1 /* $NetBSD: kvm_proc.c,v 1.59 2005/05/11 17:41:52 jmc Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 #if defined(LIBC_SCCS) && !defined(lint) 74 #if 0 75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 76 #else 77 __RCSID("$NetBSD: kvm_proc.c,v 1.59 2005/05/11 17:41:52 jmc Exp $"); 78 #endif 79 #endif /* LIBC_SCCS and not lint */ 80 81 /* 82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 83 * users of this code, so we've factored it out into a separate module. 84 * Thus, we keep this grunge out of the other kvm applications (i.e., 85 * most other applications are interested only in open/close/read/nlist). 86 */ 87 88 #include <sys/param.h> 89 #include <sys/user.h> 90 #include <sys/lwp.h> 91 #include <sys/proc.h> 92 #include <sys/exec.h> 93 #include <sys/stat.h> 94 #include <sys/ioctl.h> 95 #include <sys/tty.h> 96 #include <stdlib.h> 97 #include <stddef.h> 98 #include <string.h> 99 #include <unistd.h> 100 #include <nlist.h> 101 #include <kvm.h> 102 103 #include <uvm/uvm_extern.h> 104 #include <uvm/uvm_amap.h> 105 106 #include <sys/sysctl.h> 107 108 #include <limits.h> 109 #include <db.h> 110 #include <paths.h> 111 112 #include "kvm_private.h" 113 114 /* 115 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 116 */ 117 struct miniproc { 118 struct vmspace *p_vmspace; 119 char p_stat; 120 struct proc *p_paddr; 121 pid_t p_pid; 122 }; 123 124 /* 125 * Convert from struct proc and kinfo_proc{,2} to miniproc. 126 */ 127 #define PTOMINI(kp, p) \ 128 do { \ 129 (p)->p_stat = (kp)->p_stat; \ 130 (p)->p_pid = (kp)->p_pid; \ 131 (p)->p_paddr = NULL; \ 132 (p)->p_vmspace = (kp)->p_vmspace; \ 133 } while (/*CONSTCOND*/0); 134 135 #define KPTOMINI(kp, p) \ 136 do { \ 137 (p)->p_stat = (kp)->kp_proc.p_stat; \ 138 (p)->p_pid = (kp)->kp_proc.p_pid; \ 139 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 140 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 141 } while (/*CONSTCOND*/0); 142 143 #define KP2TOMINI(kp, p) \ 144 do { \ 145 (p)->p_stat = (kp)->p_stat; \ 146 (p)->p_pid = (kp)->p_pid; \ 147 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 148 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 149 } while (/*CONSTCOND*/0); 150 151 152 #define KREAD(kd, addr, obj) \ 153 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 154 155 /* XXX: What uses these two functions? */ 156 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 157 u_long *)); 158 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 159 size_t)); 160 161 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 162 u_long *)); 163 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 164 char *, size_t)); 165 166 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 167 int)); 168 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 169 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 170 void (*)(struct ps_strings *, u_long *, int *))); 171 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 172 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 173 struct kinfo_proc *, int)); 174 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 175 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 176 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 177 178 179 static char * 180 _kvm_ureadm(kd, p, va, cnt) 181 kvm_t *kd; 182 const struct miniproc *p; 183 u_long va; 184 u_long *cnt; 185 { 186 int true = 1; 187 u_long addr, head; 188 u_long offset; 189 struct vm_map_entry vme; 190 struct vm_amap amap; 191 struct vm_anon *anonp, anon; 192 struct vm_page pg; 193 u_long slot; 194 195 if (kd->swapspc == NULL) { 196 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 197 if (kd->swapspc == NULL) 198 return (NULL); 199 } 200 201 /* 202 * Look through the address map for the memory object 203 * that corresponds to the given virtual address. 204 * The header just has the entire valid range. 205 */ 206 head = (u_long)&p->p_vmspace->vm_map.header; 207 addr = head; 208 while (true) { 209 if (KREAD(kd, addr, &vme)) 210 return (NULL); 211 212 if (va >= vme.start && va < vme.end && 213 vme.aref.ar_amap != NULL) 214 break; 215 216 addr = (u_long)vme.next; 217 if (addr == head) 218 return (NULL); 219 } 220 221 /* 222 * we found the map entry, now to find the object... 223 */ 224 if (vme.aref.ar_amap == NULL) 225 return (NULL); 226 227 addr = (u_long)vme.aref.ar_amap; 228 if (KREAD(kd, addr, &amap)) 229 return (NULL); 230 231 offset = va - vme.start; 232 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 233 /* sanity-check slot number */ 234 if (slot > amap.am_nslot) 235 return (NULL); 236 237 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 238 if (KREAD(kd, addr, &anonp)) 239 return (NULL); 240 241 addr = (u_long)anonp; 242 if (KREAD(kd, addr, &anon)) 243 return (NULL); 244 245 addr = (u_long)anon.an_page; 246 if (addr) { 247 if (KREAD(kd, addr, &pg)) 248 return (NULL); 249 250 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 251 (off_t)pg.phys_addr) != kd->nbpg) 252 return (NULL); 253 } else { 254 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg, 255 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 256 return (NULL); 257 } 258 259 /* Found the page. */ 260 offset %= kd->nbpg; 261 *cnt = kd->nbpg - offset; 262 return (&kd->swapspc[(size_t)offset]); 263 } 264 265 char * 266 _kvm_uread(kd, p, va, cnt) 267 kvm_t *kd; 268 const struct proc *p; 269 u_long va; 270 u_long *cnt; 271 { 272 struct miniproc mp; 273 274 PTOMINI(p, &mp); 275 return (_kvm_ureadm(kd, &mp, va, cnt)); 276 } 277 278 /* 279 * Read proc's from memory file into buffer bp, which has space to hold 280 * at most maxcnt procs. 281 */ 282 static int 283 kvm_proclist(kd, what, arg, p, bp, maxcnt) 284 kvm_t *kd; 285 int what, arg; 286 struct proc *p; 287 struct kinfo_proc *bp; 288 int maxcnt; 289 { 290 int cnt = 0; 291 int nlwps; 292 struct kinfo_lwp *kl; 293 struct eproc eproc; 294 struct pgrp pgrp; 295 struct session sess; 296 struct tty tty; 297 struct proc proc; 298 299 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 300 if (KREAD(kd, (u_long)p, &proc)) { 301 _kvm_err(kd, kd->program, "can't read proc at %p", p); 302 return (-1); 303 } 304 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 305 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 306 &eproc.e_ucred)) { 307 _kvm_err(kd, kd->program, 308 "can't read proc credentials at %p", p); 309 return (-1); 310 } 311 312 switch (what) { 313 314 case KERN_PROC_PID: 315 if (proc.p_pid != (pid_t)arg) 316 continue; 317 break; 318 319 case KERN_PROC_UID: 320 if (eproc.e_ucred.cr_uid != (uid_t)arg) 321 continue; 322 break; 323 324 case KERN_PROC_RUID: 325 if (eproc.e_pcred.p_ruid != (uid_t)arg) 326 continue; 327 break; 328 } 329 /* 330 * We're going to add another proc to the set. If this 331 * will overflow the buffer, assume the reason is because 332 * nprocs (or the proc list) is corrupt and declare an error. 333 */ 334 if (cnt >= maxcnt) { 335 _kvm_err(kd, kd->program, "nprocs corrupt"); 336 return (-1); 337 } 338 /* 339 * gather eproc 340 */ 341 eproc.e_paddr = p; 342 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 343 _kvm_err(kd, kd->program, "can't read pgrp at %p", 344 proc.p_pgrp); 345 return (-1); 346 } 347 eproc.e_sess = pgrp.pg_session; 348 eproc.e_pgid = pgrp.pg_id; 349 eproc.e_jobc = pgrp.pg_jobc; 350 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 351 _kvm_err(kd, kd->program, "can't read session at %p", 352 pgrp.pg_session); 353 return (-1); 354 } 355 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 356 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 357 _kvm_err(kd, kd->program, 358 "can't read tty at %p", sess.s_ttyp); 359 return (-1); 360 } 361 eproc.e_tdev = tty.t_dev; 362 eproc.e_tsess = tty.t_session; 363 if (tty.t_pgrp != NULL) { 364 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 365 _kvm_err(kd, kd->program, 366 "can't read tpgrp at %p", 367 tty.t_pgrp); 368 return (-1); 369 } 370 eproc.e_tpgid = pgrp.pg_id; 371 } else 372 eproc.e_tpgid = -1; 373 } else 374 eproc.e_tdev = NODEV; 375 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 376 eproc.e_sid = sess.s_sid; 377 if (sess.s_leader == p) 378 eproc.e_flag |= EPROC_SLEADER; 379 /* 380 * Fill in the old-style proc.p_wmesg by copying the wmesg 381 * from the first available LWP. 382 */ 383 kl = kvm_getlwps(kd, proc.p_pid, 384 (u_long)PTRTOUINT64(eproc.e_paddr), 385 sizeof(struct kinfo_lwp), &nlwps); 386 if (kl) { 387 if (nlwps > 0) { 388 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 389 } 390 } 391 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 392 sizeof(eproc.e_vm)); 393 394 eproc.e_xsize = eproc.e_xrssize = 0; 395 eproc.e_xccount = eproc.e_xswrss = 0; 396 397 switch (what) { 398 399 case KERN_PROC_PGRP: 400 if (eproc.e_pgid != (pid_t)arg) 401 continue; 402 break; 403 404 case KERN_PROC_TTY: 405 if ((proc.p_flag & P_CONTROLT) == 0 || 406 eproc.e_tdev != (dev_t)arg) 407 continue; 408 break; 409 } 410 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 411 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 412 ++bp; 413 ++cnt; 414 } 415 return (cnt); 416 } 417 418 /* 419 * Build proc info array by reading in proc list from a crash dump. 420 * Return number of procs read. maxcnt is the max we will read. 421 */ 422 static int 423 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 424 kvm_t *kd; 425 int what, arg; 426 u_long a_allproc; 427 u_long a_zombproc; 428 int maxcnt; 429 { 430 struct kinfo_proc *bp = kd->procbase; 431 int acnt, zcnt; 432 struct proc *p; 433 434 if (KREAD(kd, a_allproc, &p)) { 435 _kvm_err(kd, kd->program, "cannot read allproc"); 436 return (-1); 437 } 438 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 439 if (acnt < 0) 440 return (acnt); 441 442 if (KREAD(kd, a_zombproc, &p)) { 443 _kvm_err(kd, kd->program, "cannot read zombproc"); 444 return (-1); 445 } 446 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 447 maxcnt - acnt); 448 if (zcnt < 0) 449 zcnt = 0; 450 451 return (acnt + zcnt); 452 } 453 454 struct kinfo_proc2 * 455 kvm_getproc2(kd, op, arg, esize, cnt) 456 kvm_t *kd; 457 int op, arg; 458 size_t esize; 459 int *cnt; 460 { 461 size_t size; 462 int mib[6], st, nprocs; 463 struct pstats pstats; 464 465 if (kd->procbase2 != NULL) { 466 free(kd->procbase2); 467 /* 468 * Clear this pointer in case this call fails. Otherwise, 469 * kvm_close() will free it again. 470 */ 471 kd->procbase2 = NULL; 472 } 473 474 if (ISSYSCTL(kd)) { 475 size = 0; 476 mib[0] = CTL_KERN; 477 mib[1] = KERN_PROC2; 478 mib[2] = op; 479 mib[3] = arg; 480 mib[4] = (int)esize; 481 mib[5] = 0; 482 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 483 if (st == -1) { 484 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 485 return (NULL); 486 } 487 488 mib[5] = (int) (size / esize); 489 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size); 490 if (kd->procbase2 == NULL) 491 return (NULL); 492 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 493 if (st == -1) { 494 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 495 return (NULL); 496 } 497 nprocs = (int) (size / esize); 498 } else { 499 char *kp2c; 500 struct kinfo_proc *kp; 501 struct kinfo_proc2 kp2, *kp2p; 502 struct kinfo_lwp *kl; 503 int i, nlwps; 504 505 kp = kvm_getprocs(kd, op, arg, &nprocs); 506 if (kp == NULL) 507 return (NULL); 508 509 kd->procbase2 = _kvm_malloc(kd, nprocs * esize); 510 kp2c = (char *)(void *)kd->procbase2; 511 kp2p = &kp2; 512 for (i = 0; i < nprocs; i++, kp++) { 513 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 514 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 515 sizeof(struct kinfo_lwp), &nlwps); 516 /* We use kl[0] as the "representative" LWP */ 517 memset(kp2p, 0, sizeof(kp2)); 518 kp2p->p_forw = kl[0].l_forw; 519 kp2p->p_back = kl[0].l_back; 520 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 521 kp2p->p_addr = kl[0].l_addr; 522 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 523 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 524 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 525 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 526 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 527 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 528 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 529 kp2p->p_tsess = 0; 530 kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru); 531 532 kp2p->p_eflag = 0; 533 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 534 kp2p->p_flag = kp->kp_proc.p_flag; 535 536 kp2p->p_pid = kp->kp_proc.p_pid; 537 538 kp2p->p_ppid = kp->kp_eproc.e_ppid; 539 kp2p->p_sid = kp->kp_eproc.e_sid; 540 kp2p->p__pgid = kp->kp_eproc.e_pgid; 541 542 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 543 544 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 545 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 546 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 547 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 548 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 549 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 550 551 /*CONSTCOND*/ 552 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 553 MIN(sizeof(kp2p->p_groups), 554 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 555 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 556 557 kp2p->p_jobc = kp->kp_eproc.e_jobc; 558 kp2p->p_tdev = kp->kp_eproc.e_tdev; 559 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 560 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 561 562 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 563 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu; 564 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu; 565 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 566 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 567 kp2p->p_swtime = kl[0].l_swtime; 568 kp2p->p_slptime = kl[0].l_slptime; 569 #if 0 /* XXX thorpej */ 570 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 571 #else 572 kp2p->p_schedflags = 0; 573 #endif 574 575 kp2p->p_uticks = kp->kp_proc.p_uticks; 576 kp2p->p_sticks = kp->kp_proc.p_sticks; 577 kp2p->p_iticks = kp->kp_proc.p_iticks; 578 579 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 580 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 581 582 kp2p->p_holdcnt = kl[0].l_holdcnt; 583 584 memcpy(&kp2p->p_siglist, 585 &kp->kp_proc.p_sigctx.ps_siglist, 586 sizeof(ki_sigset_t)); 587 memcpy(&kp2p->p_sigmask, 588 &kp->kp_proc.p_sigctx.ps_sigmask, 589 sizeof(ki_sigset_t)); 590 memcpy(&kp2p->p_sigignore, 591 &kp->kp_proc.p_sigctx.ps_sigignore, 592 sizeof(ki_sigset_t)); 593 memcpy(&kp2p->p_sigcatch, 594 &kp->kp_proc.p_sigctx.ps_sigcatch, 595 sizeof(ki_sigset_t)); 596 597 kp2p->p_stat = kp->kp_proc.p_stat; 598 kp2p->p_priority = kl[0].l_priority; 599 kp2p->p_usrpri = kl[0].l_usrpri; 600 kp2p->p_nice = kp->kp_proc.p_nice; 601 602 kp2p->p_xstat = kp->kp_proc.p_xstat; 603 kp2p->p_acflag = kp->kp_proc.p_acflag; 604 605 /*CONSTCOND*/ 606 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 607 MIN(sizeof(kp2p->p_comm), 608 sizeof(kp->kp_proc.p_comm))); 609 610 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 611 sizeof(kp2p->p_wmesg)); 612 kp2p->p_wchan = kl[0].l_wchan; 613 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 614 sizeof(kp2p->p_login)); 615 616 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 617 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 618 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 619 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 620 621 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 622 623 kp2p->p_realflag = kp->kp_proc.p_flag; 624 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 625 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 626 kp2p->p_realstat = kp->kp_proc.p_stat; 627 628 if (P_ZOMBIE(&kp->kp_proc) || 629 kp->kp_proc.p_stats == NULL || 630 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 631 kp2p->p_uvalid = 0; 632 } else { 633 kp2p->p_uvalid = 1; 634 635 kp2p->p_ustart_sec = (u_int32_t) 636 pstats.p_start.tv_sec; 637 kp2p->p_ustart_usec = (u_int32_t) 638 pstats.p_start.tv_usec; 639 640 kp2p->p_uutime_sec = (u_int32_t) 641 pstats.p_ru.ru_utime.tv_sec; 642 kp2p->p_uutime_usec = (u_int32_t) 643 pstats.p_ru.ru_utime.tv_usec; 644 kp2p->p_ustime_sec = (u_int32_t) 645 pstats.p_ru.ru_stime.tv_sec; 646 kp2p->p_ustime_usec = (u_int32_t) 647 pstats.p_ru.ru_stime.tv_usec; 648 649 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 650 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 651 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 652 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 653 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 654 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 655 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 656 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 657 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 658 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 659 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 660 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 661 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 662 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 663 664 kp2p->p_uctime_sec = (u_int32_t) 665 (pstats.p_cru.ru_utime.tv_sec + 666 pstats.p_cru.ru_stime.tv_sec); 667 kp2p->p_uctime_usec = (u_int32_t) 668 (pstats.p_cru.ru_utime.tv_usec + 669 pstats.p_cru.ru_stime.tv_usec); 670 } 671 672 memcpy(kp2c, &kp2, esize); 673 kp2c += esize; 674 } 675 676 _kvm_freeprocs(kd); 677 } 678 *cnt = nprocs; 679 return (kd->procbase2); 680 } 681 682 struct kinfo_lwp * 683 kvm_getlwps(kd, pid, paddr, esize, cnt) 684 kvm_t *kd; 685 int pid; 686 u_long paddr; 687 size_t esize; 688 int *cnt; 689 { 690 size_t size; 691 int mib[5], nlwps; 692 ssize_t st; 693 struct kinfo_lwp *kl; 694 695 if (kd->lwpbase != NULL) { 696 free(kd->lwpbase); 697 /* 698 * Clear this pointer in case this call fails. Otherwise, 699 * kvm_close() will free it again. 700 */ 701 kd->lwpbase = NULL; 702 } 703 704 if (ISSYSCTL(kd)) { 705 size = 0; 706 mib[0] = CTL_KERN; 707 mib[1] = KERN_LWP; 708 mib[2] = pid; 709 mib[3] = (int)esize; 710 mib[4] = 0; 711 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 712 if (st == -1) { 713 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 714 return (NULL); 715 } 716 717 mib[4] = (int) (size / esize); 718 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size); 719 if (kd->lwpbase == NULL) 720 return (NULL); 721 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 722 if (st == -1) { 723 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 724 return (NULL); 725 } 726 nlwps = (int) (size / esize); 727 } else { 728 /* grovel through the memory image */ 729 struct proc p; 730 struct lwp l; 731 u_long laddr; 732 int i; 733 734 st = kvm_read(kd, paddr, &p, sizeof(p)); 735 if (st == -1) { 736 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 737 return (NULL); 738 } 739 740 nlwps = p.p_nlwps; 741 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, 742 nlwps * sizeof(struct kinfo_lwp)); 743 if (kd->lwpbase == NULL) 744 return (NULL); 745 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 746 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 747 st = kvm_read(kd, laddr, &l, sizeof(l)); 748 if (st == -1) { 749 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 750 return (NULL); 751 } 752 kl = &kd->lwpbase[i]; 753 kl->l_laddr = laddr; 754 kl->l_forw = PTRTOUINT64(l.l_forw); 755 kl->l_back = PTRTOUINT64(l.l_back); 756 kl->l_addr = PTRTOUINT64(l.l_addr); 757 kl->l_lid = l.l_lid; 758 kl->l_flag = l.l_flag; 759 kl->l_swtime = l.l_swtime; 760 kl->l_slptime = l.l_slptime; 761 kl->l_schedflags = 0; /* XXX */ 762 kl->l_holdcnt = l.l_holdcnt; 763 kl->l_priority = l.l_priority; 764 kl->l_usrpri = l.l_usrpri; 765 kl->l_stat = l.l_stat; 766 kl->l_wchan = PTRTOUINT64(l.l_wchan); 767 if (l.l_wmesg) 768 (void)kvm_read(kd, (u_long)l.l_wmesg, 769 kl->l_wmesg, (size_t)WMESGLEN); 770 kl->l_cpuid = KI_NOCPU; 771 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 772 } 773 } 774 775 *cnt = nlwps; 776 return (kd->lwpbase); 777 } 778 779 struct kinfo_proc * 780 kvm_getprocs(kd, op, arg, cnt) 781 kvm_t *kd; 782 int op, arg; 783 int *cnt; 784 { 785 size_t size; 786 int mib[4], st, nprocs; 787 788 if (kd->procbase != NULL) { 789 free(kd->procbase); 790 /* 791 * Clear this pointer in case this call fails. Otherwise, 792 * kvm_close() will free it again. 793 */ 794 kd->procbase = NULL; 795 } 796 if (ISKMEM(kd)) { 797 size = 0; 798 mib[0] = CTL_KERN; 799 mib[1] = KERN_PROC; 800 mib[2] = op; 801 mib[3] = arg; 802 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 803 if (st == -1) { 804 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 805 return (NULL); 806 } 807 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 808 if (kd->procbase == NULL) 809 return (NULL); 810 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 811 if (st == -1) { 812 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 813 return (NULL); 814 } 815 if (size % sizeof(struct kinfo_proc) != 0) { 816 _kvm_err(kd, kd->program, 817 "proc size mismatch (%lu total, %lu chunks)", 818 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 819 return (NULL); 820 } 821 nprocs = (int) (size / sizeof(struct kinfo_proc)); 822 } else if (ISSYSCTL(kd)) { 823 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 824 "can't use kvm_getprocs"); 825 return (NULL); 826 } else { 827 struct nlist nl[4], *p; 828 829 (void)memset(nl, 0, sizeof(nl)); 830 nl[0].n_name = "_nprocs"; 831 nl[1].n_name = "_allproc"; 832 nl[2].n_name = "_zombproc"; 833 nl[3].n_name = NULL; 834 835 if (kvm_nlist(kd, nl) != 0) { 836 for (p = nl; p->n_type != 0; ++p) 837 continue; 838 _kvm_err(kd, kd->program, 839 "%s: no such symbol", p->n_name); 840 return (NULL); 841 } 842 if (KREAD(kd, nl[0].n_value, &nprocs)) { 843 _kvm_err(kd, kd->program, "can't read nprocs"); 844 return (NULL); 845 } 846 size = nprocs * sizeof(struct kinfo_proc); 847 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 848 if (kd->procbase == NULL) 849 return (NULL); 850 851 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 852 nl[2].n_value, nprocs); 853 if (nprocs < 0) 854 return (NULL); 855 #ifdef notdef 856 size = nprocs * sizeof(struct kinfo_proc); 857 (void)realloc(kd->procbase, size); 858 #endif 859 } 860 *cnt = nprocs; 861 return (kd->procbase); 862 } 863 864 void 865 _kvm_freeprocs(kd) 866 kvm_t *kd; 867 { 868 869 if (kd->procbase) { 870 free(kd->procbase); 871 kd->procbase = NULL; 872 } 873 } 874 875 void * 876 _kvm_realloc(kd, p, n) 877 kvm_t *kd; 878 void *p; 879 size_t n; 880 { 881 void *np = realloc(p, n); 882 883 if (np == NULL) 884 _kvm_err(kd, kd->program, "out of memory"); 885 return (np); 886 } 887 888 /* 889 * Read in an argument vector from the user address space of process p. 890 * addr if the user-space base address of narg null-terminated contiguous 891 * strings. This is used to read in both the command arguments and 892 * environment strings. Read at most maxcnt characters of strings. 893 */ 894 static char ** 895 kvm_argv(kd, p, addr, narg, maxcnt) 896 kvm_t *kd; 897 const struct miniproc *p; 898 u_long addr; 899 int narg; 900 int maxcnt; 901 { 902 char *np, *cp, *ep, *ap; 903 u_long oaddr = (u_long)~0L; 904 u_long len; 905 size_t cc; 906 char **argv; 907 908 /* 909 * Check that there aren't an unreasonable number of arguments, 910 * and that the address is in user space. 911 */ 912 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 913 return (NULL); 914 915 if (kd->argv == NULL) { 916 /* 917 * Try to avoid reallocs. 918 */ 919 kd->argc = MAX(narg + 1, 32); 920 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 921 sizeof(*kd->argv)); 922 if (kd->argv == NULL) 923 return (NULL); 924 } else if (narg + 1 > kd->argc) { 925 kd->argc = MAX(2 * kd->argc, narg + 1); 926 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 927 sizeof(*kd->argv)); 928 if (kd->argv == NULL) 929 return (NULL); 930 } 931 if (kd->argspc == NULL) { 932 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 933 if (kd->argspc == NULL) 934 return (NULL); 935 kd->arglen = kd->nbpg; 936 } 937 if (kd->argbuf == NULL) { 938 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 939 if (kd->argbuf == NULL) 940 return (NULL); 941 } 942 cc = sizeof(char *) * narg; 943 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 944 return (NULL); 945 ap = np = kd->argspc; 946 argv = kd->argv; 947 len = 0; 948 /* 949 * Loop over pages, filling in the argument vector. 950 */ 951 while (argv < kd->argv + narg && *argv != NULL) { 952 addr = (u_long)*argv & ~(kd->nbpg - 1); 953 if (addr != oaddr) { 954 if (kvm_ureadm(kd, p, addr, kd->argbuf, 955 (size_t)kd->nbpg) != kd->nbpg) 956 return (NULL); 957 oaddr = addr; 958 } 959 addr = (u_long)*argv & (kd->nbpg - 1); 960 cp = kd->argbuf + (size_t)addr; 961 cc = kd->nbpg - (size_t)addr; 962 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 963 cc = (size_t)(maxcnt - len); 964 ep = memchr(cp, '\0', cc); 965 if (ep != NULL) 966 cc = ep - cp + 1; 967 if (len + cc > kd->arglen) { 968 ptrdiff_t off; 969 char **pp; 970 char *op = kd->argspc; 971 972 kd->arglen *= 2; 973 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 974 (size_t)kd->arglen); 975 if (kd->argspc == NULL) 976 return (NULL); 977 /* 978 * Adjust argv pointers in case realloc moved 979 * the string space. 980 */ 981 off = kd->argspc - op; 982 for (pp = kd->argv; pp < argv; pp++) 983 *pp += off; 984 ap += off; 985 np += off; 986 } 987 memcpy(np, cp, cc); 988 np += cc; 989 len += cc; 990 if (ep != NULL) { 991 *argv++ = ap; 992 ap = np; 993 } else 994 *argv += cc; 995 if (maxcnt > 0 && len >= maxcnt) { 996 /* 997 * We're stopping prematurely. Terminate the 998 * current string. 999 */ 1000 if (ep == NULL) { 1001 *np = '\0'; 1002 *argv++ = ap; 1003 } 1004 break; 1005 } 1006 } 1007 /* Make sure argv is terminated. */ 1008 *argv = NULL; 1009 return (kd->argv); 1010 } 1011 1012 static void 1013 ps_str_a(p, addr, n) 1014 struct ps_strings *p; 1015 u_long *addr; 1016 int *n; 1017 { 1018 1019 *addr = (u_long)p->ps_argvstr; 1020 *n = p->ps_nargvstr; 1021 } 1022 1023 static void 1024 ps_str_e(p, addr, n) 1025 struct ps_strings *p; 1026 u_long *addr; 1027 int *n; 1028 { 1029 1030 *addr = (u_long)p->ps_envstr; 1031 *n = p->ps_nenvstr; 1032 } 1033 1034 /* 1035 * Determine if the proc indicated by p is still active. 1036 * This test is not 100% foolproof in theory, but chances of 1037 * being wrong are very low. 1038 */ 1039 static int 1040 proc_verify(kd, kernp, p) 1041 kvm_t *kd; 1042 u_long kernp; 1043 const struct miniproc *p; 1044 { 1045 struct proc kernproc; 1046 1047 /* 1048 * Just read in the whole proc. It's not that big relative 1049 * to the cost of the read system call. 1050 */ 1051 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1052 sizeof(kernproc)) 1053 return (0); 1054 return (p->p_pid == kernproc.p_pid && 1055 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1056 } 1057 1058 static char ** 1059 kvm_doargv(kd, p, nchr, info) 1060 kvm_t *kd; 1061 const struct miniproc *p; 1062 int nchr; 1063 void (*info)(struct ps_strings *, u_long *, int *); 1064 { 1065 char **ap; 1066 u_long addr; 1067 int cnt; 1068 struct ps_strings arginfo; 1069 1070 /* 1071 * Pointers are stored at the top of the user stack. 1072 */ 1073 if (p->p_stat == SZOMB) 1074 return (NULL); 1075 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1076 (void *)&arginfo, sizeof(arginfo)); 1077 if (cnt != sizeof(arginfo)) 1078 return (NULL); 1079 1080 (*info)(&arginfo, &addr, &cnt); 1081 if (cnt == 0) 1082 return (NULL); 1083 ap = kvm_argv(kd, p, addr, cnt, nchr); 1084 /* 1085 * For live kernels, make sure this process didn't go away. 1086 */ 1087 if (ap != NULL && ISALIVE(kd) && 1088 !proc_verify(kd, (u_long)p->p_paddr, p)) 1089 ap = NULL; 1090 return (ap); 1091 } 1092 1093 /* 1094 * Get the command args. This code is now machine independent. 1095 */ 1096 char ** 1097 kvm_getargv(kd, kp, nchr) 1098 kvm_t *kd; 1099 const struct kinfo_proc *kp; 1100 int nchr; 1101 { 1102 struct miniproc p; 1103 1104 KPTOMINI(kp, &p); 1105 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1106 } 1107 1108 char ** 1109 kvm_getenvv(kd, kp, nchr) 1110 kvm_t *kd; 1111 const struct kinfo_proc *kp; 1112 int nchr; 1113 { 1114 struct miniproc p; 1115 1116 KPTOMINI(kp, &p); 1117 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1118 } 1119 1120 static char ** 1121 kvm_doargv2(kd, pid, type, nchr) 1122 kvm_t *kd; 1123 pid_t pid; 1124 int type; 1125 int nchr; 1126 { 1127 size_t bufs; 1128 int narg, mib[4]; 1129 size_t newarglen; 1130 char **ap, *bp, *endp; 1131 1132 /* 1133 * Check that there aren't an unreasonable number of arguments. 1134 */ 1135 if (nchr > ARG_MAX) 1136 return (NULL); 1137 1138 if (nchr == 0) 1139 nchr = ARG_MAX; 1140 1141 /* Get number of strings in argv */ 1142 mib[0] = CTL_KERN; 1143 mib[1] = KERN_PROC_ARGS; 1144 mib[2] = pid; 1145 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1146 bufs = sizeof(narg); 1147 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1148 return (NULL); 1149 1150 if (kd->argv == NULL) { 1151 /* 1152 * Try to avoid reallocs. 1153 */ 1154 kd->argc = MAX(narg + 1, 32); 1155 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 1156 sizeof(*kd->argv)); 1157 if (kd->argv == NULL) 1158 return (NULL); 1159 } else if (narg + 1 > kd->argc) { 1160 kd->argc = MAX(2 * kd->argc, narg + 1); 1161 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 1162 sizeof(*kd->argv)); 1163 if (kd->argv == NULL) 1164 return (NULL); 1165 } 1166 1167 newarglen = MIN(nchr, ARG_MAX); 1168 if (kd->arglen < newarglen) { 1169 if (kd->arglen == 0) 1170 kd->argspc = (char *)_kvm_malloc(kd, newarglen); 1171 else 1172 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 1173 newarglen); 1174 if (kd->argspc == NULL) 1175 return (NULL); 1176 if (newarglen > INT_MAX) 1177 return NULL; 1178 kd->arglen = (int)newarglen; 1179 } 1180 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */ 1181 1182 mib[0] = CTL_KERN; 1183 mib[1] = KERN_PROC_ARGS; 1184 mib[2] = pid; 1185 mib[3] = type; 1186 bufs = kd->arglen; 1187 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1188 return (NULL); 1189 1190 bp = kd->argspc; 1191 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */ 1192 ap = kd->argv; 1193 endp = bp + MIN(nchr, bufs); 1194 1195 while (bp < endp) { 1196 *ap++ = bp; 1197 /* 1198 * XXX: don't need following anymore, or stick check 1199 * for max argc in above while loop? 1200 */ 1201 if (ap >= kd->argv + kd->argc) { 1202 kd->argc *= 2; 1203 kd->argv = _kvm_realloc(kd, kd->argv, 1204 kd->argc * sizeof(*kd->argv)); 1205 ap = kd->argv; 1206 } 1207 bp += strlen(bp) + 1; 1208 } 1209 *ap = NULL; 1210 1211 return (kd->argv); 1212 } 1213 1214 char ** 1215 kvm_getargv2(kd, kp, nchr) 1216 kvm_t *kd; 1217 const struct kinfo_proc2 *kp; 1218 int nchr; 1219 { 1220 1221 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1222 } 1223 1224 char ** 1225 kvm_getenvv2(kd, kp, nchr) 1226 kvm_t *kd; 1227 const struct kinfo_proc2 *kp; 1228 int nchr; 1229 { 1230 1231 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1232 } 1233 1234 /* 1235 * Read from user space. The user context is given by p. 1236 */ 1237 static ssize_t 1238 kvm_ureadm(kd, p, uva, buf, len) 1239 kvm_t *kd; 1240 const struct miniproc *p; 1241 u_long uva; 1242 char *buf; 1243 size_t len; 1244 { 1245 char *cp; 1246 1247 cp = buf; 1248 while (len > 0) { 1249 size_t cc; 1250 char *dp; 1251 u_long cnt; 1252 1253 dp = _kvm_ureadm(kd, p, uva, &cnt); 1254 if (dp == NULL) { 1255 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1256 return (0); 1257 } 1258 cc = (size_t)MIN(cnt, len); 1259 memcpy(cp, dp, cc); 1260 cp += cc; 1261 uva += cc; 1262 len -= cc; 1263 } 1264 return (ssize_t)(cp - buf); 1265 } 1266 1267 ssize_t 1268 kvm_uread(kd, p, uva, buf, len) 1269 kvm_t *kd; 1270 const struct proc *p; 1271 u_long uva; 1272 char *buf; 1273 size_t len; 1274 { 1275 struct miniproc mp; 1276 1277 PTOMINI(p, &mp); 1278 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1279 } 1280