1 /* $NetBSD: kvm_proc.c,v 1.62 2006/05/11 12:00:20 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 #if defined(LIBC_SCCS) && !defined(lint) 74 #if 0 75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 76 #else 77 __RCSID("$NetBSD: kvm_proc.c,v 1.62 2006/05/11 12:00:20 yamt Exp $"); 78 #endif 79 #endif /* LIBC_SCCS and not lint */ 80 81 /* 82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 83 * users of this code, so we've factored it out into a separate module. 84 * Thus, we keep this grunge out of the other kvm applications (i.e., 85 * most other applications are interested only in open/close/read/nlist). 86 */ 87 88 #include <sys/param.h> 89 #include <sys/user.h> 90 #include <sys/lwp.h> 91 #include <sys/proc.h> 92 #include <sys/exec.h> 93 #include <sys/stat.h> 94 #include <sys/ioctl.h> 95 #include <sys/tty.h> 96 #include <sys/resourcevar.h> 97 #include <stdlib.h> 98 #include <stddef.h> 99 #include <string.h> 100 #include <unistd.h> 101 #include <nlist.h> 102 #include <kvm.h> 103 104 #include <uvm/uvm_extern.h> 105 #include <uvm/uvm_amap.h> 106 107 #include <sys/sysctl.h> 108 109 #include <limits.h> 110 #include <db.h> 111 #include <paths.h> 112 113 #include "kvm_private.h" 114 115 /* 116 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 117 */ 118 struct miniproc { 119 struct vmspace *p_vmspace; 120 char p_stat; 121 struct proc *p_paddr; 122 pid_t p_pid; 123 }; 124 125 /* 126 * Convert from struct proc and kinfo_proc{,2} to miniproc. 127 */ 128 #define PTOMINI(kp, p) \ 129 do { \ 130 (p)->p_stat = (kp)->p_stat; \ 131 (p)->p_pid = (kp)->p_pid; \ 132 (p)->p_paddr = NULL; \ 133 (p)->p_vmspace = (kp)->p_vmspace; \ 134 } while (/*CONSTCOND*/0); 135 136 #define KPTOMINI(kp, p) \ 137 do { \ 138 (p)->p_stat = (kp)->kp_proc.p_stat; \ 139 (p)->p_pid = (kp)->kp_proc.p_pid; \ 140 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 141 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 142 } while (/*CONSTCOND*/0); 143 144 #define KP2TOMINI(kp, p) \ 145 do { \ 146 (p)->p_stat = (kp)->p_stat; \ 147 (p)->p_pid = (kp)->p_pid; \ 148 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 149 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 150 } while (/*CONSTCOND*/0); 151 152 153 #define KREAD(kd, addr, obj) \ 154 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 155 156 /* XXX: What uses these two functions? */ 157 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 158 u_long *)); 159 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 160 size_t)); 161 162 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 163 u_long *)); 164 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 165 char *, size_t)); 166 167 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 168 int)); 169 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 170 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 171 void (*)(struct ps_strings *, u_long *, int *))); 172 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 173 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 174 struct kinfo_proc *, int)); 175 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 176 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 177 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 178 179 180 static char * 181 _kvm_ureadm(kd, p, va, cnt) 182 kvm_t *kd; 183 const struct miniproc *p; 184 u_long va; 185 u_long *cnt; 186 { 187 int true = 1; 188 u_long addr, head; 189 u_long offset; 190 struct vm_map_entry vme; 191 struct vm_amap amap; 192 struct vm_anon *anonp, anon; 193 struct vm_page pg; 194 u_long slot; 195 196 if (kd->swapspc == NULL) { 197 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 198 if (kd->swapspc == NULL) 199 return (NULL); 200 } 201 202 /* 203 * Look through the address map for the memory object 204 * that corresponds to the given virtual address. 205 * The header just has the entire valid range. 206 */ 207 head = (u_long)&p->p_vmspace->vm_map.header; 208 addr = head; 209 while (true) { 210 if (KREAD(kd, addr, &vme)) 211 return (NULL); 212 213 if (va >= vme.start && va < vme.end && 214 vme.aref.ar_amap != NULL) 215 break; 216 217 addr = (u_long)vme.next; 218 if (addr == head) 219 return (NULL); 220 } 221 222 /* 223 * we found the map entry, now to find the object... 224 */ 225 if (vme.aref.ar_amap == NULL) 226 return (NULL); 227 228 addr = (u_long)vme.aref.ar_amap; 229 if (KREAD(kd, addr, &amap)) 230 return (NULL); 231 232 offset = va - vme.start; 233 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 234 /* sanity-check slot number */ 235 if (slot > amap.am_nslot) 236 return (NULL); 237 238 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 239 if (KREAD(kd, addr, &anonp)) 240 return (NULL); 241 242 addr = (u_long)anonp; 243 if (KREAD(kd, addr, &anon)) 244 return (NULL); 245 246 addr = (u_long)anon.an_page; 247 if (addr) { 248 if (KREAD(kd, addr, &pg)) 249 return (NULL); 250 251 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 252 (off_t)pg.phys_addr) != kd->nbpg) 253 return (NULL); 254 } else { 255 if (kd->swfd < 0 || 256 pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg, 257 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 258 return (NULL); 259 } 260 261 /* Found the page. */ 262 offset %= kd->nbpg; 263 *cnt = kd->nbpg - offset; 264 return (&kd->swapspc[(size_t)offset]); 265 } 266 267 char * 268 _kvm_uread(kd, p, va, cnt) 269 kvm_t *kd; 270 const struct proc *p; 271 u_long va; 272 u_long *cnt; 273 { 274 struct miniproc mp; 275 276 PTOMINI(p, &mp); 277 return (_kvm_ureadm(kd, &mp, va, cnt)); 278 } 279 280 /* 281 * Read proc's from memory file into buffer bp, which has space to hold 282 * at most maxcnt procs. 283 */ 284 static int 285 kvm_proclist(kd, what, arg, p, bp, maxcnt) 286 kvm_t *kd; 287 int what, arg; 288 struct proc *p; 289 struct kinfo_proc *bp; 290 int maxcnt; 291 { 292 int cnt = 0; 293 int nlwps; 294 struct kinfo_lwp *kl; 295 struct eproc eproc; 296 struct pgrp pgrp; 297 struct session sess; 298 struct tty tty; 299 struct proc proc; 300 301 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 302 if (KREAD(kd, (u_long)p, &proc)) { 303 _kvm_err(kd, kd->program, "can't read proc at %p", p); 304 return (-1); 305 } 306 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 307 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 308 &eproc.e_ucred)) { 309 _kvm_err(kd, kd->program, 310 "can't read proc credentials at %p", p); 311 return (-1); 312 } 313 314 switch (what) { 315 316 case KERN_PROC_PID: 317 if (proc.p_pid != (pid_t)arg) 318 continue; 319 break; 320 321 case KERN_PROC_UID: 322 if (eproc.e_ucred.cr_uid != (uid_t)arg) 323 continue; 324 break; 325 326 case KERN_PROC_RUID: 327 if (eproc.e_pcred.p_ruid != (uid_t)arg) 328 continue; 329 break; 330 } 331 /* 332 * We're going to add another proc to the set. If this 333 * will overflow the buffer, assume the reason is because 334 * nprocs (or the proc list) is corrupt and declare an error. 335 */ 336 if (cnt >= maxcnt) { 337 _kvm_err(kd, kd->program, "nprocs corrupt"); 338 return (-1); 339 } 340 /* 341 * gather eproc 342 */ 343 eproc.e_paddr = p; 344 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 345 _kvm_err(kd, kd->program, "can't read pgrp at %p", 346 proc.p_pgrp); 347 return (-1); 348 } 349 eproc.e_sess = pgrp.pg_session; 350 eproc.e_pgid = pgrp.pg_id; 351 eproc.e_jobc = pgrp.pg_jobc; 352 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 353 _kvm_err(kd, kd->program, "can't read session at %p", 354 pgrp.pg_session); 355 return (-1); 356 } 357 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 358 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 359 _kvm_err(kd, kd->program, 360 "can't read tty at %p", sess.s_ttyp); 361 return (-1); 362 } 363 eproc.e_tdev = tty.t_dev; 364 eproc.e_tsess = tty.t_session; 365 if (tty.t_pgrp != NULL) { 366 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 367 _kvm_err(kd, kd->program, 368 "can't read tpgrp at %p", 369 tty.t_pgrp); 370 return (-1); 371 } 372 eproc.e_tpgid = pgrp.pg_id; 373 } else 374 eproc.e_tpgid = -1; 375 } else 376 eproc.e_tdev = NODEV; 377 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 378 eproc.e_sid = sess.s_sid; 379 if (sess.s_leader == p) 380 eproc.e_flag |= EPROC_SLEADER; 381 /* 382 * Fill in the old-style proc.p_wmesg by copying the wmesg 383 * from the first available LWP. 384 */ 385 kl = kvm_getlwps(kd, proc.p_pid, 386 (u_long)PTRTOUINT64(eproc.e_paddr), 387 sizeof(struct kinfo_lwp), &nlwps); 388 if (kl) { 389 if (nlwps > 0) { 390 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 391 } 392 } 393 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 394 sizeof(eproc.e_vm)); 395 396 eproc.e_xsize = eproc.e_xrssize = 0; 397 eproc.e_xccount = eproc.e_xswrss = 0; 398 399 switch (what) { 400 401 case KERN_PROC_PGRP: 402 if (eproc.e_pgid != (pid_t)arg) 403 continue; 404 break; 405 406 case KERN_PROC_TTY: 407 if ((proc.p_flag & P_CONTROLT) == 0 || 408 eproc.e_tdev != (dev_t)arg) 409 continue; 410 break; 411 } 412 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 413 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 414 ++bp; 415 ++cnt; 416 } 417 return (cnt); 418 } 419 420 /* 421 * Build proc info array by reading in proc list from a crash dump. 422 * Return number of procs read. maxcnt is the max we will read. 423 */ 424 static int 425 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 426 kvm_t *kd; 427 int what, arg; 428 u_long a_allproc; 429 u_long a_zombproc; 430 int maxcnt; 431 { 432 struct kinfo_proc *bp = kd->procbase; 433 int acnt, zcnt; 434 struct proc *p; 435 436 if (KREAD(kd, a_allproc, &p)) { 437 _kvm_err(kd, kd->program, "cannot read allproc"); 438 return (-1); 439 } 440 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 441 if (acnt < 0) 442 return (acnt); 443 444 if (KREAD(kd, a_zombproc, &p)) { 445 _kvm_err(kd, kd->program, "cannot read zombproc"); 446 return (-1); 447 } 448 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 449 maxcnt - acnt); 450 if (zcnt < 0) 451 zcnt = 0; 452 453 return (acnt + zcnt); 454 } 455 456 struct kinfo_proc2 * 457 kvm_getproc2(kd, op, arg, esize, cnt) 458 kvm_t *kd; 459 int op, arg; 460 size_t esize; 461 int *cnt; 462 { 463 size_t size; 464 int mib[6], st, nprocs; 465 struct pstats pstats; 466 467 if (ISSYSCTL(kd)) { 468 size = 0; 469 mib[0] = CTL_KERN; 470 mib[1] = KERN_PROC2; 471 mib[2] = op; 472 mib[3] = arg; 473 mib[4] = (int)esize; 474 mib[5] = 0; 475 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 476 if (st == -1) { 477 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 478 return (NULL); 479 } 480 481 mib[5] = (int) (size / esize); 482 KVM_ALLOC(kd, procbase2, size); 483 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 484 if (st == -1) { 485 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 486 return (NULL); 487 } 488 nprocs = (int) (size / esize); 489 } else { 490 char *kp2c; 491 struct kinfo_proc *kp; 492 struct kinfo_proc2 kp2, *kp2p; 493 struct kinfo_lwp *kl; 494 int i, nlwps; 495 496 kp = kvm_getprocs(kd, op, arg, &nprocs); 497 if (kp == NULL) 498 return (NULL); 499 500 size = nprocs * esize; 501 KVM_ALLOC(kd, procbase2, size); 502 kp2c = (char *)(void *)kd->procbase2; 503 kp2p = &kp2; 504 for (i = 0; i < nprocs; i++, kp++) { 505 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 506 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 507 sizeof(struct kinfo_lwp), &nlwps); 508 /* We use kl[0] as the "representative" LWP */ 509 memset(kp2p, 0, sizeof(kp2)); 510 kp2p->p_forw = kl[0].l_forw; 511 kp2p->p_back = kl[0].l_back; 512 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 513 kp2p->p_addr = kl[0].l_addr; 514 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 515 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 516 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 517 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 518 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 519 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 520 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 521 kp2p->p_tsess = 0; 522 kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru); 523 524 kp2p->p_eflag = 0; 525 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 526 kp2p->p_flag = kp->kp_proc.p_flag; 527 528 kp2p->p_pid = kp->kp_proc.p_pid; 529 530 kp2p->p_ppid = kp->kp_eproc.e_ppid; 531 kp2p->p_sid = kp->kp_eproc.e_sid; 532 kp2p->p__pgid = kp->kp_eproc.e_pgid; 533 534 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 535 536 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 537 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 538 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 539 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 540 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 541 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 542 543 /*CONSTCOND*/ 544 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 545 MIN(sizeof(kp2p->p_groups), 546 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 547 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 548 549 kp2p->p_jobc = kp->kp_eproc.e_jobc; 550 kp2p->p_tdev = kp->kp_eproc.e_tdev; 551 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 552 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 553 554 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 555 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu; 556 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu; 557 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 558 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 559 kp2p->p_swtime = kl[0].l_swtime; 560 kp2p->p_slptime = kl[0].l_slptime; 561 #if 0 /* XXX thorpej */ 562 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 563 #else 564 kp2p->p_schedflags = 0; 565 #endif 566 567 kp2p->p_uticks = kp->kp_proc.p_uticks; 568 kp2p->p_sticks = kp->kp_proc.p_sticks; 569 kp2p->p_iticks = kp->kp_proc.p_iticks; 570 571 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 572 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 573 574 kp2p->p_holdcnt = kl[0].l_holdcnt; 575 576 memcpy(&kp2p->p_siglist, 577 &kp->kp_proc.p_sigctx.ps_siglist, 578 sizeof(ki_sigset_t)); 579 memcpy(&kp2p->p_sigmask, 580 &kp->kp_proc.p_sigctx.ps_sigmask, 581 sizeof(ki_sigset_t)); 582 memcpy(&kp2p->p_sigignore, 583 &kp->kp_proc.p_sigctx.ps_sigignore, 584 sizeof(ki_sigset_t)); 585 memcpy(&kp2p->p_sigcatch, 586 &kp->kp_proc.p_sigctx.ps_sigcatch, 587 sizeof(ki_sigset_t)); 588 589 kp2p->p_stat = kp->kp_proc.p_stat; 590 kp2p->p_priority = kl[0].l_priority; 591 kp2p->p_usrpri = kl[0].l_usrpri; 592 kp2p->p_nice = kp->kp_proc.p_nice; 593 594 kp2p->p_xstat = kp->kp_proc.p_xstat; 595 kp2p->p_acflag = kp->kp_proc.p_acflag; 596 597 /*CONSTCOND*/ 598 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 599 MIN(sizeof(kp2p->p_comm), 600 sizeof(kp->kp_proc.p_comm))); 601 602 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 603 sizeof(kp2p->p_wmesg)); 604 kp2p->p_wchan = kl[0].l_wchan; 605 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 606 sizeof(kp2p->p_login)); 607 608 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 609 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 610 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 611 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 612 613 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 614 615 kp2p->p_realflag = kp->kp_proc.p_flag; 616 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 617 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 618 kp2p->p_realstat = kp->kp_proc.p_stat; 619 620 if (P_ZOMBIE(&kp->kp_proc) || 621 kp->kp_proc.p_stats == NULL || 622 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 623 kp2p->p_uvalid = 0; 624 } else { 625 kp2p->p_uvalid = 1; 626 627 kp2p->p_ustart_sec = (u_int32_t) 628 pstats.p_start.tv_sec; 629 kp2p->p_ustart_usec = (u_int32_t) 630 pstats.p_start.tv_usec; 631 632 kp2p->p_uutime_sec = (u_int32_t) 633 pstats.p_ru.ru_utime.tv_sec; 634 kp2p->p_uutime_usec = (u_int32_t) 635 pstats.p_ru.ru_utime.tv_usec; 636 kp2p->p_ustime_sec = (u_int32_t) 637 pstats.p_ru.ru_stime.tv_sec; 638 kp2p->p_ustime_usec = (u_int32_t) 639 pstats.p_ru.ru_stime.tv_usec; 640 641 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 642 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 643 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 644 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 645 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 646 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 647 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 648 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 649 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 650 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 651 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 652 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 653 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 654 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 655 656 kp2p->p_uctime_sec = (u_int32_t) 657 (pstats.p_cru.ru_utime.tv_sec + 658 pstats.p_cru.ru_stime.tv_sec); 659 kp2p->p_uctime_usec = (u_int32_t) 660 (pstats.p_cru.ru_utime.tv_usec + 661 pstats.p_cru.ru_stime.tv_usec); 662 } 663 664 memcpy(kp2c, &kp2, esize); 665 kp2c += esize; 666 } 667 } 668 *cnt = nprocs; 669 return (kd->procbase2); 670 } 671 672 struct kinfo_lwp * 673 kvm_getlwps(kd, pid, paddr, esize, cnt) 674 kvm_t *kd; 675 int pid; 676 u_long paddr; 677 size_t esize; 678 int *cnt; 679 { 680 size_t size; 681 int mib[5], nlwps; 682 ssize_t st; 683 struct kinfo_lwp *kl; 684 685 if (ISSYSCTL(kd)) { 686 size = 0; 687 mib[0] = CTL_KERN; 688 mib[1] = KERN_LWP; 689 mib[2] = pid; 690 mib[3] = (int)esize; 691 mib[4] = 0; 692 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 693 if (st == -1) { 694 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 695 return (NULL); 696 } 697 698 mib[4] = (int) (size / esize); 699 KVM_ALLOC(kd, lwpbase, size); 700 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 701 if (st == -1) { 702 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 703 return (NULL); 704 } 705 nlwps = (int) (size / esize); 706 } else { 707 /* grovel through the memory image */ 708 struct proc p; 709 struct lwp l; 710 u_long laddr; 711 int i; 712 713 st = kvm_read(kd, paddr, &p, sizeof(p)); 714 if (st == -1) { 715 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 716 return (NULL); 717 } 718 719 nlwps = p.p_nlwps; 720 size = nlwps * sizeof(*kd->lwpbase); 721 KVM_ALLOC(kd, lwpbase, size); 722 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 723 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 724 st = kvm_read(kd, laddr, &l, sizeof(l)); 725 if (st == -1) { 726 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 727 return (NULL); 728 } 729 kl = &kd->lwpbase[i]; 730 kl->l_laddr = laddr; 731 kl->l_forw = PTRTOUINT64(l.l_forw); 732 kl->l_back = PTRTOUINT64(l.l_back); 733 kl->l_addr = PTRTOUINT64(l.l_addr); 734 kl->l_lid = l.l_lid; 735 kl->l_flag = l.l_flag; 736 kl->l_swtime = l.l_swtime; 737 kl->l_slptime = l.l_slptime; 738 kl->l_schedflags = 0; /* XXX */ 739 kl->l_holdcnt = l.l_holdcnt; 740 kl->l_priority = l.l_priority; 741 kl->l_usrpri = l.l_usrpri; 742 kl->l_stat = l.l_stat; 743 kl->l_wchan = PTRTOUINT64(l.l_wchan); 744 if (l.l_wmesg) 745 (void)kvm_read(kd, (u_long)l.l_wmesg, 746 kl->l_wmesg, (size_t)WMESGLEN); 747 kl->l_cpuid = KI_NOCPU; 748 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 749 } 750 } 751 752 *cnt = nlwps; 753 return (kd->lwpbase); 754 } 755 756 struct kinfo_proc * 757 kvm_getprocs(kd, op, arg, cnt) 758 kvm_t *kd; 759 int op, arg; 760 int *cnt; 761 { 762 size_t size; 763 int mib[4], st, nprocs; 764 765 if (ISKMEM(kd)) { 766 size = 0; 767 mib[0] = CTL_KERN; 768 mib[1] = KERN_PROC; 769 mib[2] = op; 770 mib[3] = arg; 771 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 772 if (st == -1) { 773 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 774 return (NULL); 775 } 776 KVM_ALLOC(kd, procbase, size); 777 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 778 if (st == -1) { 779 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 780 return (NULL); 781 } 782 if (size % sizeof(struct kinfo_proc) != 0) { 783 _kvm_err(kd, kd->program, 784 "proc size mismatch (%lu total, %lu chunks)", 785 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 786 return (NULL); 787 } 788 nprocs = (int) (size / sizeof(struct kinfo_proc)); 789 } else if (ISSYSCTL(kd)) { 790 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 791 "can't use kvm_getprocs"); 792 return (NULL); 793 } else { 794 struct nlist nl[4], *p; 795 796 (void)memset(nl, 0, sizeof(nl)); 797 nl[0].n_name = "_nprocs"; 798 nl[1].n_name = "_allproc"; 799 nl[2].n_name = "_zombproc"; 800 nl[3].n_name = NULL; 801 802 if (kvm_nlist(kd, nl) != 0) { 803 for (p = nl; p->n_type != 0; ++p) 804 continue; 805 _kvm_err(kd, kd->program, 806 "%s: no such symbol", p->n_name); 807 return (NULL); 808 } 809 if (KREAD(kd, nl[0].n_value, &nprocs)) { 810 _kvm_err(kd, kd->program, "can't read nprocs"); 811 return (NULL); 812 } 813 size = nprocs * sizeof(*kd->procbase); 814 KVM_ALLOC(kd, procbase, size); 815 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 816 nl[2].n_value, nprocs); 817 if (nprocs < 0) 818 return (NULL); 819 #ifdef notdef 820 size = nprocs * sizeof(struct kinfo_proc); 821 (void)realloc(kd->procbase, size); 822 #endif 823 } 824 *cnt = nprocs; 825 return (kd->procbase); 826 } 827 828 void * 829 _kvm_realloc(kd, p, n) 830 kvm_t *kd; 831 void *p; 832 size_t n; 833 { 834 void *np = realloc(p, n); 835 836 if (np == NULL) 837 _kvm_err(kd, kd->program, "out of memory"); 838 return (np); 839 } 840 841 /* 842 * Read in an argument vector from the user address space of process p. 843 * addr if the user-space base address of narg null-terminated contiguous 844 * strings. This is used to read in both the command arguments and 845 * environment strings. Read at most maxcnt characters of strings. 846 */ 847 static char ** 848 kvm_argv(kd, p, addr, narg, maxcnt) 849 kvm_t *kd; 850 const struct miniproc *p; 851 u_long addr; 852 int narg; 853 int maxcnt; 854 { 855 char *np, *cp, *ep, *ap; 856 u_long oaddr = (u_long)~0L; 857 u_long len; 858 size_t cc; 859 char **argv; 860 861 /* 862 * Check that there aren't an unreasonable number of arguments, 863 * and that the address is in user space. 864 */ 865 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 866 return (NULL); 867 868 if (kd->argv == NULL) { 869 /* 870 * Try to avoid reallocs. 871 */ 872 kd->argc = MAX(narg + 1, 32); 873 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 874 if (kd->argv == NULL) 875 return (NULL); 876 } else if (narg + 1 > kd->argc) { 877 kd->argc = MAX(2 * kd->argc, narg + 1); 878 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 879 sizeof(*kd->argv)); 880 if (kd->argv == NULL) 881 return (NULL); 882 } 883 if (kd->argspc == NULL) { 884 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 885 if (kd->argspc == NULL) 886 return (NULL); 887 kd->argspc_len = kd->nbpg; 888 } 889 if (kd->argbuf == NULL) { 890 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 891 if (kd->argbuf == NULL) 892 return (NULL); 893 } 894 cc = sizeof(char *) * narg; 895 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 896 return (NULL); 897 ap = np = kd->argspc; 898 argv = kd->argv; 899 len = 0; 900 /* 901 * Loop over pages, filling in the argument vector. 902 */ 903 while (argv < kd->argv + narg && *argv != NULL) { 904 addr = (u_long)*argv & ~(kd->nbpg - 1); 905 if (addr != oaddr) { 906 if (kvm_ureadm(kd, p, addr, kd->argbuf, 907 (size_t)kd->nbpg) != kd->nbpg) 908 return (NULL); 909 oaddr = addr; 910 } 911 addr = (u_long)*argv & (kd->nbpg - 1); 912 cp = kd->argbuf + (size_t)addr; 913 cc = kd->nbpg - (size_t)addr; 914 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 915 cc = (size_t)(maxcnt - len); 916 ep = memchr(cp, '\0', cc); 917 if (ep != NULL) 918 cc = ep - cp + 1; 919 if (len + cc > kd->argspc_len) { 920 ptrdiff_t off; 921 char **pp; 922 char *op = kd->argspc; 923 924 kd->argspc_len *= 2; 925 kd->argspc = _kvm_realloc(kd, kd->argspc, 926 kd->argspc_len); 927 if (kd->argspc == NULL) 928 return (NULL); 929 /* 930 * Adjust argv pointers in case realloc moved 931 * the string space. 932 */ 933 off = kd->argspc - op; 934 for (pp = kd->argv; pp < argv; pp++) 935 *pp += off; 936 ap += off; 937 np += off; 938 } 939 memcpy(np, cp, cc); 940 np += cc; 941 len += cc; 942 if (ep != NULL) { 943 *argv++ = ap; 944 ap = np; 945 } else 946 *argv += cc; 947 if (maxcnt > 0 && len >= maxcnt) { 948 /* 949 * We're stopping prematurely. Terminate the 950 * current string. 951 */ 952 if (ep == NULL) { 953 *np = '\0'; 954 *argv++ = ap; 955 } 956 break; 957 } 958 } 959 /* Make sure argv is terminated. */ 960 *argv = NULL; 961 return (kd->argv); 962 } 963 964 static void 965 ps_str_a(p, addr, n) 966 struct ps_strings *p; 967 u_long *addr; 968 int *n; 969 { 970 971 *addr = (u_long)p->ps_argvstr; 972 *n = p->ps_nargvstr; 973 } 974 975 static void 976 ps_str_e(p, addr, n) 977 struct ps_strings *p; 978 u_long *addr; 979 int *n; 980 { 981 982 *addr = (u_long)p->ps_envstr; 983 *n = p->ps_nenvstr; 984 } 985 986 /* 987 * Determine if the proc indicated by p is still active. 988 * This test is not 100% foolproof in theory, but chances of 989 * being wrong are very low. 990 */ 991 static int 992 proc_verify(kd, kernp, p) 993 kvm_t *kd; 994 u_long kernp; 995 const struct miniproc *p; 996 { 997 struct proc kernproc; 998 999 /* 1000 * Just read in the whole proc. It's not that big relative 1001 * to the cost of the read system call. 1002 */ 1003 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1004 sizeof(kernproc)) 1005 return (0); 1006 return (p->p_pid == kernproc.p_pid && 1007 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1008 } 1009 1010 static char ** 1011 kvm_doargv(kd, p, nchr, info) 1012 kvm_t *kd; 1013 const struct miniproc *p; 1014 int nchr; 1015 void (*info)(struct ps_strings *, u_long *, int *); 1016 { 1017 char **ap; 1018 u_long addr; 1019 int cnt; 1020 struct ps_strings arginfo; 1021 1022 /* 1023 * Pointers are stored at the top of the user stack. 1024 */ 1025 if (p->p_stat == SZOMB) 1026 return (NULL); 1027 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1028 (void *)&arginfo, sizeof(arginfo)); 1029 if (cnt != sizeof(arginfo)) 1030 return (NULL); 1031 1032 (*info)(&arginfo, &addr, &cnt); 1033 if (cnt == 0) 1034 return (NULL); 1035 ap = kvm_argv(kd, p, addr, cnt, nchr); 1036 /* 1037 * For live kernels, make sure this process didn't go away. 1038 */ 1039 if (ap != NULL && ISALIVE(kd) && 1040 !proc_verify(kd, (u_long)p->p_paddr, p)) 1041 ap = NULL; 1042 return (ap); 1043 } 1044 1045 /* 1046 * Get the command args. This code is now machine independent. 1047 */ 1048 char ** 1049 kvm_getargv(kd, kp, nchr) 1050 kvm_t *kd; 1051 const struct kinfo_proc *kp; 1052 int nchr; 1053 { 1054 struct miniproc p; 1055 1056 KPTOMINI(kp, &p); 1057 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1058 } 1059 1060 char ** 1061 kvm_getenvv(kd, kp, nchr) 1062 kvm_t *kd; 1063 const struct kinfo_proc *kp; 1064 int nchr; 1065 { 1066 struct miniproc p; 1067 1068 KPTOMINI(kp, &p); 1069 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1070 } 1071 1072 static char ** 1073 kvm_doargv2(kd, pid, type, nchr) 1074 kvm_t *kd; 1075 pid_t pid; 1076 int type; 1077 int nchr; 1078 { 1079 size_t bufs; 1080 int narg, mib[4]; 1081 size_t newargspc_len; 1082 char **ap, *bp, *endp; 1083 1084 /* 1085 * Check that there aren't an unreasonable number of arguments. 1086 */ 1087 if (nchr > ARG_MAX) 1088 return (NULL); 1089 1090 if (nchr == 0) 1091 nchr = ARG_MAX; 1092 1093 /* Get number of strings in argv */ 1094 mib[0] = CTL_KERN; 1095 mib[1] = KERN_PROC_ARGS; 1096 mib[2] = pid; 1097 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1098 bufs = sizeof(narg); 1099 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1100 return (NULL); 1101 1102 if (kd->argv == NULL) { 1103 /* 1104 * Try to avoid reallocs. 1105 */ 1106 kd->argc = MAX(narg + 1, 32); 1107 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1108 if (kd->argv == NULL) 1109 return (NULL); 1110 } else if (narg + 1 > kd->argc) { 1111 kd->argc = MAX(2 * kd->argc, narg + 1); 1112 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1113 sizeof(*kd->argv)); 1114 if (kd->argv == NULL) 1115 return (NULL); 1116 } 1117 1118 newargspc_len = MIN(nchr, ARG_MAX); 1119 KVM_ALLOC(kd, argspc, newargspc_len); 1120 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1121 1122 mib[0] = CTL_KERN; 1123 mib[1] = KERN_PROC_ARGS; 1124 mib[2] = pid; 1125 mib[3] = type; 1126 bufs = kd->argspc_len; 1127 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1128 return (NULL); 1129 1130 bp = kd->argspc; 1131 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1132 ap = kd->argv; 1133 endp = bp + MIN(nchr, bufs); 1134 1135 while (bp < endp) { 1136 *ap++ = bp; 1137 /* 1138 * XXX: don't need following anymore, or stick check 1139 * for max argc in above while loop? 1140 */ 1141 if (ap >= kd->argv + kd->argc) { 1142 kd->argc *= 2; 1143 kd->argv = _kvm_realloc(kd, kd->argv, 1144 kd->argc * sizeof(*kd->argv)); 1145 ap = kd->argv; 1146 } 1147 bp += strlen(bp) + 1; 1148 } 1149 *ap = NULL; 1150 1151 return (kd->argv); 1152 } 1153 1154 char ** 1155 kvm_getargv2(kd, kp, nchr) 1156 kvm_t *kd; 1157 const struct kinfo_proc2 *kp; 1158 int nchr; 1159 { 1160 1161 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1162 } 1163 1164 char ** 1165 kvm_getenvv2(kd, kp, nchr) 1166 kvm_t *kd; 1167 const struct kinfo_proc2 *kp; 1168 int nchr; 1169 { 1170 1171 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1172 } 1173 1174 /* 1175 * Read from user space. The user context is given by p. 1176 */ 1177 static ssize_t 1178 kvm_ureadm(kd, p, uva, buf, len) 1179 kvm_t *kd; 1180 const struct miniproc *p; 1181 u_long uva; 1182 char *buf; 1183 size_t len; 1184 { 1185 char *cp; 1186 1187 cp = buf; 1188 while (len > 0) { 1189 size_t cc; 1190 char *dp; 1191 u_long cnt; 1192 1193 dp = _kvm_ureadm(kd, p, uva, &cnt); 1194 if (dp == NULL) { 1195 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1196 return (0); 1197 } 1198 cc = (size_t)MIN(cnt, len); 1199 memcpy(cp, dp, cc); 1200 cp += cc; 1201 uva += cc; 1202 len -= cc; 1203 } 1204 return (ssize_t)(cp - buf); 1205 } 1206 1207 ssize_t 1208 kvm_uread(kd, p, uva, buf, len) 1209 kvm_t *kd; 1210 const struct proc *p; 1211 u_long uva; 1212 char *buf; 1213 size_t len; 1214 { 1215 struct miniproc mp; 1216 1217 PTOMINI(p, &mp); 1218 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1219 } 1220