xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision b8c616269f5ebf18ab2e35cb8099d683130a177c)
1 /*	$NetBSD: kvm_proc.c,v 1.47 2003/02/02 02:29:59 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. All advertising materials mentioning features or use of this software
56  *    must display the following acknowledgement:
57  *	This product includes software developed by the University of
58  *	California, Berkeley and its contributors.
59  * 4. Neither the name of the University nor the names of its contributors
60  *    may be used to endorse or promote products derived from this software
61  *    without specific prior written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73  * SUCH DAMAGE.
74  */
75 
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.47 2003/02/02 02:29:59 christos Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84 
85 /*
86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
87  * users of this code, so we've factored it out into a separate module.
88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
89  * most other applications are interested only in open/close/read/nlist).
90  */
91 
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/lwp.h>
95 #include <sys/proc.h>
96 #include <sys/exec.h>
97 #include <sys/stat.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <stdlib.h>
101 #include <string.h>
102 #include <unistd.h>
103 #include <nlist.h>
104 #include <kvm.h>
105 
106 #include <uvm/uvm_extern.h>
107 #include <uvm/uvm_amap.h>
108 
109 #include <sys/sysctl.h>
110 
111 #include <limits.h>
112 #include <db.h>
113 #include <paths.h>
114 
115 #include "kvm_private.h"
116 
117 /*
118  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
119  */
120 struct miniproc {
121 	struct	vmspace *p_vmspace;
122 	char	p_stat;
123 	struct	proc *p_paddr;
124 	pid_t	p_pid;
125 };
126 
127 /*
128  * Convert from struct proc and kinfo_proc{,2} to miniproc.
129  */
130 #define PTOMINI(kp, p) \
131 		do { \
132 		(p)->p_stat = (kp)->p_stat; \
133 		(p)->p_pid = (kp)->p_pid; \
134 		(p)->p_paddr = NULL; \
135 		(p)->p_vmspace = (kp)->p_vmspace; \
136 	} while (/*CONSTCOND*/0);
137 
138 #define KPTOMINI(kp, p) \
139 		do { \
140 		(p)->p_stat = (kp)->kp_proc.p_stat; \
141 		(p)->p_pid = (kp)->kp_proc.p_pid; \
142 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
143 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
144 	} while (/*CONSTCOND*/0);
145 
146 #define KP2TOMINI(kp, p) \
147 		do { \
148 		(p)->p_stat = (kp)->p_stat; \
149 		(p)->p_pid = (kp)->p_pid; \
150 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
151 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
152 	} while (/*CONSTCOND*/0);
153 
154 
155 #define	PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(void *)(foo))
156 
157 #define KREAD(kd, addr, obj) \
158 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
159 
160 /* XXX: What uses these two functions? */
161 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
162 		    u_long *));
163 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
164 		    size_t));
165 
166 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
167 		    u_long *));
168 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
169 		    char *, size_t));
170 
171 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
172 		    int));
173 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
174 		    int));
175 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
176 		    void (*)(struct ps_strings *, u_long *, int *)));
177 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
178 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
179 		    struct kinfo_proc *, int));
180 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
181 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
182 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
183 
184 
185 static char *
186 _kvm_ureadm(kd, p, va, cnt)
187 	kvm_t *kd;
188 	const struct miniproc *p;
189 	u_long va;
190 	u_long *cnt;
191 {
192 	int true = 1;
193 	u_long addr, head;
194 	u_long offset;
195 	struct vm_map_entry vme;
196 	struct vm_amap amap;
197 	struct vm_anon *anonp, anon;
198 	struct vm_page pg;
199 	u_long slot;
200 
201 	if (kd->swapspc == NULL) {
202 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
203 		if (kd->swapspc == NULL)
204 			return NULL;
205 	}
206 
207 	/*
208 	 * Look through the address map for the memory object
209 	 * that corresponds to the given virtual address.
210 	 * The header just has the entire valid range.
211 	 */
212 	head = (u_long)&p->p_vmspace->vm_map.header;
213 	addr = head;
214 	while (true) {
215 		if (KREAD(kd, addr, &vme))
216 			return NULL;
217 
218 		if (va >= vme.start && va < vme.end &&
219 		    vme.aref.ar_amap != NULL)
220 			break;
221 
222 		addr = (u_long)vme.next;
223 		if (addr == head)
224 			return NULL;
225 
226 	}
227 
228 	/*
229 	 * we found the map entry, now to find the object...
230 	 */
231 	if (vme.aref.ar_amap == NULL)
232 		return NULL;
233 
234 	addr = (u_long)vme.aref.ar_amap;
235 	if (KREAD(kd, addr, &amap))
236 		return NULL;
237 
238 	offset = va - vme.start;
239 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
240 	/* sanity-check slot number */
241 	if (slot  > amap.am_nslot)
242 		return NULL;
243 
244 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
245 	if (KREAD(kd, addr, &anonp))
246 		return NULL;
247 
248 	addr = (u_long)anonp;
249 	if (KREAD(kd, addr, &anon))
250 		return NULL;
251 
252 	addr = (u_long)anon.u.an_page;
253 	if (addr) {
254 		if (KREAD(kd, addr, &pg))
255 			return NULL;
256 
257 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
258 		    (off_t)pg.phys_addr) != kd->nbpg)
259 			return NULL;
260 	}
261 	else {
262 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
263 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
264 			return NULL;
265 	}
266 
267 	/* Found the page. */
268 	offset %= kd->nbpg;
269 	*cnt = kd->nbpg - offset;
270 	return (&kd->swapspc[(size_t)offset]);
271 }
272 
273 char *
274 _kvm_uread(kd, p, va, cnt)
275 	kvm_t *kd;
276 	const struct proc *p;
277 	u_long va;
278 	u_long *cnt;
279 {
280 	struct miniproc mp;
281 
282 	PTOMINI(p, &mp);
283 	return (_kvm_ureadm(kd, &mp, va, cnt));
284 }
285 
286 /*
287  * Read proc's from memory file into buffer bp, which has space to hold
288  * at most maxcnt procs.
289  */
290 static int
291 kvm_proclist(kd, what, arg, p, bp, maxcnt)
292 	kvm_t *kd;
293 	int what, arg;
294 	struct proc *p;
295 	struct kinfo_proc *bp;
296 	int maxcnt;
297 {
298 	int cnt = 0;
299 	int nlwps;
300 	struct kinfo_lwp *kl;
301 	struct eproc eproc;
302 	struct pgrp pgrp;
303 	struct session sess;
304 	struct tty tty;
305 	struct proc proc;
306 
307 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
308 		if (KREAD(kd, (u_long)p, &proc)) {
309 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
310 			return (-1);
311 		}
312 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
313 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
314 			    &eproc.e_ucred)) {
315 				_kvm_err(kd, kd->program,
316 				    "can't read proc credentials at %p", p);
317 				return -1;
318 			}
319 
320 		switch(what) {
321 
322 		case KERN_PROC_PID:
323 			if (proc.p_pid != (pid_t)arg)
324 				continue;
325 			break;
326 
327 		case KERN_PROC_UID:
328 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
329 				continue;
330 			break;
331 
332 		case KERN_PROC_RUID:
333 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
334 				continue;
335 			break;
336 		}
337 		/*
338 		 * We're going to add another proc to the set.  If this
339 		 * will overflow the buffer, assume the reason is because
340 		 * nprocs (or the proc list) is corrupt and declare an error.
341 		 */
342 		if (cnt >= maxcnt) {
343 			_kvm_err(kd, kd->program, "nprocs corrupt");
344 			return (-1);
345 		}
346 		/*
347 		 * gather eproc
348 		 */
349 		eproc.e_paddr = p;
350 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
351 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
352 				 proc.p_pgrp);
353 			return (-1);
354 		}
355 		eproc.e_sess = pgrp.pg_session;
356 		eproc.e_pgid = pgrp.pg_id;
357 		eproc.e_jobc = pgrp.pg_jobc;
358 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
359 			_kvm_err(kd, kd->program, "can't read session at %p",
360 				pgrp.pg_session);
361 			return (-1);
362 		}
363 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
364 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
365 				_kvm_err(kd, kd->program,
366 					 "can't read tty at %p", sess.s_ttyp);
367 				return (-1);
368 			}
369 			eproc.e_tdev = tty.t_dev;
370 			eproc.e_tsess = tty.t_session;
371 			if (tty.t_pgrp != NULL) {
372 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
373 					_kvm_err(kd, kd->program,
374 						 "can't read tpgrp at %p",
375 						tty.t_pgrp);
376 					return (-1);
377 				}
378 				eproc.e_tpgid = pgrp.pg_id;
379 			} else
380 				eproc.e_tpgid = -1;
381 		} else
382 			eproc.e_tdev = NODEV;
383 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
384 		eproc.e_sid = sess.s_sid;
385 		if (sess.s_leader == p)
386 			eproc.e_flag |= EPROC_SLEADER;
387 		/* Fill in the old-style proc.p_wmesg by copying the wmesg
388 		 * from the first avaliable LWP.
389 		 */
390 		kl = kvm_getlwps(kd, proc.p_pid,
391 		    (u_long)PTRTOINT64(eproc.e_paddr),
392 		    sizeof(struct kinfo_lwp), &nlwps);
393 		if (kl) {
394 			if (nlwps > 0) {
395 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
396 			}
397 		}
398 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
399 		    sizeof(eproc.e_vm));
400 
401 		eproc.e_xsize = eproc.e_xrssize = 0;
402 		eproc.e_xccount = eproc.e_xswrss = 0;
403 
404 		switch (what) {
405 
406 		case KERN_PROC_PGRP:
407 			if (eproc.e_pgid != (pid_t)arg)
408 				continue;
409 			break;
410 
411 		case KERN_PROC_TTY:
412 			if ((proc.p_flag & P_CONTROLT) == 0 ||
413 			     eproc.e_tdev != (dev_t)arg)
414 				continue;
415 			break;
416 		}
417 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
418 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
419 		++bp;
420 		++cnt;
421 	}
422 	return (cnt);
423 }
424 
425 /*
426  * Build proc info array by reading in proc list from a crash dump.
427  * Return number of procs read.  maxcnt is the max we will read.
428  */
429 static int
430 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
431 	kvm_t *kd;
432 	int what, arg;
433 	u_long a_allproc;
434 	u_long a_deadproc;
435 	u_long a_zombproc;
436 	int maxcnt;
437 {
438 	struct kinfo_proc *bp = kd->procbase;
439 	int acnt, dcnt, zcnt;
440 	struct proc *p;
441 
442 	if (KREAD(kd, a_allproc, &p)) {
443 		_kvm_err(kd, kd->program, "cannot read allproc");
444 		return (-1);
445 	}
446 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
447 	if (acnt < 0)
448 		return (acnt);
449 
450 	if (KREAD(kd, a_deadproc, &p)) {
451 		_kvm_err(kd, kd->program, "cannot read deadproc");
452 		return (-1);
453 	}
454 
455 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
456 	if (dcnt < 0)
457 		dcnt = 0;
458 
459 	if (KREAD(kd, a_zombproc, &p)) {
460 		_kvm_err(kd, kd->program, "cannot read zombproc");
461 		return (-1);
462 	}
463 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
464 	    maxcnt - (acnt + dcnt));
465 	if (zcnt < 0)
466 		zcnt = 0;
467 
468 	return (acnt + zcnt);
469 }
470 
471 struct kinfo_proc2 *
472 kvm_getproc2(kd, op, arg, esize, cnt)
473 	kvm_t *kd;
474 	int op, arg;
475 	size_t esize;
476 	int *cnt;
477 {
478 	size_t size;
479 	int mib[6], st, nprocs;
480 	struct pstats pstats;
481 
482 	if (kd->procbase2 != NULL) {
483 		free(kd->procbase2);
484 		/*
485 		 * Clear this pointer in case this call fails.  Otherwise,
486 		 * kvm_close() will free it again.
487 		 */
488 		kd->procbase2 = NULL;
489 	}
490 
491 	if (ISSYSCTL(kd)) {
492 		size = 0;
493 		mib[0] = CTL_KERN;
494 		mib[1] = KERN_PROC2;
495 		mib[2] = op;
496 		mib[3] = arg;
497 		mib[4] = esize;
498 		mib[5] = 0;
499 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
500 		if (st == -1) {
501 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
502 			return NULL;
503 		}
504 
505 		mib[5] = size / esize;
506 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
507 		if (kd->procbase2 == NULL)
508 			return NULL;
509 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
510 		if (st == -1) {
511 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
512 			return NULL;
513 		}
514 		nprocs = size / esize;
515 	} else {
516 		char *kp2c;
517 		struct kinfo_proc *kp;
518 		struct kinfo_proc2 kp2, *kp2p;
519 		struct kinfo_lwp *kl;
520 		int i, nlwps;
521 
522 		kp = kvm_getprocs(kd, op, arg, &nprocs);
523 		if (kp == NULL)
524 			return NULL;
525 
526 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
527 		kp2c = (char *)(void *)kd->procbase2;
528 		kp2p = &kp2;
529 		for (i = 0; i < nprocs; i++, kp++) {
530 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
531 			    (u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
532 			    sizeof(struct kinfo_lwp), &nlwps);
533 			/* We use kl[0] as the "representative" LWP */
534 			memset(kp2p, 0, sizeof(kp2));
535 			kp2p->p_forw = kl[0].l_forw;
536 			kp2p->p_back = kl[0].l_back;
537 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
538 			kp2p->p_addr = kl[0].l_addr;
539 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
540 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
541 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
542 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
543 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
544 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
545 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
546 			kp2p->p_tsess = 0;
547 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
548 
549 			kp2p->p_eflag = 0;
550 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
551 			kp2p->p_flag = kp->kp_proc.p_flag;
552 
553 			kp2p->p_pid = kp->kp_proc.p_pid;
554 
555 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
556 			kp2p->p_sid = kp->kp_eproc.e_sid;
557 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
558 
559 			kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
560 
561 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
562 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
563 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
564 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
565 
566 			/*CONSTCOND*/
567 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
568 			    MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
569 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
570 
571 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
572 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
573 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
574 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
575 
576 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
577 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
578 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
579 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
580 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
581 			kp2p->p_swtime = kl[0].l_swtime;
582 			kp2p->p_slptime = kl[0].l_slptime;
583 #if 0 /* XXX thorpej */
584 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
585 #else
586 			kp2p->p_schedflags = 0;
587 #endif
588 
589 			kp2p->p_uticks = kp->kp_proc.p_uticks;
590 			kp2p->p_sticks = kp->kp_proc.p_sticks;
591 			kp2p->p_iticks = kp->kp_proc.p_iticks;
592 
593 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
594 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
595 
596 			kp2p->p_holdcnt = kl[0].l_holdcnt;
597 
598 			memcpy(&kp2p->p_siglist, &kp->kp_proc.p_sigctx.ps_siglist, sizeof(ki_sigset_t));
599 			memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
600 			memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigctx.ps_sigignore, sizeof(ki_sigset_t));
601 			memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
602 
603 			kp2p->p_stat = kp->kp_proc.p_stat;
604 			kp2p->p_priority = kl[0].l_priority;
605 			kp2p->p_usrpri = kl[0].l_usrpri;
606 			kp2p->p_nice = kp->kp_proc.p_nice;
607 
608 			kp2p->p_xstat = kp->kp_proc.p_xstat;
609 			kp2p->p_acflag = kp->kp_proc.p_acflag;
610 
611 			/*CONSTCOND*/
612 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
613 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
614 
615 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
616 			kp2p->p_wchan = kl[0].l_wchan;
617 			strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
618 
619 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
620 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
621 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
622 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
623 
624 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
625 
626 			kp2p->p_realflag = kp->kp_proc.p_flag;
627 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
628 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
629 			kp2p->p_realstat = kp->kp_proc.p_stat;
630 
631 			if (P_ZOMBIE(&kp->kp_proc)
632 			    ||
633 			    kp->kp_proc.p_stats == NULL ||
634 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)
635 ) {
636 				kp2p->p_uvalid = 0;
637 			} else {
638 				kp2p->p_uvalid = 1;
639 
640 				kp2p->p_ustart_sec = (u_int32_t)
641 				    pstats.p_start.tv_sec;
642 				kp2p->p_ustart_usec = (u_int32_t)
643 				    pstats.p_start.tv_usec;
644 
645 				kp2p->p_uutime_sec = (u_int32_t)
646 				    pstats.p_ru.ru_utime.tv_sec;
647 				kp2p->p_uutime_usec = (u_int32_t)
648 				    pstats.p_ru.ru_utime.tv_usec;
649 				kp2p->p_ustime_sec = (u_int32_t)
650 				    pstats.p_ru.ru_stime.tv_sec;
651 				kp2p->p_ustime_usec = (u_int32_t)
652 				    pstats.p_ru.ru_stime.tv_usec;
653 
654 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
655 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
656 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
657 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
658 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
659 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
660 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
661 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
662 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
663 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
664 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
665 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
666 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
667 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
668 
669 				kp2p->p_uctime_sec = (u_int32_t)
670 				    (pstats.p_cru.ru_utime.tv_sec +
671 				    pstats.p_cru.ru_stime.tv_sec);
672 				kp2p->p_uctime_usec = (u_int32_t)
673 				    (pstats.p_cru.ru_utime.tv_usec +
674 				    pstats.p_cru.ru_stime.tv_usec);
675 			}
676 
677 			memcpy(kp2c, &kp2, esize);
678 			kp2c += esize;
679 		}
680 
681 		free(kd->procbase);
682 	}
683 	*cnt = nprocs;
684 	return (kd->procbase2);
685 }
686 
687 struct kinfo_lwp *
688 kvm_getlwps(kd, pid, paddr, esize, cnt)
689 	kvm_t *kd;
690 	int pid;
691 	u_long paddr;
692 	size_t esize;
693 	int *cnt;
694 {
695 	size_t size;
696 	int mib[5], st, nlwps;
697 	struct kinfo_lwp *kl;
698 
699 	if (kd->lwpbase != NULL) {
700 		free(kd->lwpbase);
701 		/*
702 		 * Clear this pointer in case this call fails.  Otherwise,
703 		 * kvm_close() will free it again.
704 		 */
705 		kd->lwpbase = NULL;
706 	}
707 
708 	if (ISSYSCTL(kd)) {
709 		size = 0;
710 		mib[0] = CTL_KERN;
711 		mib[1] = KERN_LWP;
712 		mib[2] = pid;
713 		mib[3] = esize;
714 		mib[4] = 0;
715 		st = sysctl(mib, 5, NULL, &size, NULL, 0);
716 		if (st == -1) {
717 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
718 			return NULL;
719 		}
720 
721 		mib[4] = size / esize;
722 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
723 		if (kd->lwpbase == NULL)
724 			return NULL;
725 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, 0);
726 		if (st == -1) {
727 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
728 			return NULL;
729 		}
730 		nlwps = size / esize;
731 	} else {
732 		/* grovel through the memory image */
733 		struct proc p;
734 		struct lwp l;
735 		u_long laddr;
736 		int i;
737 
738 		st = kvm_read(kd, paddr, &p, sizeof(p));
739 		if (st == -1) {
740 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
741 			return NULL;
742 		}
743 
744 		nlwps = p.p_nlwps;
745 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
746 		    nlwps * sizeof(struct kinfo_lwp));
747 		if (kd->lwpbase == NULL)
748 			return NULL;
749 		laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
750 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
751 			st = kvm_read(kd, laddr, &l, sizeof(l));
752 			if (st == -1) {
753 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
754 				return NULL;
755 			}
756 			kl = &kd->lwpbase[i];
757 			kl->l_laddr = laddr;
758 			kl->l_forw = PTRTOINT64(l.l_forw);
759 			kl->l_back = PTRTOINT64(l.l_back);
760 			kl->l_addr = PTRTOINT64(l.l_addr);
761 			kl->l_lid = l.l_lid;
762 			kl->l_flag = l.l_flag;
763 			kl->l_swtime = l.l_swtime;
764 			kl->l_slptime = l.l_slptime;
765 			kl->l_schedflags = 0; /* XXX */
766 			kl->l_holdcnt = l.l_holdcnt;
767 			kl->l_priority = l.l_priority;
768 			kl->l_usrpri = l.l_usrpri;
769 			kl->l_stat = l.l_stat;
770 			kl->l_wchan = PTRTOINT64(l.l_wchan);
771 			if (l.l_wmesg)
772 				(void)kvm_read(kd, (u_long)l.l_wmesg,
773 				    kl->l_wmesg, WMESGLEN);
774 			kl->l_cpuid = KI_NOCPU;
775 			laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
776 		}
777 	}
778 
779 	*cnt = nlwps;
780 	return kd->lwpbase;
781 }
782 
783 struct kinfo_proc *
784 kvm_getprocs(kd, op, arg, cnt)
785 	kvm_t *kd;
786 	int op, arg;
787 	int *cnt;
788 {
789 	size_t size;
790 	int mib[4], st, nprocs;
791 
792 	if (kd->procbase != NULL) {
793 		free(kd->procbase);
794 		/*
795 		 * Clear this pointer in case this call fails.  Otherwise,
796 		 * kvm_close() will free it again.
797 		 */
798 		kd->procbase = NULL;
799 	}
800 	if (ISKMEM(kd)) {
801 		size = 0;
802 		mib[0] = CTL_KERN;
803 		mib[1] = KERN_PROC;
804 		mib[2] = op;
805 		mib[3] = arg;
806 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
807 		if (st == -1) {
808 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
809 			return NULL;
810 		}
811 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
812 		if (kd->procbase == NULL)
813 			return NULL;
814 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
815 		if (st == -1) {
816 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
817 			return NULL;
818 		}
819 		if (size % sizeof(struct kinfo_proc) != 0) {
820 			_kvm_err(kd, kd->program,
821 			    "proc size mismatch (%lu total, %lu chunks)",
822 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
823 			return NULL;
824 		}
825 		nprocs = size / sizeof(struct kinfo_proc);
826 	} else if (ISSYSCTL(kd)) {
827 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
828 		    "can't use kvm_getprocs");
829 		return NULL;
830 	} else {
831 		struct nlist nl[5], *p;
832 
833 		nl[0].n_name = "_nprocs";
834 		nl[1].n_name = "_allproc";
835 		nl[2].n_name = "_deadproc";
836 		nl[3].n_name = "_zombproc";
837 		nl[4].n_name = NULL;
838 
839 		if (kvm_nlist(kd, nl) != 0) {
840 			for (p = nl; p->n_type != 0; ++p)
841 				;
842 			_kvm_err(kd, kd->program,
843 				 "%s: no such symbol", p->n_name);
844 			return NULL;
845 		}
846 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
847 			_kvm_err(kd, kd->program, "can't read nprocs");
848 			return NULL;
849 		}
850 		size = nprocs * sizeof(struct kinfo_proc);
851 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
852 		if (kd->procbase == NULL)
853 			return NULL;
854 
855 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
856 		    nl[2].n_value, nl[3].n_value, nprocs);
857 		if (nprocs < 0)
858 			return NULL;
859 #ifdef notdef
860 		size = nprocs * sizeof(struct kinfo_proc);
861 		(void)realloc(kd->procbase, size);
862 #endif
863 	}
864 	*cnt = nprocs;
865 	return (kd->procbase);
866 }
867 
868 void
869 _kvm_freeprocs(kd)
870 	kvm_t *kd;
871 {
872 	if (kd->procbase) {
873 		free(kd->procbase);
874 		kd->procbase = NULL;
875 	}
876 }
877 
878 void *
879 _kvm_realloc(kd, p, n)
880 	kvm_t *kd;
881 	void *p;
882 	size_t n;
883 {
884 	void *np = realloc(p, n);
885 
886 	if (np == NULL)
887 		_kvm_err(kd, kd->program, "out of memory");
888 	return (np);
889 }
890 
891 /*
892  * Read in an argument vector from the user address space of process p.
893  * addr if the user-space base address of narg null-terminated contiguous
894  * strings.  This is used to read in both the command arguments and
895  * environment strings.  Read at most maxcnt characters of strings.
896  */
897 static char **
898 kvm_argv(kd, p, addr, narg, maxcnt)
899 	kvm_t *kd;
900 	const struct miniproc *p;
901 	u_long addr;
902 	int narg;
903 	int maxcnt;
904 {
905 	char *np, *cp, *ep, *ap;
906 	u_long oaddr = (u_long)~0L;
907 	u_long len;
908 	size_t cc;
909 	char **argv;
910 
911 	/*
912 	 * Check that there aren't an unreasonable number of agruments,
913 	 * and that the address is in user space.
914 	 */
915 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
916 		return NULL;
917 
918 	if (kd->argv == NULL) {
919 		/*
920 		 * Try to avoid reallocs.
921 		 */
922 		kd->argc = MAX(narg + 1, 32);
923 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
924 						sizeof(*kd->argv));
925 		if (kd->argv == NULL)
926 			return NULL;
927 	} else if (narg + 1 > kd->argc) {
928 		kd->argc = MAX(2 * kd->argc, narg + 1);
929 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
930 						sizeof(*kd->argv));
931 		if (kd->argv == NULL)
932 			return NULL;
933 	}
934 	if (kd->argspc == NULL) {
935 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
936 		if (kd->argspc == NULL)
937 			return NULL;
938 		kd->arglen = kd->nbpg;
939 	}
940 	if (kd->argbuf == NULL) {
941 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
942 		if (kd->argbuf == NULL)
943 			return NULL;
944 	}
945 	cc = sizeof(char *) * narg;
946 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
947 		return NULL;
948 	ap = np = kd->argspc;
949 	argv = kd->argv;
950 	len = 0;
951 	/*
952 	 * Loop over pages, filling in the argument vector.
953 	 */
954 	while (argv < kd->argv + narg && *argv != NULL) {
955 		addr = (u_long)*argv & ~(kd->nbpg - 1);
956 		if (addr != oaddr) {
957 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
958 			    (size_t)kd->nbpg) != kd->nbpg)
959 				return NULL;
960 			oaddr = addr;
961 		}
962 		addr = (u_long)*argv & (kd->nbpg - 1);
963 		cp = kd->argbuf + (size_t)addr;
964 		cc = kd->nbpg - (size_t)addr;
965 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
966 			cc = (size_t)(maxcnt - len);
967 		ep = memchr(cp, '\0', cc);
968 		if (ep != NULL)
969 			cc = ep - cp + 1;
970 		if (len + cc > kd->arglen) {
971 			int off;
972 			char **pp;
973 			char *op = kd->argspc;
974 
975 			kd->arglen *= 2;
976 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
977 			    (size_t)kd->arglen);
978 			if (kd->argspc == NULL)
979 				return NULL;
980 			/*
981 			 * Adjust argv pointers in case realloc moved
982 			 * the string space.
983 			 */
984 			off = kd->argspc - op;
985 			for (pp = kd->argv; pp < argv; pp++)
986 				*pp += off;
987 			ap += off;
988 			np += off;
989 		}
990 		memcpy(np, cp, cc);
991 		np += cc;
992 		len += cc;
993 		if (ep != NULL) {
994 			*argv++ = ap;
995 			ap = np;
996 		} else
997 			*argv += cc;
998 		if (maxcnt > 0 && len >= maxcnt) {
999 			/*
1000 			 * We're stopping prematurely.  Terminate the
1001 			 * current string.
1002 			 */
1003 			if (ep == NULL) {
1004 				*np = '\0';
1005 				*argv++ = ap;
1006 			}
1007 			break;
1008 		}
1009 	}
1010 	/* Make sure argv is terminated. */
1011 	*argv = NULL;
1012 	return (kd->argv);
1013 }
1014 
1015 static void
1016 ps_str_a(p, addr, n)
1017 	struct ps_strings *p;
1018 	u_long *addr;
1019 	int *n;
1020 {
1021 	*addr = (u_long)p->ps_argvstr;
1022 	*n = p->ps_nargvstr;
1023 }
1024 
1025 static void
1026 ps_str_e(p, addr, n)
1027 	struct ps_strings *p;
1028 	u_long *addr;
1029 	int *n;
1030 {
1031 	*addr = (u_long)p->ps_envstr;
1032 	*n = p->ps_nenvstr;
1033 }
1034 
1035 /*
1036  * Determine if the proc indicated by p is still active.
1037  * This test is not 100% foolproof in theory, but chances of
1038  * being wrong are very low.
1039  */
1040 static int
1041 proc_verify(kd, kernp, p)
1042 	kvm_t *kd;
1043 	u_long kernp;
1044 	const struct miniproc *p;
1045 {
1046 	struct proc kernproc;
1047 
1048 	/*
1049 	 * Just read in the whole proc.  It's not that big relative
1050 	 * to the cost of the read system call.
1051 	 */
1052 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1053 	    sizeof(kernproc))
1054 		return 0;
1055 	return (p->p_pid == kernproc.p_pid &&
1056 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1057 }
1058 
1059 static char **
1060 kvm_doargv(kd, p, nchr, info)
1061 	kvm_t *kd;
1062 	const struct miniproc *p;
1063 	int nchr;
1064 	void (*info)(struct ps_strings *, u_long *, int *);
1065 {
1066 	char **ap;
1067 	u_long addr;
1068 	int cnt;
1069 	struct ps_strings arginfo;
1070 
1071 	/*
1072 	 * Pointers are stored at the top of the user stack.
1073 	 */
1074 	if (p->p_stat == SZOMB)
1075 		return NULL;
1076 	cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1077 	    (void *)&arginfo, sizeof(arginfo));
1078 	if (cnt != sizeof(arginfo))
1079 		return NULL;
1080 
1081 	(*info)(&arginfo, &addr, &cnt);
1082 	if (cnt == 0)
1083 		return NULL;
1084 	ap = kvm_argv(kd, p, addr, cnt, nchr);
1085 	/*
1086 	 * For live kernels, make sure this process didn't go away.
1087 	 */
1088 	if (ap != NULL && ISALIVE(kd) &&
1089 	    !proc_verify(kd, (u_long)p->p_paddr, p))
1090 		ap = NULL;
1091 	return (ap);
1092 }
1093 
1094 /*
1095  * Get the command args.  This code is now machine independent.
1096  */
1097 char **
1098 kvm_getargv(kd, kp, nchr)
1099 	kvm_t *kd;
1100 	const struct kinfo_proc *kp;
1101 	int nchr;
1102 {
1103 	struct miniproc p;
1104 
1105 	KPTOMINI(kp, &p);
1106 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1107 }
1108 
1109 char **
1110 kvm_getenvv(kd, kp, nchr)
1111 	kvm_t *kd;
1112 	const struct kinfo_proc *kp;
1113 	int nchr;
1114 {
1115 	struct miniproc p;
1116 
1117 	KPTOMINI(kp, &p);
1118 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1119 }
1120 
1121 static char **
1122 kvm_doargv2(kd, pid, type, nchr)
1123 	kvm_t *kd;
1124 	pid_t pid;
1125 	int type;
1126 	int nchr;
1127 {
1128 	size_t bufs;
1129 	int narg, mib[4];
1130 	size_t newarglen;
1131 	char **ap, *bp, *endp;
1132 
1133 	/*
1134 	 * Check that there aren't an unreasonable number of agruments.
1135 	 */
1136 	if (nchr > ARG_MAX)
1137 		return NULL;
1138 
1139 	if (nchr == 0)
1140 		nchr = ARG_MAX;
1141 
1142 	/* Get number of strings in argv */
1143 	mib[0] = CTL_KERN;
1144 	mib[1] = KERN_PROC_ARGS;
1145 	mib[2] = pid;
1146 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1147 	bufs = sizeof(narg);
1148 	if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
1149 		return NULL;
1150 
1151 	if (kd->argv == NULL) {
1152 		/*
1153 		 * Try to avoid reallocs.
1154 		 */
1155 		kd->argc = MAX(narg + 1, 32);
1156 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1157 						sizeof(*kd->argv));
1158 		if (kd->argv == NULL)
1159 			return NULL;
1160 	} else if (narg + 1 > kd->argc) {
1161 		kd->argc = MAX(2 * kd->argc, narg + 1);
1162 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1163 						sizeof(*kd->argv));
1164 		if (kd->argv == NULL)
1165 			return NULL;
1166 	}
1167 
1168 	newarglen = MIN(nchr, ARG_MAX);
1169 	if (kd->arglen < newarglen) {
1170 		if (kd->arglen == 0)
1171 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1172 		else
1173 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1174 			    newarglen);
1175 		if (kd->argspc == NULL)
1176 			return NULL;
1177 		kd->arglen = newarglen;
1178 	}
1179 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
1180 
1181 	mib[0] = CTL_KERN;
1182 	mib[1] = KERN_PROC_ARGS;
1183 	mib[2] = pid;
1184 	mib[3] = type;
1185 	bufs = kd->arglen;
1186 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
1187 		return NULL;
1188 
1189 	bp = kd->argspc;
1190 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
1191 	ap = kd->argv;
1192 	endp = bp + MIN(nchr, bufs);
1193 
1194 	while (bp < endp) {
1195 		*ap++ = bp;
1196 		/* XXX: don't need following anymore, or stick check for max argc in above while loop? */
1197 		if (ap >= kd->argv + kd->argc) {
1198 			kd->argc *= 2;
1199 			kd->argv = _kvm_realloc(kd, kd->argv,
1200 			    kd->argc * sizeof(*kd->argv));
1201 			ap = kd->argv;
1202 		}
1203 		bp += strlen(bp) + 1;
1204 	}
1205 	*ap = NULL;
1206 
1207 	return (kd->argv);
1208 }
1209 
1210 char **
1211 kvm_getargv2(kd, kp, nchr)
1212 	kvm_t *kd;
1213 	const struct kinfo_proc2 *kp;
1214 	int nchr;
1215 {
1216 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1217 }
1218 
1219 char **
1220 kvm_getenvv2(kd, kp, nchr)
1221 	kvm_t *kd;
1222 	const struct kinfo_proc2 *kp;
1223 	int nchr;
1224 {
1225 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1226 }
1227 
1228 /*
1229  * Read from user space.  The user context is given by p.
1230  */
1231 static ssize_t
1232 kvm_ureadm(kd, p, uva, buf, len)
1233 	kvm_t *kd;
1234 	const struct miniproc *p;
1235 	u_long uva;
1236 	char *buf;
1237 	size_t len;
1238 {
1239 	char *cp;
1240 
1241 	cp = buf;
1242 	while (len > 0) {
1243 		size_t cc;
1244 		char *dp;
1245 		u_long cnt;
1246 
1247 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1248 		if (dp == NULL) {
1249 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1250 			return 0;
1251 		}
1252 		cc = (size_t)MIN(cnt, len);
1253 		memcpy(cp, dp, cc);
1254 		cp += cc;
1255 		uva += cc;
1256 		len -= cc;
1257 	}
1258 	return (ssize_t)(cp - buf);
1259 }
1260 
1261 ssize_t
1262 kvm_uread(kd, p, uva, buf, len)
1263 	kvm_t *kd;
1264 	const struct proc *p;
1265 	u_long uva;
1266 	char *buf;
1267 	size_t len;
1268 {
1269 	struct miniproc mp;
1270 
1271 	PTOMINI(p, &mp);
1272 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1273 }
1274