp2p->p_ustart_sec = (u_int32_t)
636 				    pstats.p_start.tv_sec;
637 				kp2p->p_ustart_usec = (u_int32_t)
638 				    pstats.p_start.tv_usec;
639 
640 				kp2p->p_uutime_sec = (u_int32_t)
641 				    pstats.p_ru.ru_utime.tv_sec;
642 				kp2p->p_uutime_usec = (u_int32_t)
643 				    pstats.p_ru.ru_utime.tv_usec;
644 				kp2p->p_ustime_sec = (u_int32_t)
645 				    pstats.p_ru.ru_stime.tv_sec;
646 				kp2p->p_ustime_usec = (u_int32_t)
647 				    pstats.p_ru.ru_stime.tv_usec;
648 
649 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
650 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
651 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
652 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
653 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
654 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
655 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
656 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
657 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
658 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
659 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
660 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
661 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
662 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
663 
664 				kp2p->p_uctime_sec = (u_int32_t)
665 				    (pstats.p_cru.ru_utime.tv_sec +
666 				    pstats.p_cru.ru_stime.tv_sec);
667 				kp2p->p_uctime_usec = (u_int32_t)
668 				    (pstats.p_cru.ru_utime.tv_usec +
669 				    pstats.p_cru.ru_stime.tv_usec);
670 			}
671 
672 			memcpy(kp2c, &kp2, esize);
673 			kp2c += esize;
674 		}
675 
676 		_kvm_freeprocs(kd);
677 	}
678 	*cnt = nprocs;
679 	return (kd->procbase2);
680 }
681 
682 struct kinfo_lwp *
683 kvm_getlwps(kd, pid, paddr, esize, cnt)
684 	kvm_t *kd;
685 	int pid;
686 	u_long paddr;
687 	size_t esize;
688 	int *cnt;
689 {
690 	size_t size;
691 	int mib[5], nlwps;
692 	ssize_t st;
693 	struct kinfo_lwp *kl;
694 
695 	if (kd->lwpbase != NULL) {
696 		free(kd->lwpbase);
697 		/*
698 		 * Clear this pointer in case this call fails.  Otherwise,
699 		 * kvm_close() will free it again.
700 		 */
701 		kd->lwpbase = NULL;
702 	}
703 
704 	if (ISSYSCTL(kd)) {
705 		size = 0;
706 		mib[0] = CTL_KERN;
707 		mib[1] = KERN_LWP;
708 		mib[2] = pid;
709 		mib[3] = (int)esize;
710 		mib[4] = 0;
711 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
712 		if (st == -1) {
713 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
714 			return (NULL);
715 		}
716 
717 		mib[4] = (int) (size / esize);
718 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
719 		if (kd->lwpbase == NULL)
720 			return (NULL);
721 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
722 		if (st == -1) {
723 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
724 			return (NULL);
725 		}
726 		nlwps = (int) (size / esize);
727 	} else {
728 		/* grovel through the memory image */
729 		struct proc p;
730 		struct lwp l;
731 		u_long laddr;
732 		int i;
733 
734 		st = kvm_read(kd, paddr, &p, sizeof(p));
735 		if (st == -1) {
736 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
737 			return (NULL);
738 		}
739 
740 		nlwps = p.p_nlwps;
741 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
742 		    nlwps * sizeof(struct kinfo_lwp));
743 		if (kd->lwpbase == NULL)
744 			return (NULL);
745 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
746 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
747 			st = kvm_read(kd, laddr, &l, sizeof(l));
748 			if (st == -1) {
749 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
750 				return (NULL);
751 			}
752 			kl = &kd->lwpbase[i];
753 			kl->l_laddr = laddr;
754 			kl->l_forw = PTRTOUINT64(l.l_forw);
755 			kl->l_back = PTRTOUINT64(l.l_back);
756 			kl->l_addr = PTRTOUINT64(l.l_addr);
757 			kl->l_lid = l.l_lid;
758 			kl->l_flag = l.l_flag;
759 			kl->l_swtime = l.l_swtime;
760 			kl->l_slptime = l.l_slptime;
761 			kl->l_schedflags = 0; /* XXX */
762 			kl->l_holdcnt = l.l_holdcnt;
763 			kl->l_priority = l.l_priority;
764 			kl->l_usrpri = l.l_usrpri;
765 			kl->l_stat = l.l_stat;
766 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
767 			if (l.l_wmesg)
768 				(void)kvm_read(kd, (u_long)l.l_wmesg,
769 				    kl->l_wmesg, (size_t)WMESGLEN);
770 			kl->l_cpuid = KI_NOCPU;
771 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
772 		}
773 	}
774 
775 	*cnt = nlwps;
776 	return (kd->lwpbase);
777 }
778 
779 struct kinfo_proc *
780 kvm_getprocs(kd, op, arg, cnt)
781 	kvm_t *kd;
782 	int op, arg;
783 	int *cnt;
784 {
785 	size_t size;
786 	int mib[4], st, nprocs;
787 
788 	if (kd->procbase != NULL) {
789 		free(kd->procbase);
790 		/*
791 		 * Clear this pointer in case this call fails.  Otherwise,
792 		 * kvm_close() will free it again.
793 		 */
794 		kd->procbase = NULL;
795 	}
796 	if (ISKMEM(kd)) {
797 		size = 0;
798 		mib[0] = CTL_KERN;
799 		mib[1] = KERN_PROC;
800 		mib[2] = op;
801 		mib[3] = arg;
802 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
803 		if (st == -1) {
804 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
805 			return (NULL);
806 		}
807 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
808 		if (kd->procbase == NULL)
809 			return (NULL);
810 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
811 		if (st == -1) {
812 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
813 			return (NULL);
814 		}
815 		if (size % sizeof(struct kinfo_proc) != 0) {
816 			_kvm_err(kd, kd->program,
817 			    "proc size mismatch (%lu total, %lu chunks)",
818 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
819 			return (NULL);
820 		}
821 		nprocs = (int) (size / sizeof(struct kinfo_proc));
822 	} else if (ISSYSCTL(kd)) {
823 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
824 		    "can't use kvm_getprocs");
825 		return (NULL);
826 	} else {
827 		struct nlist nl[4], *p;
828 
829 		(void)memset(nl, 0, sizeof(nl));
830 		nl[0].n_name = "_nprocs";
831 		nl[1].n_name = "_allproc";
832 		nl[2].n_name = "_zombproc";
833 		nl[3].n_name = NULL;
834 
835 		if (kvm_nlist(kd, nl) != 0) {
836 			for (p = nl; p->n_type != 0; ++p)
837 				continue;
838 			_kvm_err(kd, kd->program,
839 			    "%s: no such symbol", p->n_name);
840 			return (NULL);
841 		}
842 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
843 			_kvm_err(kd, kd->program, "can't read nprocs");
844 			return (NULL);
845 		}
846 		size = nprocs * sizeof(struct kinfo_proc);
847 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
848 		if (kd->procbase == NULL)
849 			return (NULL);
850 
851 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
852 		    nl[2].n_value, nprocs);
853 		if (nprocs < 0)
854 			return (NULL);
855 #ifdef notdef
856 		size = nprocs * sizeof(struct kinfo_proc);
857 		(void)realloc(kd->procbase, size);
858 #endif
859 	}
860 	*cnt = nprocs;
861 	return (kd->procbase);
862 }
863 
864 void
865 _kvm_freeprocs(kd)
866 	kvm_t *kd;
867 {
868 
869 	if (kd->procbase) {
870 		free(kd->procbase);
871 		kd->procbase = NULL;
872 	}
873 }
874 
875 void *
876 _kvm_realloc(kd, p, n)
877 	kvm_t *kd;
878 	void *p;
879 	size_t n;
880 {
881 	void *np = realloc(p, n);
882 
883 	if (np == NULL)
884 		_kvm_err(kd, kd->program, "out of memory");
885 	return (np);
886 }
887 
888 /*
889  * Read in an argument vector from the user address space of process p.
890  * addr if the user-space base address of narg null-terminated contiguous
891  * strings.  This is used to read in both the command arguments and
892  * environment strings.  Read at most maxcnt characters of strings.
893  */
894 static char **
895 kvm_argv(kd, p, addr, narg, maxcnt)
896 	kvm_t *kd;
897 	const struct miniproc *p;
898 	u_long addr;
899 	int narg;
900 	int maxcnt;
901 {
902 	char *np, *cp, *ep, *ap;
903 	u_long oaddr = (u_long)~0L;
904 	u_long len;
905 	size_t cc;
906 	char **argv;
907 
908 	/*
909 	 * Check that there aren't an unreasonable number of arguments,
910 	 * and that the address is in user space.
911 	 */
912 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
913 		return (NULL);
914 
915 	if (kd->argv == NULL) {
916 		/*
917 		 * Try to avoid reallocs.
918 		 */
919 		kd->argc = MAX(narg + 1, 32);
920 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
921 		    sizeof(*kd->argv));
922 		if (kd->argv == NULL)
923 			return (NULL);
924 	} else if (narg + 1 > kd->argc) {
925 		kd->argc = MAX(2 * kd->argc, narg + 1);
926 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
927 		    sizeof(*kd->argv));
928 		if (kd->argv == NULL)
929 			return (NULL);
930 	}
931 	if (kd->argspc == NULL) {
932 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
933 		if (kd->argspc == NULL)
934 			return (NULL);
935 		kd->arglen = kd->nbpg;
936 	}
937 	if (kd->argbuf == NULL) {
938 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
939 		if (kd->argbuf == NULL)
940 			return (NULL);
941 	}
942 	cc = sizeof(char *) * narg;
943 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
944 		return (NULL);
945 	ap = np = kd->argspc;
946 	argv = kd->argv;
947 	len = 0;
948 	/*
949 	 * Loop over pages, filling in the argument vector.
950 	 */
951 	while (argv < kd->argv + narg && *argv != NULL) {
952 		addr = (u_long)*argv & ~(kd->nbpg - 1);
953 		if (addr != oaddr) {
954 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
955 			    (size_t)kd->nbpg) != kd->nbpg)
956 				return (NULL);
957 			oaddr = addr;
958 		}
959 		addr = (u_long)*argv & (kd->nbpg - 1);
960 		cp = kd->argbuf + (size_t)addr;
961 		cc = kd->nbpg - (size_t)addr;
962 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
963 			cc = (size_t)(maxcnt - len);
964 		ep = memchr(cp, '\0', cc);
965 		if (ep != NULL)
966 			cc = ep - cp + 1;
967 		if (len + cc > kd->arglen) {
968 			ptrdiff_t off;
969 			char **pp;
970 			char *op = kd->argspc;
971 
972 			kd->arglen *= 2;
973 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
974 			    (size_t)kd->arglen);
975 			if (kd->argspc == NULL)
976 				return (NULL);
977 			/*
978 			 * Adjust argv pointers in case realloc moved
979 			 * the string space.
980 			 */
981 			off = kd->argspc - op;
982 			for (pp = kd->argv; pp < argv; pp++)
983 				*pp += off;
984 			ap += off;
985 			np += off;
986 		}
987 		memcpy(np, cp, cc);
988 		np += cc;
989 		len += cc;
990 		if (ep != NULL) {
991 			*argv++ = ap;
992 			ap = np;
993 		} else
994 			*argv += cc;
995 		if (maxcnt > 0 && len >= maxcnt) {
996 			/*
997 			 * We're stopping prematurely.  Terminate the
998 			 * current string.
999 			 */
1000 			if (ep == NULL) {
1001 				*np = '\0';
1002 				*argv++ = ap;
1003 			}
1004 			break;
1005 		}
1006 	}
1007 	/* Make sure argv is terminated. */
1008 	*argv = NULL;
1009 	return (kd->argv);
1010 }
1011 
1012 static void
1013 ps_str_a(p, addr, n)
1014 	struct ps_strings *p;
1015 	u_long *addr;
1016 	int *n;
1017 {
1018 
1019 	*addr = (u_long)p->ps_argvstr;
1020 	*n = p->ps_nargvstr;
1021 }
1022 
1023 static void
1024 ps_str_e(p, addr, n)
1025 	struct ps_strings *p;
1026 	u_long *addr;
1027 	int *n;
1028 {
1029 
1030 	*addr = (u_long)p->ps_envstr;
1031 	*n = p->ps_nenvstr;
1032 }
1033 
1034 /*
1035  * Determine if the proc indicated by p is still active.
1036  * This test is not 100% foolproof in theory, but chances of
1037  * being wrong are very low.
1038  */
1039 static int
1040 proc_verify(kd, kernp, p)
1041 	kvm_t *kd;
1042 	u_long kernp;
1043 	const struct miniproc *p;
1044 {
1045 	struct proc kernproc;
1046 
1047 	/*
1048 	 * Just read in the whole proc.  It's not that big relative
1049 	 * to the cost of the read system call.
1050 	 */
1051 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1052 	    sizeof(kernproc))
1053 		return (0);
1054 	return (p->p_pid == kernproc.p_pid &&
1055 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1056 }
1057 
1058 static char **
1059 kvm_doargv(kd, p, nchr, info)
1060 	kvm_t *kd;
1061 	const struct miniproc *p;
1062 	int nchr;
1063 	void (*info)(struct ps_strings *, u_long *, int *);
1064 {
1065 	char **ap;
1066 	u_long addr;
1067 	int cnt;
1068 	struct ps_strings arginfo;
1069 
1070 	/*
1071 	 * Pointers are stored at the top of the user stack.
1072 	 */
1073 	if (p->p_stat == SZOMB)
1074 		return (NULL);
1075 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1076 	    (void *)&arginfo, sizeof(arginfo));
1077 	if (cnt != sizeof(arginfo))
1078 		return (NULL);
1079 
1080 	(*info)(&arginfo, &addr, &cnt);
1081 	if (cnt == 0)
1082 		return (NULL);
1083 	ap = kvm_argv(kd, p, addr, cnt, nchr);
1084 	/*
1085 	 * For live kernels, make sure this process didn't go away.
1086 	 */
1087 	if (ap != NULL && ISALIVE(kd) &&
1088 	    !proc_verify(kd, (u_long)p->p_paddr, p))
1089 		ap = NULL;
1090 	return (ap);
1091 }
1092 
1093 /*
1094  * Get the command args.  This code is now machine independent.
1095  */
1096 char **
1097 kvm_getargv(kd, kp, nchr)
1098 	kvm_t *kd;
1099 	const struct kinfo_proc *kp;
1100 	int nchr;
1101 {
1102 	struct miniproc p;
1103 
1104 	KPTOMINI(kp, &p);
1105 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1106 }
1107 
1108 char **
1109 kvm_getenvv(kd, kp, nchr)
1110 	kvm_t *kd;
1111 	const struct kinfo_proc *kp;
1112 	int nchr;
1113 {
1114 	struct miniproc p;
1115 
1116 	KPTOMINI(kp, &p);
1117 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1118 }
1119 
1120 static char **
1121 kvm_doargv2(kd, pid, type, nchr)
1122 	kvm_t *kd;
1123 	pid_t pid;
1124 	int type;
1125 	int nchr;
1126 {
1127 	size_t bufs;
1128 	int narg, mib[4];
1129 	size_t newarglen;
1130 	char **ap, *bp, *endp;
1131 
1132 	/*
1133 	 * Check that there aren't an unreasonable number of arguments.
1134 	 */
1135 	if (nchr > ARG_MAX)
1136 		return (NULL);
1137 
1138 	if (nchr == 0)
1139 		nchr = ARG_MAX;
1140 
1141 	/* Get number of strings in argv */
1142 	mib[0] = CTL_KERN;
1143 	mib[1] = KERN_PROC_ARGS;
1144 	mib[2] = pid;
1145 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1146 	bufs = sizeof(narg);
1147 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1148 		return (NULL);
1149 
1150 	if (kd->argv == NULL) {
1151 		/*
1152 		 * Try to avoid reallocs.
1153 		 */
1154 		kd->argc = MAX(narg + 1, 32);
1155 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1156 		    sizeof(*kd->argv));
1157 		if (kd->argv == NULL)
1158 			return (NULL);
1159 	} else if (narg + 1 > kd->argc) {
1160 		kd->argc = MAX(2 * kd->argc, narg + 1);
1161 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1162 		    sizeof(*kd->argv));
1163 		if (kd->argv == NULL)
1164 			return (NULL);
1165 	}
1166 
1167 	newarglen = MIN(nchr, ARG_MAX);
1168 	if (kd->arglen < newarglen) {
1169 		if (kd->arglen == 0)
1170 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1171 		else
1172 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1173 			    newarglen);
1174 		if (kd->argspc == NULL)
1175 			return (NULL);
1176 		if (newarglen > INT_MAX)
1177 			return NULL;
1178 		kd->arglen = (int)newarglen;
1179 	}
1180 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
1181 
1182 	mib[0] = CTL_KERN;
1183 	mib[1] = KERN_PROC_ARGS;
1184 	mib[2] = pid;
1185 	mib[3] = type;
1186 	bufs = kd->arglen;
1187 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1188 		return (NULL);
1189 
1190 	bp = kd->argspc;
1191 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
1192 	ap = kd->argv;
1193 	endp = bp + MIN(nchr, bufs);
1194 
1195 	while (bp < endp) {
1196 		*ap++ = bp;
1197 		/*
1198 		 * XXX: don't need following anymore, or stick check
1199 		 * for max argc in above while loop?
1200 		 */
1201 		if (ap >= kd->argv + kd->argc) {
1202 			kd->argc *= 2;
1203 			kd->argv = _kvm_realloc(kd, kd->argv,
1204 			    kd->argc * sizeof(*kd->argv));
1205 			ap = kd->argv;
1206 		}
1207 		bp += strlen(bp) + 1;
1208 	}
1209 	*ap = NULL;
1210 
1211 	return (kd->argv);
1212 }
1213 
1214 char **
1215 kvm_getargv2(kd, kp, nchr)
1216 	kvm_t *kd;
1217 	const struct kinfo_proc2 *kp;
1218 	int nchr;
1219 {
1220 
1221 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1222 }
1223 
1224 char **
1225 kvm_getenvv2(kd, kp, nchr)
1226 	kvm_t *kd;
1227 	const struct kinfo_proc2 *kp;
1228 	int nchr;
1229 {
1230 
1231 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1232 }
1233 
1234 /*
1235  * Read from user space.  The user context is given by p.
1236  */
1237 static ssize_t
1238 kvm_ureadm(kd, p, uva, buf, len)
1239 	kvm_t *kd;
1240 	const struct miniproc *p;
1241 	u_long uva;
1242 	char *buf;
1243 	size_t len;
1244 {
1245 	char *cp;
1246 
1247 	cp = buf;
1248 	while (len > 0) {
1249 		size_t cc;
1250 		char *dp;
1251 		u_long cnt;
1252 
1253 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1254 		if (dp == NULL) {
1255 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1256 			return (0);
1257 		}
1258 		cc = (size_t)MIN(cnt, len);
1259 		memcpy(cp, dp, cc);
1260 		cp += cc;
1261 		uva += cc;
1262 		len -= cc;
1263 	}
1264 	return (ssize_t)(cp - buf);
1265 }
1266 
1267 ssize_t
1268 kvm_uread(kd, p, uva, buf, len)
1269 	kvm_t *kd;
1270 	const struct proc *p;
1271 	u_long uva;
1272 	char *buf;
1273 	size_t len;
1274 {
1275 	struct miniproc mp;
1276 
1277 	PTOMINI(p, &mp);
1278 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1279 }
1280