xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: kvm_proc.c,v 1.56 2003/11/17 20:41:54 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 #if defined(LIBC_SCCS) && !defined(lint)
74 #if 0
75 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
76 #else
77 __RCSID("$NetBSD: kvm_proc.c,v 1.56 2003/11/17 20:41:54 christos Exp $");
78 #endif
79 #endif /* LIBC_SCCS and not lint */
80 
81 /*
82  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
83  * users of this code, so we've factored it out into a separate module.
84  * Thus, we keep this grunge out of the other kvm applications (i.e.,
85  * most other applications are interested only in open/close/read/nlist).
86  */
87 
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/exec.h>
93 #include <sys/stat.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <stdlib.h>
97 #include <stddef.h>
98 #include <string.h>
99 #include <unistd.h>
100 #include <nlist.h>
101 #include <kvm.h>
102 
103 #include <uvm/uvm_extern.h>
104 #include <uvm/uvm_amap.h>
105 
106 #include <sys/sysctl.h>
107 
108 #include <limits.h>
109 #include <db.h>
110 #include <paths.h>
111 
112 #include "kvm_private.h"
113 
114 /*
115  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
116  */
117 struct miniproc {
118 	struct	vmspace *p_vmspace;
119 	char	p_stat;
120 	struct	proc *p_paddr;
121 	pid_t	p_pid;
122 };
123 
124 /*
125  * Convert from struct proc and kinfo_proc{,2} to miniproc.
126  */
127 #define PTOMINI(kp, p) \
128 	do { \
129 		(p)->p_stat = (kp)->p_stat; \
130 		(p)->p_pid = (kp)->p_pid; \
131 		(p)->p_paddr = NULL; \
132 		(p)->p_vmspace = (kp)->p_vmspace; \
133 	} while (/*CONSTCOND*/0);
134 
135 #define KPTOMINI(kp, p) \
136 	do { \
137 		(p)->p_stat = (kp)->kp_proc.p_stat; \
138 		(p)->p_pid = (kp)->kp_proc.p_pid; \
139 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
140 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
141 	} while (/*CONSTCOND*/0);
142 
143 #define KP2TOMINI(kp, p) \
144 	do { \
145 		(p)->p_stat = (kp)->p_stat; \
146 		(p)->p_pid = (kp)->p_pid; \
147 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
148 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
149 	} while (/*CONSTCOND*/0);
150 
151 
152 #define	PTRTOINT64(foo)	((u_int64_t)(const uintptr_t)(const void *)(foo))
153 
154 #define KREAD(kd, addr, obj) \
155 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
156 
157 /* XXX: What uses these two functions? */
158 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
159 		    u_long *));
160 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
161 		    size_t));
162 
163 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
164 		    u_long *));
165 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
166 		    char *, size_t));
167 
168 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
169 		    int));
170 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
171 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
172 		    void (*)(struct ps_strings *, u_long *, int *)));
173 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
174 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
175 		    struct kinfo_proc *, int));
176 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
177 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
178 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
179 
180 
181 static char *
182 _kvm_ureadm(kd, p, va, cnt)
183 	kvm_t *kd;
184 	const struct miniproc *p;
185 	u_long va;
186 	u_long *cnt;
187 {
188 	int true = 1;
189 	u_long addr, head;
190 	u_long offset;
191 	struct vm_map_entry vme;
192 	struct vm_amap amap;
193 	struct vm_anon *anonp, anon;
194 	struct vm_page pg;
195 	u_long slot;
196 
197 	if (kd->swapspc == NULL) {
198 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
199 		if (kd->swapspc == NULL)
200 			return (NULL);
201 	}
202 
203 	/*
204 	 * Look through the address map for the memory object
205 	 * that corresponds to the given virtual address.
206 	 * The header just has the entire valid range.
207 	 */
208 	head = (u_long)&p->p_vmspace->vm_map.header;
209 	addr = head;
210 	while (true) {
211 		if (KREAD(kd, addr, &vme))
212 			return (NULL);
213 
214 		if (va >= vme.start && va < vme.end &&
215 		    vme.aref.ar_amap != NULL)
216 			break;
217 
218 		addr = (u_long)vme.next;
219 		if (addr == head)
220 			return (NULL);
221 	}
222 
223 	/*
224 	 * we found the map entry, now to find the object...
225 	 */
226 	if (vme.aref.ar_amap == NULL)
227 		return (NULL);
228 
229 	addr = (u_long)vme.aref.ar_amap;
230 	if (KREAD(kd, addr, &amap))
231 		return (NULL);
232 
233 	offset = va - vme.start;
234 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
235 	/* sanity-check slot number */
236 	if (slot > amap.am_nslot)
237 		return (NULL);
238 
239 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
240 	if (KREAD(kd, addr, &anonp))
241 		return (NULL);
242 
243 	addr = (u_long)anonp;
244 	if (KREAD(kd, addr, &anon))
245 		return (NULL);
246 
247 	addr = (u_long)anon.u.an_page;
248 	if (addr) {
249 		if (KREAD(kd, addr, &pg))
250 			return (NULL);
251 
252 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
253 		    (off_t)pg.phys_addr) != kd->nbpg)
254 			return (NULL);
255 	} else {
256 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
257 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
258 			return (NULL);
259 	}
260 
261 	/* Found the page. */
262 	offset %= kd->nbpg;
263 	*cnt = kd->nbpg - offset;
264 	return (&kd->swapspc[(size_t)offset]);
265 }
266 
267 char *
268 _kvm_uread(kd, p, va, cnt)
269 	kvm_t *kd;
270 	const struct proc *p;
271 	u_long va;
272 	u_long *cnt;
273 {
274 	struct miniproc mp;
275 
276 	PTOMINI(p, &mp);
277 	return (_kvm_ureadm(kd, &mp, va, cnt));
278 }
279 
280 /*
281  * Read proc's from memory file into buffer bp, which has space to hold
282  * at most maxcnt procs.
283  */
284 static int
285 kvm_proclist(kd, what, arg, p, bp, maxcnt)
286 	kvm_t *kd;
287 	int what, arg;
288 	struct proc *p;
289 	struct kinfo_proc *bp;
290 	int maxcnt;
291 {
292 	int cnt = 0;
293 	int nlwps;
294 	struct kinfo_lwp *kl;
295 	struct eproc eproc;
296 	struct pgrp pgrp;
297 	struct session sess;
298 	struct tty tty;
299 	struct proc proc;
300 
301 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
302 		if (KREAD(kd, (u_long)p, &proc)) {
303 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
304 			return (-1);
305 		}
306 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
307 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
308 			    &eproc.e_ucred)) {
309 				_kvm_err(kd, kd->program,
310 				    "can't read proc credentials at %p", p);
311 				return (-1);
312 			}
313 
314 		switch (what) {
315 
316 		case KERN_PROC_PID:
317 			if (proc.p_pid != (pid_t)arg)
318 				continue;
319 			break;
320 
321 		case KERN_PROC_UID:
322 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
323 				continue;
324 			break;
325 
326 		case KERN_PROC_RUID:
327 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
328 				continue;
329 			break;
330 		}
331 		/*
332 		 * We're going to add another proc to the set.  If this
333 		 * will overflow the buffer, assume the reason is because
334 		 * nprocs (or the proc list) is corrupt and declare an error.
335 		 */
336 		if (cnt >= maxcnt) {
337 			_kvm_err(kd, kd->program, "nprocs corrupt");
338 			return (-1);
339 		}
340 		/*
341 		 * gather eproc
342 		 */
343 		eproc.e_paddr = p;
344 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
345 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
346 			    proc.p_pgrp);
347 			return (-1);
348 		}
349 		eproc.e_sess = pgrp.pg_session;
350 		eproc.e_pgid = pgrp.pg_id;
351 		eproc.e_jobc = pgrp.pg_jobc;
352 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
353 			_kvm_err(kd, kd->program, "can't read session at %p",
354 			    pgrp.pg_session);
355 			return (-1);
356 		}
357 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
358 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
359 				_kvm_err(kd, kd->program,
360 				    "can't read tty at %p", sess.s_ttyp);
361 				return (-1);
362 			}
363 			eproc.e_tdev = tty.t_dev;
364 			eproc.e_tsess = tty.t_session;
365 			if (tty.t_pgrp != NULL) {
366 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
367 					_kvm_err(kd, kd->program,
368 					    "can't read tpgrp at %p",
369 					    tty.t_pgrp);
370 					return (-1);
371 				}
372 				eproc.e_tpgid = pgrp.pg_id;
373 			} else
374 				eproc.e_tpgid = -1;
375 		} else
376 			eproc.e_tdev = NODEV;
377 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
378 		eproc.e_sid = sess.s_sid;
379 		if (sess.s_leader == p)
380 			eproc.e_flag |= EPROC_SLEADER;
381 		/*
382 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
383 		 * from the first available LWP.
384 		 */
385 		kl = kvm_getlwps(kd, proc.p_pid,
386 		    (u_long)PTRTOINT64(eproc.e_paddr),
387 		    sizeof(struct kinfo_lwp), &nlwps);
388 		if (kl) {
389 			if (nlwps > 0) {
390 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
391 			}
392 		}
393 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
394 		    sizeof(eproc.e_vm));
395 
396 		eproc.e_xsize = eproc.e_xrssize = 0;
397 		eproc.e_xccount = eproc.e_xswrss = 0;
398 
399 		switch (what) {
400 
401 		case KERN_PROC_PGRP:
402 			if (eproc.e_pgid != (pid_t)arg)
403 				continue;
404 			break;
405 
406 		case KERN_PROC_TTY:
407 			if ((proc.p_flag & P_CONTROLT) == 0 ||
408 			    eproc.e_tdev != (dev_t)arg)
409 				continue;
410 			break;
411 		}
412 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
413 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
414 		++bp;
415 		++cnt;
416 	}
417 	return (cnt);
418 }
419 
420 /*
421  * Build proc info array by reading in proc list from a crash dump.
422  * Return number of procs read.  maxcnt is the max we will read.
423  */
424 static int
425 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
426 	kvm_t *kd;
427 	int what, arg;
428 	u_long a_allproc;
429 	u_long a_zombproc;
430 	int maxcnt;
431 {
432 	struct kinfo_proc *bp = kd->procbase;
433 	int acnt, zcnt;
434 	struct proc *p;
435 
436 	if (KREAD(kd, a_allproc, &p)) {
437 		_kvm_err(kd, kd->program, "cannot read allproc");
438 		return (-1);
439 	}
440 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
441 	if (acnt < 0)
442 		return (acnt);
443 
444 	if (KREAD(kd, a_zombproc, &p)) {
445 		_kvm_err(kd, kd->program, "cannot read zombproc");
446 		return (-1);
447 	}
448 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
449 	    maxcnt - acnt);
450 	if (zcnt < 0)
451 		zcnt = 0;
452 
453 	return (acnt + zcnt);
454 }
455 
456 struct kinfo_proc2 *
457 kvm_getproc2(kd, op, arg, esize, cnt)
458 	kvm_t *kd;
459 	int op, arg;
460 	size_t esize;
461 	int *cnt;
462 {
463 	size_t size;
464 	int mib[6], st, nprocs;
465 	struct pstats pstats;
466 
467 	if (kd->procbase2 != NULL) {
468 		free(kd->procbase2);
469 		/*
470 		 * Clear this pointer in case this call fails.  Otherwise,
471 		 * kvm_close() will free it again.
472 		 */
473 		kd->procbase2 = NULL;
474 	}
475 
476 	if (ISSYSCTL(kd)) {
477 		size = 0;
478 		mib[0] = CTL_KERN;
479 		mib[1] = KERN_PROC2;
480 		mib[2] = op;
481 		mib[3] = arg;
482 		mib[4] = (int)esize;
483 		mib[5] = 0;
484 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
485 		if (st == -1) {
486 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
487 			return (NULL);
488 		}
489 
490 		mib[5] = (int) (size / esize);
491 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
492 		if (kd->procbase2 == NULL)
493 			return (NULL);
494 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
495 		if (st == -1) {
496 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
497 			return (NULL);
498 		}
499 		nprocs = (int) (size / esize);
500 	} else {
501 		char *kp2c;
502 		struct kinfo_proc *kp;
503 		struct kinfo_proc2 kp2, *kp2p;
504 		struct kinfo_lwp *kl;
505 		int i, nlwps;
506 
507 		kp = kvm_getprocs(kd, op, arg, &nprocs);
508 		if (kp == NULL)
509 			return (NULL);
510 
511 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
512 		kp2c = (char *)(void *)kd->procbase2;
513 		kp2p = &kp2;
514 		for (i = 0; i < nprocs; i++, kp++) {
515 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
516 			    (u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
517 			    sizeof(struct kinfo_lwp), &nlwps);
518 			/* We use kl[0] as the "representative" LWP */
519 			memset(kp2p, 0, sizeof(kp2));
520 			kp2p->p_forw = kl[0].l_forw;
521 			kp2p->p_back = kl[0].l_back;
522 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
523 			kp2p->p_addr = kl[0].l_addr;
524 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
525 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
526 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
527 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
528 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
529 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
530 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
531 			kp2p->p_tsess = 0;
532 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
533 
534 			kp2p->p_eflag = 0;
535 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
536 			kp2p->p_flag = kp->kp_proc.p_flag;
537 
538 			kp2p->p_pid = kp->kp_proc.p_pid;
539 
540 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
541 			kp2p->p_sid = kp->kp_eproc.e_sid;
542 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
543 
544 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
545 
546 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
547 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
548 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
549 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
550 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
551 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
552 
553 			/*CONSTCOND*/
554 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
555 			    MIN(sizeof(kp2p->p_groups),
556 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
557 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
558 
559 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
560 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
561 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
562 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
563 
564 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
565 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
566 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
567 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
568 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
569 			kp2p->p_swtime = kl[0].l_swtime;
570 			kp2p->p_slptime = kl[0].l_slptime;
571 #if 0 /* XXX thorpej */
572 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
573 #else
574 			kp2p->p_schedflags = 0;
575 #endif
576 
577 			kp2p->p_uticks = kp->kp_proc.p_uticks;
578 			kp2p->p_sticks = kp->kp_proc.p_sticks;
579 			kp2p->p_iticks = kp->kp_proc.p_iticks;
580 
581 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
582 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
583 
584 			kp2p->p_holdcnt = kl[0].l_holdcnt;
585 
586 			memcpy(&kp2p->p_siglist,
587 			    &kp->kp_proc.p_sigctx.ps_siglist,
588 			    sizeof(ki_sigset_t));
589 			memcpy(&kp2p->p_sigmask,
590 			    &kp->kp_proc.p_sigctx.ps_sigmask,
591 			    sizeof(ki_sigset_t));
592 			memcpy(&kp2p->p_sigignore,
593 			    &kp->kp_proc.p_sigctx.ps_sigignore,
594 			    sizeof(ki_sigset_t));
595 			memcpy(&kp2p->p_sigcatch,
596 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
597 			    sizeof(ki_sigset_t));
598 
599 			kp2p->p_stat = kp->kp_proc.p_stat;
600 			kp2p->p_priority = kl[0].l_priority;
601 			kp2p->p_usrpri = kl[0].l_usrpri;
602 			kp2p->p_nice = kp->kp_proc.p_nice;
603 
604 			kp2p->p_xstat = kp->kp_proc.p_xstat;
605 			kp2p->p_acflag = kp->kp_proc.p_acflag;
606 
607 			/*CONSTCOND*/
608 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
609 			    MIN(sizeof(kp2p->p_comm),
610 			    sizeof(kp->kp_proc.p_comm)));
611 
612 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
613 			    sizeof(kp2p->p_wmesg));
614 			kp2p->p_wchan = kl[0].l_wchan;
615 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
616 			    sizeof(kp2p->p_login));
617 
618 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
619 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
620 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
621 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
622 
623 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
624 
625 			kp2p->p_realflag = kp->kp_proc.p_flag;
626 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
627 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
628 			kp2p->p_realstat = kp->kp_proc.p_stat;
629 
630 			if (P_ZOMBIE(&kp->kp_proc) ||
631 			    kp->kp_proc.p_stats == NULL ||
632 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
633 				kp2p->p_uvalid = 0;
634 			} else {
635 				kp2p->p_uvalid = 1;
636 
637 				kp2p->p_ustart_sec = (u_int32_t)
638 				    pstats.p_start.tv_sec;
639 				kp2p->p_ustart_usec = (u_int32_t)
640 				    pstats.p_start.tv_usec;
641 
642 				kp2p->p_uutime_sec = (u_int32_t)
643 				    pstats.p_ru.ru_utime.tv_sec;
644 				kp2p->p_uutime_usec = (u_int32_t)
645 				    pstats.p_ru.ru_utime.tv_usec;
646 				kp2p->p_ustime_sec = (u_int32_t)
647 				    pstats.p_ru.ru_stime.tv_sec;
648 				kp2p->p_ustime_usec = (u_int32_t)
649 				    pstats.p_ru.ru_stime.tv_usec;
650 
651 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
652 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
653 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
654 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
655 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
656 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
657 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
658 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
659 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
660 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
661 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
662 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
663 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
664 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
665 
666 				kp2p->p_uctime_sec = (u_int32_t)
667 				    (pstats.p_cru.ru_utime.tv_sec +
668 				    pstats.p_cru.ru_stime.tv_sec);
669 				kp2p->p_uctime_usec = (u_int32_t)
670 				    (pstats.p_cru.ru_utime.tv_usec +
671 				    pstats.p_cru.ru_stime.tv_usec);
672 			}
673 
674 			memcpy(kp2c, &kp2, esize);
675 			kp2c += esize;
676 		}
677 
678 		_kvm_freeprocs(kd);
679 	}
680 	*cnt = nprocs;
681 	return (kd->procbase2);
682 }
683 
684 struct kinfo_lwp *
685 kvm_getlwps(kd, pid, paddr, esize, cnt)
686 	kvm_t *kd;
687 	int pid;
688 	u_long paddr;
689 	size_t esize;
690 	int *cnt;
691 {
692 	size_t size;
693 	int mib[5], nlwps;
694 	ssize_t st;
695 	struct kinfo_lwp *kl;
696 
697 	if (kd->lwpbase != NULL) {
698 		free(kd->lwpbase);
699 		/*
700 		 * Clear this pointer in case this call fails.  Otherwise,
701 		 * kvm_close() will free it again.
702 		 */
703 		kd->lwpbase = NULL;
704 	}
705 
706 	if (ISSYSCTL(kd)) {
707 		size = 0;
708 		mib[0] = CTL_KERN;
709 		mib[1] = KERN_LWP;
710 		mib[2] = pid;
711 		mib[3] = (int)esize;
712 		mib[4] = 0;
713 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
714 		if (st == -1) {
715 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
716 			return (NULL);
717 		}
718 
719 		mib[4] = (int) (size / esize);
720 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
721 		if (kd->lwpbase == NULL)
722 			return (NULL);
723 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
724 		if (st == -1) {
725 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
726 			return (NULL);
727 		}
728 		nlwps = (int) (size / esize);
729 	} else {
730 		/* grovel through the memory image */
731 		struct proc p;
732 		struct lwp l;
733 		u_long laddr;
734 		int i;
735 
736 		st = kvm_read(kd, paddr, &p, sizeof(p));
737 		if (st == -1) {
738 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
739 			return (NULL);
740 		}
741 
742 		nlwps = p.p_nlwps;
743 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
744 		    nlwps * sizeof(struct kinfo_lwp));
745 		if (kd->lwpbase == NULL)
746 			return (NULL);
747 		laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
748 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
749 			st = kvm_read(kd, laddr, &l, sizeof(l));
750 			if (st == -1) {
751 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
752 				return (NULL);
753 			}
754 			kl = &kd->lwpbase[i];
755 			kl->l_laddr = laddr;
756 			kl->l_forw = PTRTOINT64(l.l_forw);
757 			kl->l_back = PTRTOINT64(l.l_back);
758 			kl->l_addr = PTRTOINT64(l.l_addr);
759 			kl->l_lid = l.l_lid;
760 			kl->l_flag = l.l_flag;
761 			kl->l_swtime = l.l_swtime;
762 			kl->l_slptime = l.l_slptime;
763 			kl->l_schedflags = 0; /* XXX */
764 			kl->l_holdcnt = l.l_holdcnt;
765 			kl->l_priority = l.l_priority;
766 			kl->l_usrpri = l.l_usrpri;
767 			kl->l_stat = l.l_stat;
768 			kl->l_wchan = PTRTOINT64(l.l_wchan);
769 			if (l.l_wmesg)
770 				(void)kvm_read(kd, (u_long)l.l_wmesg,
771 				    kl->l_wmesg, (size_t)WMESGLEN);
772 			kl->l_cpuid = KI_NOCPU;
773 			laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
774 		}
775 	}
776 
777 	*cnt = nlwps;
778 	return (kd->lwpbase);
779 }
780 
781 struct kinfo_proc *
782 kvm_getprocs(kd, op, arg, cnt)
783 	kvm_t *kd;
784 	int op, arg;
785 	int *cnt;
786 {
787 	size_t size;
788 	int mib[4], st, nprocs;
789 
790 	if (kd->procbase != NULL) {
791 		free(kd->procbase);
792 		/*
793 		 * Clear this pointer in case this call fails.  Otherwise,
794 		 * kvm_close() will free it again.
795 		 */
796 		kd->procbase = NULL;
797 	}
798 	if (ISKMEM(kd)) {
799 		size = 0;
800 		mib[0] = CTL_KERN;
801 		mib[1] = KERN_PROC;
802 		mib[2] = op;
803 		mib[3] = arg;
804 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
805 		if (st == -1) {
806 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
807 			return (NULL);
808 		}
809 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
810 		if (kd->procbase == NULL)
811 			return (NULL);
812 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
813 		if (st == -1) {
814 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
815 			return (NULL);
816 		}
817 		if (size % sizeof(struct kinfo_proc) != 0) {
818 			_kvm_err(kd, kd->program,
819 			    "proc size mismatch (%lu total, %lu chunks)",
820 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
821 			return (NULL);
822 		}
823 		nprocs = (int) (size / sizeof(struct kinfo_proc));
824 	} else if (ISSYSCTL(kd)) {
825 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
826 		    "can't use kvm_getprocs");
827 		return (NULL);
828 	} else {
829 		struct nlist nl[4], *p;
830 
831 		(void)memset(nl, 0, sizeof(nl));
832 		nl[0].n_name = "_nprocs";
833 		nl[1].n_name = "_allproc";
834 		nl[2].n_name = "_zombproc";
835 		nl[3].n_name = NULL;
836 
837 		if (kvm_nlist(kd, nl) != 0) {
838 			for (p = nl; p->n_type != 0; ++p)
839 				continue;
840 			_kvm_err(kd, kd->program,
841 			    "%s: no such symbol", p->n_name);
842 			return (NULL);
843 		}
844 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
845 			_kvm_err(kd, kd->program, "can't read nprocs");
846 			return (NULL);
847 		}
848 		size = nprocs * sizeof(struct kinfo_proc);
849 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
850 		if (kd->procbase == NULL)
851 			return (NULL);
852 
853 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
854 		    nl[2].n_value, nprocs);
855 		if (nprocs < 0)
856 			return (NULL);
857 #ifdef notdef
858 		size = nprocs * sizeof(struct kinfo_proc);
859 		(void)realloc(kd->procbase, size);
860 #endif
861 	}
862 	*cnt = nprocs;
863 	return (kd->procbase);
864 }
865 
866 void
867 _kvm_freeprocs(kd)
868 	kvm_t *kd;
869 {
870 
871 	if (kd->procbase) {
872 		free(kd->procbase);
873 		kd->procbase = NULL;
874 	}
875 }
876 
877 void *
878 _kvm_realloc(kd, p, n)
879 	kvm_t *kd;
880 	void *p;
881 	size_t n;
882 {
883 	void *np = realloc(p, n);
884 
885 	if (np == NULL)
886 		_kvm_err(kd, kd->program, "out of memory");
887 	return (np);
888 }
889 
890 /*
891  * Read in an argument vector from the user address space of process p.
892  * addr if the user-space base address of narg null-terminated contiguous
893  * strings.  This is used to read in both the command arguments and
894  * environment strings.  Read at most maxcnt characters of strings.
895  */
896 static char **
897 kvm_argv(kd, p, addr, narg, maxcnt)
898 	kvm_t *kd;
899 	const struct miniproc *p;
900 	u_long addr;
901 	int narg;
902 	int maxcnt;
903 {
904 	char *np, *cp, *ep, *ap;
905 	u_long oaddr = (u_long)~0L;
906 	u_long len;
907 	size_t cc;
908 	char **argv;
909 
910 	/*
911 	 * Check that there aren't an unreasonable number of agruments,
912 	 * and that the address is in user space.
913 	 */
914 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
915 		return (NULL);
916 
917 	if (kd->argv == NULL) {
918 		/*
919 		 * Try to avoid reallocs.
920 		 */
921 		kd->argc = MAX(narg + 1, 32);
922 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
923 		    sizeof(*kd->argv));
924 		if (kd->argv == NULL)
925 			return (NULL);
926 	} else if (narg + 1 > kd->argc) {
927 		kd->argc = MAX(2 * kd->argc, narg + 1);
928 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
929 		    sizeof(*kd->argv));
930 		if (kd->argv == NULL)
931 			return (NULL);
932 	}
933 	if (kd->argspc == NULL) {
934 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
935 		if (kd->argspc == NULL)
936 			return (NULL);
937 		kd->arglen = kd->nbpg;
938 	}
939 	if (kd->argbuf == NULL) {
940 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
941 		if (kd->argbuf == NULL)
942 			return (NULL);
943 	}
944 	cc = sizeof(char *) * narg;
945 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
946 		return (NULL);
947 	ap = np = kd->argspc;
948 	argv = kd->argv;
949 	len = 0;
950 	/*
951 	 * Loop over pages, filling in the argument vector.
952 	 */
953 	while (argv < kd->argv + narg && *argv != NULL) {
954 		addr = (u_long)*argv & ~(kd->nbpg - 1);
955 		if (addr != oaddr) {
956 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
957 			    (size_t)kd->nbpg) != kd->nbpg)
958 				return (NULL);
959 			oaddr = addr;
960 		}
961 		addr = (u_long)*argv & (kd->nbpg - 1);
962 		cp = kd->argbuf + (size_t)addr;
963 		cc = kd->nbpg - (size_t)addr;
964 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
965 			cc = (size_t)(maxcnt - len);
966 		ep = memchr(cp, '\0', cc);
967 		if (ep != NULL)
968 			cc = ep - cp + 1;
969 		if (len + cc > kd->arglen) {
970 			ptrdiff_t off;
971 			char **pp;
972 			char *op = kd->argspc;
973 
974 			kd->arglen *= 2;
975 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
976 			    (size_t)kd->arglen);
977 			if (kd->argspc == NULL)
978 				return (NULL);
979 			/*
980 			 * Adjust argv pointers in case realloc moved
981 			 * the string space.
982 			 */
983 			off = kd->argspc - op;
984 			for (pp = kd->argv; pp < argv; pp++)
985 				*pp += off;
986 			ap += off;
987 			np += off;
988 		}
989 		memcpy(np, cp, cc);
990 		np += cc;
991 		len += cc;
992 		if (ep != NULL) {
993 			*argv++ = ap;
994 			ap = np;
995 		} else
996 			*argv += cc;
997 		if (maxcnt > 0 && len >= maxcnt) {
998 			/*
999 			 * We're stopping prematurely.  Terminate the
1000 			 * current string.
1001 			 */
1002 			if (ep == NULL) {
1003 				*np = '\0';
1004 				*argv++ = ap;
1005 			}
1006 			break;
1007 		}
1008 	}
1009 	/* Make sure argv is terminated. */
1010 	*argv = NULL;
1011 	return (kd->argv);
1012 }
1013 
1014 static void
1015 ps_str_a(p, addr, n)
1016 	struct ps_strings *p;
1017 	u_long *addr;
1018 	int *n;
1019 {
1020 
1021 	*addr = (u_long)p->ps_argvstr;
1022 	*n = p->ps_nargvstr;
1023 }
1024 
1025 static void
1026 ps_str_e(p, addr, n)
1027 	struct ps_strings *p;
1028 	u_long *addr;
1029 	int *n;
1030 {
1031 
1032 	*addr = (u_long)p->ps_envstr;
1033 	*n = p->ps_nenvstr;
1034 }
1035 
1036 /*
1037  * Determine if the proc indicated by p is still active.
1038  * This test is not 100% foolproof in theory, but chances of
1039  * being wrong are very low.
1040  */
1041 static int
1042 proc_verify(kd, kernp, p)
1043 	kvm_t *kd;
1044 	u_long kernp;
1045 	const struct miniproc *p;
1046 {
1047 	struct proc kernproc;
1048 
1049 	/*
1050 	 * Just read in the whole proc.  It's not that big relative
1051 	 * to the cost of the read system call.
1052 	 */
1053 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1054 	    sizeof(kernproc))
1055 		return (0);
1056 	return (p->p_pid == kernproc.p_pid &&
1057 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1058 }
1059 
1060 static char **
1061 kvm_doargv(kd, p, nchr, info)
1062 	kvm_t *kd;
1063 	const struct miniproc *p;
1064 	int nchr;
1065 	void (*info)(struct ps_strings *, u_long *, int *);
1066 {
1067 	char **ap;
1068 	u_long addr;
1069 	int cnt;
1070 	struct ps_strings arginfo;
1071 
1072 	/*
1073 	 * Pointers are stored at the top of the user stack.
1074 	 */
1075 	if (p->p_stat == SZOMB)
1076 		return (NULL);
1077 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1078 	    (void *)&arginfo, sizeof(arginfo));
1079 	if (cnt != sizeof(arginfo))
1080 		return (NULL);
1081 
1082 	(*info)(&arginfo, &addr, &cnt);
1083 	if (cnt == 0)
1084 		return (NULL);
1085 	ap = kvm_argv(kd, p, addr, cnt, nchr);
1086 	/*
1087 	 * For live kernels, make sure this process didn't go away.
1088 	 */
1089 	if (ap != NULL && ISALIVE(kd) &&
1090 	    !proc_verify(kd, (u_long)p->p_paddr, p))
1091 		ap = NULL;
1092 	return (ap);
1093 }
1094 
1095 /*
1096  * Get the command args.  This code is now machine independent.
1097  */
1098 char **
1099 kvm_getargv(kd, kp, nchr)
1100 	kvm_t *kd;
1101 	const struct kinfo_proc *kp;
1102 	int nchr;
1103 {
1104 	struct miniproc p;
1105 
1106 	KPTOMINI(kp, &p);
1107 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1108 }
1109 
1110 char **
1111 kvm_getenvv(kd, kp, nchr)
1112 	kvm_t *kd;
1113 	const struct kinfo_proc *kp;
1114 	int nchr;
1115 {
1116 	struct miniproc p;
1117 
1118 	KPTOMINI(kp, &p);
1119 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1120 }
1121 
1122 static char **
1123 kvm_doargv2(kd, pid, type, nchr)
1124 	kvm_t *kd;
1125 	pid_t pid;
1126 	int type;
1127 	int nchr;
1128 {
1129 	size_t bufs;
1130 	int narg, mib[4];
1131 	size_t newarglen;
1132 	char **ap, *bp, *endp;
1133 
1134 	/*
1135 	 * Check that there aren't an unreasonable number of agruments.
1136 	 */
1137 	if (nchr > ARG_MAX)
1138 		return (NULL);
1139 
1140 	if (nchr == 0)
1141 		nchr = ARG_MAX;
1142 
1143 	/* Get number of strings in argv */
1144 	mib[0] = CTL_KERN;
1145 	mib[1] = KERN_PROC_ARGS;
1146 	mib[2] = pid;
1147 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1148 	bufs = sizeof(narg);
1149 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1150 		return (NULL);
1151 
1152 	if (kd->argv == NULL) {
1153 		/*
1154 		 * Try to avoid reallocs.
1155 		 */
1156 		kd->argc = MAX(narg + 1, 32);
1157 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1158 		    sizeof(*kd->argv));
1159 		if (kd->argv == NULL)
1160 			return (NULL);
1161 	} else if (narg + 1 > kd->argc) {
1162 		kd->argc = MAX(2 * kd->argc, narg + 1);
1163 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1164 		    sizeof(*kd->argv));
1165 		if (kd->argv == NULL)
1166 			return (NULL);
1167 	}
1168 
1169 	newarglen = MIN(nchr, ARG_MAX);
1170 	if (kd->arglen < newarglen) {
1171 		if (kd->arglen == 0)
1172 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1173 		else
1174 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1175 			    newarglen);
1176 		if (kd->argspc == NULL)
1177 			return (NULL);
1178 		if (newarglen > INT_MAX)
1179 			return NULL;
1180 		kd->arglen = (int)newarglen;
1181 	}
1182 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
1183 
1184 	mib[0] = CTL_KERN;
1185 	mib[1] = KERN_PROC_ARGS;
1186 	mib[2] = pid;
1187 	mib[3] = type;
1188 	bufs = kd->arglen;
1189 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1190 		return (NULL);
1191 
1192 	bp = kd->argspc;
1193 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
1194 	ap = kd->argv;
1195 	endp = bp + MIN(nchr, bufs);
1196 
1197 	while (bp < endp) {
1198 		*ap++ = bp;
1199 		/*
1200 		 * XXX: don't need following anymore, or stick check
1201 		 * for max argc in above while loop?
1202 		 */
1203 		if (ap >= kd->argv + kd->argc) {
1204 			kd->argc *= 2;
1205 			kd->argv = _kvm_realloc(kd, kd->argv,
1206 			    kd->argc * sizeof(*kd->argv));
1207 			ap = kd->argv;
1208 		}
1209 		bp += strlen(bp) + 1;
1210 	}
1211 	*ap = NULL;
1212 
1213 	return (kd->argv);
1214 }
1215 
1216 char **
1217 kvm_getargv2(kd, kp, nchr)
1218 	kvm_t *kd;
1219 	const struct kinfo_proc2 *kp;
1220 	int nchr;
1221 {
1222 
1223 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1224 }
1225 
1226 char **
1227 kvm_getenvv2(kd, kp, nchr)
1228 	kvm_t *kd;
1229 	const struct kinfo_proc2 *kp;
1230 	int nchr;
1231 {
1232 
1233 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1234 }
1235 
1236 /*
1237  * Read from user space.  The user context is given by p.
1238  */
1239 static ssize_t
1240 kvm_ureadm(kd, p, uva, buf, len)
1241 	kvm_t *kd;
1242 	const struct miniproc *p;
1243 	u_long uva;
1244 	char *buf;
1245 	size_t len;
1246 {
1247 	char *cp;
1248 
1249 	cp = buf;
1250 	while (len > 0) {
1251 		size_t cc;
1252 		char *dp;
1253 		u_long cnt;
1254 
1255 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1256 		if (dp == NULL) {
1257 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1258 			return (0);
1259 		}
1260 		cc = (size_t)MIN(cnt, len);
1261 		memcpy(cp, dp, cc);
1262 		cp += cc;
1263 		uva += cc;
1264 		len -= cc;
1265 	}
1266 	return (ssize_t)(cp - buf);
1267 }
1268 
1269 ssize_t
1270 kvm_uread(kd, p, uva, buf, len)
1271 	kvm_t *kd;
1272 	const struct proc *p;
1273 	u_long uva;
1274 	char *buf;
1275 	size_t len;
1276 {
1277 	struct miniproc mp;
1278 
1279 	PTOMINI(p, &mp);
1280 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1281 }
1282