xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision d9158b13b5dfe46201430699a3f7a235ecf28df3)
1 /*-
2  * Copyright (c) 1994 Charles Hannum.
3  * Copyright (c) 1989, 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software developed by the Computer Systems
7  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
8  * BG 91-66 and contributed to Berkeley.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if defined(LIBC_SCCS) && !defined(lint)
40 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41 #endif /* LIBC_SCCS and not lint */
42 
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49 
50 #include <sys/param.h>
51 #include <sys/user.h>
52 #include <sys/proc.h>
53 #include <sys/exec.h>
54 #include <sys/stat.h>
55 #include <sys/ioctl.h>
56 #include <sys/tty.h>
57 #include <unistd.h>
58 #include <nlist.h>
59 #include <kvm.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/swap_pager.h>
64 
65 #include <sys/sysctl.h>
66 
67 #include <limits.h>
68 #include <db.h>
69 #include <paths.h>
70 
71 #include "kvm_private.h"
72 
73 #define KREAD(kd, addr, obj) \
74 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
75 
76 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long, char *));
77 
78 static char *
79 kvm_readswap(kd, p, va, cnt)
80 	kvm_t *kd;
81 	const struct proc *p;
82 	u_long va;
83 	u_long *cnt;
84 {
85 	register u_long addr, head;
86 	register u_long offset;
87 	struct vm_map_entry vme;
88 	struct vm_object vmo;
89 	static char page[NBPG];
90 
91 	head = (u_long)&p->p_vmspace->vm_map.header;
92 	/*
93 	 * Look through the address map for the memory object
94 	 * that corresponds to the given virtual address.
95 	 * The header just has the entire valid range.
96 	 */
97 	addr = head;
98 	while (1) {
99 		if (KREAD(kd, addr, &vme))
100 			return (0);
101 
102 		if (va >= vme.start && va < vme.end &&
103 		    vme.object.vm_object != 0)
104 			break;
105 
106 		addr = (u_long)vme.next;
107 		if (addr == head)
108 			return (0);
109 	}
110 
111 	/*
112 	 * We found the right object -- follow shadow links.
113 	 */
114 	offset = va - vme.start + vme.offset;
115 	addr = (u_long)vme.object.vm_object;
116 	while (1) {
117 		if (KREAD(kd, addr, &vmo))
118 			return (0);
119 
120 		/* If there is a pager here, see if it has the page. */
121 		if (vmo.pager != 0 &&
122 		    _kvm_readfrompager(kd, &vmo, offset, page))
123 			break;
124 
125 		/* Move down the shadow chain. */
126 		addr = (u_long)vmo.shadow;
127 		if (addr == 0)
128 			return (0);
129 		offset += vmo.shadow_offset;
130 	}
131 
132 	/* Found the page. */
133 	offset %= NBPG;
134 	*cnt = NBPG - offset;
135 	return (&page[offset]);
136 }
137 
138 int
139 _kvm_readfrompager(kd, vmop, offset, buf)
140 	kvm_t *kd;
141 	struct vm_object *vmop;
142 	u_long offset;
143 	char *buf;
144 {
145 	u_long addr;
146 	struct pager_struct pager;
147 	struct swpager swap;
148 	int ix;
149 	struct swblock swb;
150 	register off_t seekpoint;
151 
152 	/* Read in the pager info and make sure it's a swap device. */
153 	addr = (u_long)vmop->pager;
154 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
155 		return (0);
156 
157 	/* Read in the swap_pager private data. */
158 	addr = (u_long)pager.pg_data;
159 	if (KREAD(kd, addr, &swap))
160 		return (0);
161 
162 	/*
163 	 * Calculate the paging offset, and make sure it's within the
164 	 * bounds of the pager.
165 	 */
166 	offset += vmop->paging_offset;
167 	ix = offset / dbtob(swap.sw_bsize);
168 #if 0
169 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
170 		return (0);
171 #else
172 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
173 		int i;
174 		printf("BUG BUG BUG BUG:\n");
175 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
176 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
177 		    vmop->pager, pager.pg_data);
178 		printf("osize %x bsize %x blocks %x nblocks %x\n",
179 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
180 		    swap.sw_nblocks);
181 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
182 			addr = (u_long)&swap.sw_blocks[ix];
183 			if (KREAD(kd, addr, &swb))
184 				return (0);
185 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
186 			    swb.swb_block, swb.swb_mask);
187 		}
188 		return (0);
189 	}
190 #endif
191 
192 	/* Read in the swap records. */
193 	addr = (u_long)&swap.sw_blocks[ix];
194 	if (KREAD(kd, addr, &swb))
195 		return (0);
196 
197 	/* Calculate offset within pager. */
198 	offset %= dbtob(swap.sw_bsize);
199 
200 	/* Check that the page is actually present. */
201 	if ((swb.swb_mask & (1 << (offset / NBPG))) == 0)
202 		return (0);
203 
204 	/* Calculate the physical address and read the page. */
205 	seekpoint = dbtob(swb.swb_block) + (offset & ~PGOFSET);
206 	if (lseek(kd->swfd, seekpoint, 0) == -1)
207 		return (0);
208 	if (read(kd->swfd, buf, NBPG) != NBPG)
209 		return (0);
210 
211 	return (1);
212 }
213 
214 /*
215  * Read proc's from memory file into buffer bp, which has space to hold
216  * at most maxcnt procs.
217  */
218 static int
219 kvm_proclist(kd, what, arg, p, bp, maxcnt)
220 	kvm_t *kd;
221 	int what, arg;
222 	struct proc *p;
223 	struct kinfo_proc *bp;
224 	int maxcnt;
225 {
226 	register int cnt = 0;
227 	struct eproc eproc;
228 	struct pgrp pgrp;
229 	struct session sess;
230 	struct tty tty;
231 	struct proc proc;
232 
233 	for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
234 		if (KREAD(kd, (u_long)p, &proc)) {
235 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
236 			return (-1);
237 		}
238 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
239 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
240 			      &eproc.e_ucred);
241 
242 		switch(what) {
243 
244 		case KERN_PROC_PID:
245 			if (proc.p_pid != (pid_t)arg)
246 				continue;
247 			break;
248 
249 		case KERN_PROC_UID:
250 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
251 				continue;
252 			break;
253 
254 		case KERN_PROC_RUID:
255 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
256 				continue;
257 			break;
258 		}
259 		/*
260 		 * We're going to add another proc to the set.  If this
261 		 * will overflow the buffer, assume the reason is because
262 		 * nprocs (or the proc list) is corrupt and declare an error.
263 		 */
264 		if (cnt >= maxcnt) {
265 			_kvm_err(kd, kd->program, "nprocs corrupt");
266 			return (-1);
267 		}
268 		/*
269 		 * gather eproc
270 		 */
271 		eproc.e_paddr = p;
272 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
273 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
274 				 proc.p_pgrp);
275 			return (-1);
276 		}
277 		eproc.e_sess = pgrp.pg_session;
278 		eproc.e_pgid = pgrp.pg_id;
279 		eproc.e_jobc = pgrp.pg_jobc;
280 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
281 			_kvm_err(kd, kd->program, "can't read session at %x",
282 				pgrp.pg_session);
283 			return (-1);
284 		}
285 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
286 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
287 				_kvm_err(kd, kd->program,
288 					 "can't read tty at %x", sess.s_ttyp);
289 				return (-1);
290 			}
291 			eproc.e_tdev = tty.t_dev;
292 			eproc.e_tsess = tty.t_session;
293 			if (tty.t_pgrp != NULL) {
294 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
295 					_kvm_err(kd, kd->program,
296 						 "can't read tpgrp at &x",
297 						tty.t_pgrp);
298 					return (-1);
299 				}
300 				eproc.e_tpgid = pgrp.pg_id;
301 			} else
302 				eproc.e_tpgid = -1;
303 		} else
304 			eproc.e_tdev = NODEV;
305 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
306 		if (sess.s_leader == p)
307 			eproc.e_flag |= EPROC_SLEADER;
308 		if (proc.p_wmesg)
309 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
310 			    eproc.e_wmesg, WMESGLEN);
311 
312 #ifdef sparc
313 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
314 		    (char *)&eproc.e_vm.vm_rssize,
315 		    sizeof(eproc.e_vm.vm_rssize));
316 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
317 		    (char *)&eproc.e_vm.vm_tsize,
318 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
319 #else
320 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
321 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
322 #endif
323 		eproc.e_xsize = eproc.e_xrssize = 0;
324 		eproc.e_xccount = eproc.e_xswrss = 0;
325 
326 		switch (what) {
327 
328 		case KERN_PROC_PGRP:
329 			if (eproc.e_pgid != (pid_t)arg)
330 				continue;
331 			break;
332 
333 		case KERN_PROC_TTY:
334 			if ((proc.p_flag & P_CONTROLT) == 0 ||
335 			     eproc.e_tdev != (dev_t)arg)
336 				continue;
337 			break;
338 		}
339 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
340 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
341 		++bp;
342 		++cnt;
343 	}
344 	return (cnt);
345 }
346 
347 /*
348  * Build proc info array by reading in proc list from a crash dump.
349  * Return number of procs read.  maxcnt is the max we will read.
350  */
351 static int
352 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
353 	kvm_t *kd;
354 	int what, arg;
355 	u_long a_allproc;
356 	u_long a_zombproc;
357 	int maxcnt;
358 {
359 	register struct kinfo_proc *bp = kd->procbase;
360 	register int acnt, zcnt;
361 	struct proc *p;
362 
363 	if (KREAD(kd, a_allproc, &p)) {
364 		_kvm_err(kd, kd->program, "cannot read allproc");
365 		return (-1);
366 	}
367 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
368 	if (acnt < 0)
369 		return (acnt);
370 
371 	if (KREAD(kd, a_zombproc, &p)) {
372 		_kvm_err(kd, kd->program, "cannot read zombproc");
373 		return (-1);
374 	}
375 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
376 	if (zcnt < 0)
377 		zcnt = 0;
378 
379 	return (acnt + zcnt);
380 }
381 
382 struct kinfo_proc *
383 kvm_getprocs(kd, op, arg, cnt)
384 	kvm_t *kd;
385 	int op, arg;
386 	int *cnt;
387 {
388 	int mib[4], size, st, nprocs;
389 
390 	if (kd->procbase != 0) {
391 		free((void *)kd->procbase);
392 		/*
393 		 * Clear this pointer in case this call fails.  Otherwise,
394 		 * kvm_close() will free it again.
395 		 */
396 		kd->procbase = 0;
397 	}
398 	if (ISALIVE(kd)) {
399 		size = 0;
400 		mib[0] = CTL_KERN;
401 		mib[1] = KERN_PROC;
402 		mib[2] = op;
403 		mib[3] = arg;
404 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
405 		if (st == -1) {
406 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
407 			return (0);
408 		}
409 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
410 		if (kd->procbase == 0)
411 			return (0);
412 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
413 		if (st == -1) {
414 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
415 			return (0);
416 		}
417 		if (size % sizeof(struct kinfo_proc) != 0) {
418 			_kvm_err(kd, kd->program,
419 				"proc size mismatch (%d total, %d chunks)",
420 				size, sizeof(struct kinfo_proc));
421 			return (0);
422 		}
423 		nprocs = size / sizeof(struct kinfo_proc);
424 	} else {
425 		struct nlist nl[4], *p;
426 
427 		nl[0].n_name = "_nprocs";
428 		nl[1].n_name = "_allproc";
429 		nl[2].n_name = "_zombproc";
430 		nl[3].n_name = 0;
431 
432 		if (kvm_nlist(kd, nl) != 0) {
433 			for (p = nl; p->n_type != 0; ++p)
434 				;
435 			_kvm_err(kd, kd->program,
436 				 "%s: no such symbol", p->n_name);
437 			return (0);
438 		}
439 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
440 			_kvm_err(kd, kd->program, "can't read nprocs");
441 			return (0);
442 		}
443 		size = nprocs * sizeof(struct kinfo_proc);
444 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
445 		if (kd->procbase == 0)
446 			return (0);
447 
448 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
449 				      nl[2].n_value, nprocs);
450 #ifdef notdef
451 		size = nprocs * sizeof(struct kinfo_proc);
452 		(void)realloc(kd->procbase, size);
453 #endif
454 	}
455 	*cnt = nprocs;
456 	return (kd->procbase);
457 }
458 
459 void
460 _kvm_freeprocs(kd)
461 	kvm_t *kd;
462 {
463 	if (kd->procbase) {
464 		free(kd->procbase);
465 		kd->procbase = 0;
466 	}
467 }
468 
469 void *
470 _kvm_realloc(kd, p, n)
471 	kvm_t *kd;
472 	void *p;
473 	size_t n;
474 {
475 	void *np = (void *)realloc(p, n);
476 
477 	if (np == 0)
478 		_kvm_err(kd, kd->program, "out of memory");
479 	return (np);
480 }
481 
482 #ifndef MAX
483 #define MAX(a, b) ((a) > (b) ? (a) : (b))
484 #endif
485 
486 /*
487  * Read in an argument vector from the user address space of process p.
488  * addr if the user-space base address of narg null-terminated contiguous
489  * strings.  This is used to read in both the command arguments and
490  * environment strings.  Read at most maxcnt characters of strings.
491  */
492 static char **
493 kvm_argv(kd, p, addr, narg, maxcnt)
494 	kvm_t *kd;
495 	struct proc *p;
496 	register u_long addr;
497 	register int narg;
498 	register int maxcnt;
499 {
500 	register char *cp;
501 	register int len, cc;
502 	register char **argv;
503 
504 	/*
505 	 * Check that there aren't an unreasonable number of agruments,
506 	 * and that the address is in user space.
507 	 */
508 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
509 		return (0);
510 
511 	if (kd->argv == 0) {
512 		/*
513 		 * Try to avoid reallocs.
514 		 */
515 		kd->argc = MAX(narg + 1, 32);
516 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
517 						sizeof(*kd->argv));
518 		if (kd->argv == 0)
519 			return (0);
520 	} else if (narg + 1 > kd->argc) {
521 		kd->argc = MAX(2 * kd->argc, narg + 1);
522 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
523 						sizeof(*kd->argv));
524 		if (kd->argv == 0)
525 			return (0);
526 	}
527 	if (kd->argspc == 0) {
528 		kd->argspc = (char *)_kvm_malloc(kd, NBPG);
529 		if (kd->argspc == 0)
530 			return (0);
531 		kd->arglen = NBPG;
532 	}
533 	cp = kd->argspc;
534 	argv = kd->argv;
535 	*argv = cp;
536 	len = 0;
537 	/*
538 	 * Loop over pages, filling in the argument vector.
539 	 */
540 	while (addr < VM_MAXUSER_ADDRESS) {
541 		cc = NBPG - (addr & PGOFSET);
542 		if (maxcnt > 0 && cc > maxcnt - len)
543 			cc = maxcnt - len;;
544 		if (len + cc > kd->arglen) {
545 			register int off;
546 			register char **pp;
547 			register char *op = kd->argspc;
548 
549 			kd->arglen *= 2;
550 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
551 							  kd->arglen);
552 			if (kd->argspc == 0)
553 				return (0);
554 			cp = &kd->argspc[len];
555 			/*
556 			 * Adjust argv pointers in case realloc moved
557 			 * the string space.
558 			 */
559 			off = kd->argspc - op;
560 			for (pp = kd->argv; pp < argv; ++pp)
561 				*pp += off;
562 		}
563 		if (kvm_uread(kd, p, addr, cp, cc) != cc)
564 			/* XXX */
565 			return (0);
566 		len += cc;
567 		addr += cc;
568 
569 		if (maxcnt == 0 && len > 16 * NBPG)
570 			/* sanity */
571 			return (0);
572 
573 		while (--cc >= 0) {
574 			if (*cp++ == 0) {
575 				if (--narg <= 0) {
576 					*++argv = 0;
577 					return (kd->argv);
578 				} else
579 					*++argv = cp;
580 			}
581 		}
582 		if (maxcnt > 0 && len >= maxcnt) {
583 			/*
584 			 * We're stopping prematurely.  Terminate the
585 			 * argv and current string.
586 			 */
587 			*++argv = 0;
588 			*cp = 0;
589 			return (kd->argv);
590 		}
591 	}
592 }
593 
594 static void
595 ps_str_a(p, addr, n)
596 	struct ps_strings *p;
597 	u_long *addr;
598 	int *n;
599 {
600 	*addr = (u_long)p->ps_argvstr;
601 	*n = p->ps_nargvstr;
602 }
603 
604 static void
605 ps_str_e(p, addr, n)
606 	struct ps_strings *p;
607 	u_long *addr;
608 	int *n;
609 {
610 	*addr = (u_long)p->ps_envstr;
611 	*n = p->ps_nenvstr;
612 }
613 
614 /*
615  * Determine if the proc indicated by p is still active.
616  * This test is not 100% foolproof in theory, but chances of
617  * being wrong are very low.
618  */
619 static int
620 proc_verify(kd, kernp, p)
621 	kvm_t *kd;
622 	u_long kernp;
623 	const struct proc *p;
624 {
625 	struct proc kernproc;
626 
627 	/*
628 	 * Just read in the whole proc.  It's not that big relative
629 	 * to the cost of the read system call.
630 	 */
631 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
632 	    sizeof(kernproc))
633 		return (0);
634 	return (p->p_pid == kernproc.p_pid &&
635 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
636 }
637 
638 static char **
639 kvm_doargv(kd, kp, nchr, info)
640 	kvm_t *kd;
641 	const struct kinfo_proc *kp;
642 	int nchr;
643 	int (*info)(struct ps_strings*, u_long *, int *);
644 {
645 	register const struct proc *p = &kp->kp_proc;
646 	register char **ap;
647 	u_long addr;
648 	int cnt;
649 	struct ps_strings arginfo;
650 
651 	/*
652 	 * Pointers are stored at the top of the user stack.
653 	 */
654 	if (p->p_stat == SZOMB ||
655 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
656 		      sizeof(arginfo)) != sizeof(arginfo))
657 		return (0);
658 
659 	(*info)(&arginfo, &addr, &cnt);
660 	ap = kvm_argv(kd, p, addr, cnt, nchr);
661 	/*
662 	 * For live kernels, make sure this process didn't go away.
663 	 */
664 	if (ap != 0 && ISALIVE(kd) &&
665 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
666 		ap = 0;
667 	return (ap);
668 }
669 
670 /*
671  * Get the command args.  This code is now machine independent.
672  */
673 char **
674 kvm_getargv(kd, kp, nchr)
675 	kvm_t *kd;
676 	const struct kinfo_proc *kp;
677 	int nchr;
678 {
679 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
680 }
681 
682 char **
683 kvm_getenvv(kd, kp, nchr)
684 	kvm_t *kd;
685 	const struct kinfo_proc *kp;
686 	int nchr;
687 {
688 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
689 }
690 
691 /*
692  * Read from user space.  The user context is given by p.
693  */
694 ssize_t
695 kvm_uread(kd, p, uva, buf, len)
696 	kvm_t *kd;
697 	register struct proc *p;
698 	register u_long uva;
699 	register char *buf;
700 	register size_t len;
701 {
702 	register char *cp;
703 
704 	cp = buf;
705 	while (len > 0) {
706 		u_long pa;
707 		register int cc;
708 
709 		cc = _kvm_uvatop(kd, p, uva, &pa);
710 		if (cc > 0) {
711 			if (cc > len)
712 				cc = len;
713 			errno = 0;
714 			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
715 				_kvm_err(kd, 0, "invalid address (%x)", uva);
716 				break;
717 			}
718 			cc = read(kd->pmfd, cp, cc);
719 			if (cc < 0) {
720 				_kvm_syserr(kd, 0, _PATH_MEM);
721 				break;
722 			} else if (cc < len) {
723 				_kvm_err(kd, kd->program, "short read");
724 				break;
725 			}
726 		} else if (ISALIVE(kd)) {
727 			/* try swap */
728 			register char *dp;
729 			int cnt;
730 
731 			dp = kvm_readswap(kd, p, uva, &cnt);
732 			if (dp == 0) {
733 				_kvm_err(kd, 0, "invalid address (%x)", uva);
734 				return (0);
735 			}
736 			cc = MIN(cnt, len);
737 			bcopy(dp, cp, cc);
738 		} else
739 			break;
740 		cp += cc;
741 		uva += cc;
742 		len -= cc;
743 	}
744 	return (ssize_t)(cp - buf);
745 }
746