1 /* $NetBSD: kvm_proc.c,v 1.47 2003/02/02 02:29:59 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. All advertising materials mentioning features or use of this software 56 * must display the following acknowledgement: 57 * This product includes software developed by the University of 58 * California, Berkeley and its contributors. 59 * 4. Neither the name of the University nor the names of its contributors 60 * may be used to endorse or promote products derived from this software 61 * without specific prior written permission. 62 * 63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 73 * SUCH DAMAGE. 74 */ 75 76 #include <sys/cdefs.h> 77 #if defined(LIBC_SCCS) && !defined(lint) 78 #if 0 79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 80 #else 81 __RCSID("$NetBSD: kvm_proc.c,v 1.47 2003/02/02 02:29:59 christos Exp $"); 82 #endif 83 #endif /* LIBC_SCCS and not lint */ 84 85 /* 86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 87 * users of this code, so we've factored it out into a separate module. 88 * Thus, we keep this grunge out of the other kvm applications (i.e., 89 * most other applications are interested only in open/close/read/nlist). 90 */ 91 92 #include <sys/param.h> 93 #include <sys/user.h> 94 #include <sys/lwp.h> 95 #include <sys/proc.h> 96 #include <sys/exec.h> 97 #include <sys/stat.h> 98 #include <sys/ioctl.h> 99 #include <sys/tty.h> 100 #include <stdlib.h> 101 #include <string.h> 102 #include <unistd.h> 103 #include <nlist.h> 104 #include <kvm.h> 105 106 #include <uvm/uvm_extern.h> 107 #include <uvm/uvm_amap.h> 108 109 #include <sys/sysctl.h> 110 111 #include <limits.h> 112 #include <db.h> 113 #include <paths.h> 114 115 #include "kvm_private.h" 116 117 /* 118 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 119 */ 120 struct miniproc { 121 struct vmspace *p_vmspace; 122 char p_stat; 123 struct proc *p_paddr; 124 pid_t p_pid; 125 }; 126 127 /* 128 * Convert from struct proc and kinfo_proc{,2} to miniproc. 129 */ 130 #define PTOMINI(kp, p) \ 131 do { \ 132 (p)->p_stat = (kp)->p_stat; \ 133 (p)->p_pid = (kp)->p_pid; \ 134 (p)->p_paddr = NULL; \ 135 (p)->p_vmspace = (kp)->p_vmspace; \ 136 } while (/*CONSTCOND*/0); 137 138 #define KPTOMINI(kp, p) \ 139 do { \ 140 (p)->p_stat = (kp)->kp_proc.p_stat; \ 141 (p)->p_pid = (kp)->kp_proc.p_pid; \ 142 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 143 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 144 } while (/*CONSTCOND*/0); 145 146 #define KP2TOMINI(kp, p) \ 147 do { \ 148 (p)->p_stat = (kp)->p_stat; \ 149 (p)->p_pid = (kp)->p_pid; \ 150 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 151 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 152 } while (/*CONSTCOND*/0); 153 154 155 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(void *)(foo)) 156 157 #define KREAD(kd, addr, obj) \ 158 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 159 160 /* XXX: What uses these two functions? */ 161 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 162 u_long *)); 163 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 164 size_t)); 165 166 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 167 u_long *)); 168 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 169 char *, size_t)); 170 171 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 172 int)); 173 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long, 174 int)); 175 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 176 void (*)(struct ps_strings *, u_long *, int *))); 177 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 178 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 179 struct kinfo_proc *, int)); 180 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 181 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 182 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 183 184 185 static char * 186 _kvm_ureadm(kd, p, va, cnt) 187 kvm_t *kd; 188 const struct miniproc *p; 189 u_long va; 190 u_long *cnt; 191 { 192 int true = 1; 193 u_long addr, head; 194 u_long offset; 195 struct vm_map_entry vme; 196 struct vm_amap amap; 197 struct vm_anon *anonp, anon; 198 struct vm_page pg; 199 u_long slot; 200 201 if (kd->swapspc == NULL) { 202 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 203 if (kd->swapspc == NULL) 204 return NULL; 205 } 206 207 /* 208 * Look through the address map for the memory object 209 * that corresponds to the given virtual address. 210 * The header just has the entire valid range. 211 */ 212 head = (u_long)&p->p_vmspace->vm_map.header; 213 addr = head; 214 while (true) { 215 if (KREAD(kd, addr, &vme)) 216 return NULL; 217 218 if (va >= vme.start && va < vme.end && 219 vme.aref.ar_amap != NULL) 220 break; 221 222 addr = (u_long)vme.next; 223 if (addr == head) 224 return NULL; 225 226 } 227 228 /* 229 * we found the map entry, now to find the object... 230 */ 231 if (vme.aref.ar_amap == NULL) 232 return NULL; 233 234 addr = (u_long)vme.aref.ar_amap; 235 if (KREAD(kd, addr, &amap)) 236 return NULL; 237 238 offset = va - vme.start; 239 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 240 /* sanity-check slot number */ 241 if (slot > amap.am_nslot) 242 return NULL; 243 244 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 245 if (KREAD(kd, addr, &anonp)) 246 return NULL; 247 248 addr = (u_long)anonp; 249 if (KREAD(kd, addr, &anon)) 250 return NULL; 251 252 addr = (u_long)anon.u.an_page; 253 if (addr) { 254 if (KREAD(kd, addr, &pg)) 255 return NULL; 256 257 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 258 (off_t)pg.phys_addr) != kd->nbpg) 259 return NULL; 260 } 261 else { 262 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg, 263 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 264 return NULL; 265 } 266 267 /* Found the page. */ 268 offset %= kd->nbpg; 269 *cnt = kd->nbpg - offset; 270 return (&kd->swapspc[(size_t)offset]); 271 } 272 273 char * 274 _kvm_uread(kd, p, va, cnt) 275 kvm_t *kd; 276 const struct proc *p; 277 u_long va; 278 u_long *cnt; 279 { 280 struct miniproc mp; 281 282 PTOMINI(p, &mp); 283 return (_kvm_ureadm(kd, &mp, va, cnt)); 284 } 285 286 /* 287 * Read proc's from memory file into buffer bp, which has space to hold 288 * at most maxcnt procs. 289 */ 290 static int 291 kvm_proclist(kd, what, arg, p, bp, maxcnt) 292 kvm_t *kd; 293 int what, arg; 294 struct proc *p; 295 struct kinfo_proc *bp; 296 int maxcnt; 297 { 298 int cnt = 0; 299 int nlwps; 300 struct kinfo_lwp *kl; 301 struct eproc eproc; 302 struct pgrp pgrp; 303 struct session sess; 304 struct tty tty; 305 struct proc proc; 306 307 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 308 if (KREAD(kd, (u_long)p, &proc)) { 309 _kvm_err(kd, kd->program, "can't read proc at %p", p); 310 return (-1); 311 } 312 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 313 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 314 &eproc.e_ucred)) { 315 _kvm_err(kd, kd->program, 316 "can't read proc credentials at %p", p); 317 return -1; 318 } 319 320 switch(what) { 321 322 case KERN_PROC_PID: 323 if (proc.p_pid != (pid_t)arg) 324 continue; 325 break; 326 327 case KERN_PROC_UID: 328 if (eproc.e_ucred.cr_uid != (uid_t)arg) 329 continue; 330 break; 331 332 case KERN_PROC_RUID: 333 if (eproc.e_pcred.p_ruid != (uid_t)arg) 334 continue; 335 break; 336 } 337 /* 338 * We're going to add another proc to the set. If this 339 * will overflow the buffer, assume the reason is because 340 * nprocs (or the proc list) is corrupt and declare an error. 341 */ 342 if (cnt >= maxcnt) { 343 _kvm_err(kd, kd->program, "nprocs corrupt"); 344 return (-1); 345 } 346 /* 347 * gather eproc 348 */ 349 eproc.e_paddr = p; 350 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 351 _kvm_err(kd, kd->program, "can't read pgrp at %p", 352 proc.p_pgrp); 353 return (-1); 354 } 355 eproc.e_sess = pgrp.pg_session; 356 eproc.e_pgid = pgrp.pg_id; 357 eproc.e_jobc = pgrp.pg_jobc; 358 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 359 _kvm_err(kd, kd->program, "can't read session at %p", 360 pgrp.pg_session); 361 return (-1); 362 } 363 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 364 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 365 _kvm_err(kd, kd->program, 366 "can't read tty at %p", sess.s_ttyp); 367 return (-1); 368 } 369 eproc.e_tdev = tty.t_dev; 370 eproc.e_tsess = tty.t_session; 371 if (tty.t_pgrp != NULL) { 372 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 373 _kvm_err(kd, kd->program, 374 "can't read tpgrp at %p", 375 tty.t_pgrp); 376 return (-1); 377 } 378 eproc.e_tpgid = pgrp.pg_id; 379 } else 380 eproc.e_tpgid = -1; 381 } else 382 eproc.e_tdev = NODEV; 383 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 384 eproc.e_sid = sess.s_sid; 385 if (sess.s_leader == p) 386 eproc.e_flag |= EPROC_SLEADER; 387 /* Fill in the old-style proc.p_wmesg by copying the wmesg 388 * from the first avaliable LWP. 389 */ 390 kl = kvm_getlwps(kd, proc.p_pid, 391 (u_long)PTRTOINT64(eproc.e_paddr), 392 sizeof(struct kinfo_lwp), &nlwps); 393 if (kl) { 394 if (nlwps > 0) { 395 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 396 } 397 } 398 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 399 sizeof(eproc.e_vm)); 400 401 eproc.e_xsize = eproc.e_xrssize = 0; 402 eproc.e_xccount = eproc.e_xswrss = 0; 403 404 switch (what) { 405 406 case KERN_PROC_PGRP: 407 if (eproc.e_pgid != (pid_t)arg) 408 continue; 409 break; 410 411 case KERN_PROC_TTY: 412 if ((proc.p_flag & P_CONTROLT) == 0 || 413 eproc.e_tdev != (dev_t)arg) 414 continue; 415 break; 416 } 417 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 418 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 419 ++bp; 420 ++cnt; 421 } 422 return (cnt); 423 } 424 425 /* 426 * Build proc info array by reading in proc list from a crash dump. 427 * Return number of procs read. maxcnt is the max we will read. 428 */ 429 static int 430 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt) 431 kvm_t *kd; 432 int what, arg; 433 u_long a_allproc; 434 u_long a_deadproc; 435 u_long a_zombproc; 436 int maxcnt; 437 { 438 struct kinfo_proc *bp = kd->procbase; 439 int acnt, dcnt, zcnt; 440 struct proc *p; 441 442 if (KREAD(kd, a_allproc, &p)) { 443 _kvm_err(kd, kd->program, "cannot read allproc"); 444 return (-1); 445 } 446 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 447 if (acnt < 0) 448 return (acnt); 449 450 if (KREAD(kd, a_deadproc, &p)) { 451 _kvm_err(kd, kd->program, "cannot read deadproc"); 452 return (-1); 453 } 454 455 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt); 456 if (dcnt < 0) 457 dcnt = 0; 458 459 if (KREAD(kd, a_zombproc, &p)) { 460 _kvm_err(kd, kd->program, "cannot read zombproc"); 461 return (-1); 462 } 463 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 464 maxcnt - (acnt + dcnt)); 465 if (zcnt < 0) 466 zcnt = 0; 467 468 return (acnt + zcnt); 469 } 470 471 struct kinfo_proc2 * 472 kvm_getproc2(kd, op, arg, esize, cnt) 473 kvm_t *kd; 474 int op, arg; 475 size_t esize; 476 int *cnt; 477 { 478 size_t size; 479 int mib[6], st, nprocs; 480 struct pstats pstats; 481 482 if (kd->procbase2 != NULL) { 483 free(kd->procbase2); 484 /* 485 * Clear this pointer in case this call fails. Otherwise, 486 * kvm_close() will free it again. 487 */ 488 kd->procbase2 = NULL; 489 } 490 491 if (ISSYSCTL(kd)) { 492 size = 0; 493 mib[0] = CTL_KERN; 494 mib[1] = KERN_PROC2; 495 mib[2] = op; 496 mib[3] = arg; 497 mib[4] = esize; 498 mib[5] = 0; 499 st = sysctl(mib, 6, NULL, &size, NULL, 0); 500 if (st == -1) { 501 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 502 return NULL; 503 } 504 505 mib[5] = size / esize; 506 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size); 507 if (kd->procbase2 == NULL) 508 return NULL; 509 st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0); 510 if (st == -1) { 511 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 512 return NULL; 513 } 514 nprocs = size / esize; 515 } else { 516 char *kp2c; 517 struct kinfo_proc *kp; 518 struct kinfo_proc2 kp2, *kp2p; 519 struct kinfo_lwp *kl; 520 int i, nlwps; 521 522 kp = kvm_getprocs(kd, op, arg, &nprocs); 523 if (kp == NULL) 524 return NULL; 525 526 kd->procbase2 = _kvm_malloc(kd, nprocs * esize); 527 kp2c = (char *)(void *)kd->procbase2; 528 kp2p = &kp2; 529 for (i = 0; i < nprocs; i++, kp++) { 530 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 531 (u_long)PTRTOINT64(kp->kp_eproc.e_paddr), 532 sizeof(struct kinfo_lwp), &nlwps); 533 /* We use kl[0] as the "representative" LWP */ 534 memset(kp2p, 0, sizeof(kp2)); 535 kp2p->p_forw = kl[0].l_forw; 536 kp2p->p_back = kl[0].l_back; 537 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr); 538 kp2p->p_addr = kl[0].l_addr; 539 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd); 540 kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi); 541 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats); 542 kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit); 543 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace); 544 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts); 545 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess); 546 kp2p->p_tsess = 0; 547 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru); 548 549 kp2p->p_eflag = 0; 550 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 551 kp2p->p_flag = kp->kp_proc.p_flag; 552 553 kp2p->p_pid = kp->kp_proc.p_pid; 554 555 kp2p->p_ppid = kp->kp_eproc.e_ppid; 556 kp2p->p_sid = kp->kp_eproc.e_sid; 557 kp2p->p__pgid = kp->kp_eproc.e_pgid; 558 559 kp2p->p_tpgid = 30001 /* XXX NO_PID! */; 560 561 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 562 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 563 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 564 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 565 566 /*CONSTCOND*/ 567 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 568 MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups))); 569 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 570 571 kp2p->p_jobc = kp->kp_eproc.e_jobc; 572 kp2p->p_tdev = kp->kp_eproc.e_tdev; 573 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 574 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess); 575 576 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 577 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu; 578 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu; 579 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 580 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 581 kp2p->p_swtime = kl[0].l_swtime; 582 kp2p->p_slptime = kl[0].l_slptime; 583 #if 0 /* XXX thorpej */ 584 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 585 #else 586 kp2p->p_schedflags = 0; 587 #endif 588 589 kp2p->p_uticks = kp->kp_proc.p_uticks; 590 kp2p->p_sticks = kp->kp_proc.p_sticks; 591 kp2p->p_iticks = kp->kp_proc.p_iticks; 592 593 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep); 594 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 595 596 kp2p->p_holdcnt = kl[0].l_holdcnt; 597 598 memcpy(&kp2p->p_siglist, &kp->kp_proc.p_sigctx.ps_siglist, sizeof(ki_sigset_t)); 599 memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigctx.ps_sigmask, sizeof(ki_sigset_t)); 600 memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigctx.ps_sigignore, sizeof(ki_sigset_t)); 601 memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); 602 603 kp2p->p_stat = kp->kp_proc.p_stat; 604 kp2p->p_priority = kl[0].l_priority; 605 kp2p->p_usrpri = kl[0].l_usrpri; 606 kp2p->p_nice = kp->kp_proc.p_nice; 607 608 kp2p->p_xstat = kp->kp_proc.p_xstat; 609 kp2p->p_acflag = kp->kp_proc.p_acflag; 610 611 /*CONSTCOND*/ 612 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 613 MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm))); 614 615 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg)); 616 kp2p->p_wchan = kl[0].l_wchan; 617 strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login)); 618 619 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 620 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 621 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 622 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 623 624 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 625 626 kp2p->p_realflag = kp->kp_proc.p_flag; 627 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 628 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 629 kp2p->p_realstat = kp->kp_proc.p_stat; 630 631 if (P_ZOMBIE(&kp->kp_proc) 632 || 633 kp->kp_proc.p_stats == NULL || 634 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats) 635 ) { 636 kp2p->p_uvalid = 0; 637 } else { 638 kp2p->p_uvalid = 1; 639 640 kp2p->p_ustart_sec = (u_int32_t) 641 pstats.p_start.tv_sec; 642 kp2p->p_ustart_usec = (u_int32_t) 643 pstats.p_start.tv_usec; 644 645 kp2p->p_uutime_sec = (u_int32_t) 646 pstats.p_ru.ru_utime.tv_sec; 647 kp2p->p_uutime_usec = (u_int32_t) 648 pstats.p_ru.ru_utime.tv_usec; 649 kp2p->p_ustime_sec = (u_int32_t) 650 pstats.p_ru.ru_stime.tv_sec; 651 kp2p->p_ustime_usec = (u_int32_t) 652 pstats.p_ru.ru_stime.tv_usec; 653 654 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 655 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 656 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 657 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 658 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 659 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 660 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 661 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 662 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 663 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 664 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 665 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 666 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 667 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 668 669 kp2p->p_uctime_sec = (u_int32_t) 670 (pstats.p_cru.ru_utime.tv_sec + 671 pstats.p_cru.ru_stime.tv_sec); 672 kp2p->p_uctime_usec = (u_int32_t) 673 (pstats.p_cru.ru_utime.tv_usec + 674 pstats.p_cru.ru_stime.tv_usec); 675 } 676 677 memcpy(kp2c, &kp2, esize); 678 kp2c += esize; 679 } 680 681 free(kd->procbase); 682 } 683 *cnt = nprocs; 684 return (kd->procbase2); 685 } 686 687 struct kinfo_lwp * 688 kvm_getlwps(kd, pid, paddr, esize, cnt) 689 kvm_t *kd; 690 int pid; 691 u_long paddr; 692 size_t esize; 693 int *cnt; 694 { 695 size_t size; 696 int mib[5], st, nlwps; 697 struct kinfo_lwp *kl; 698 699 if (kd->lwpbase != NULL) { 700 free(kd->lwpbase); 701 /* 702 * Clear this pointer in case this call fails. Otherwise, 703 * kvm_close() will free it again. 704 */ 705 kd->lwpbase = NULL; 706 } 707 708 if (ISSYSCTL(kd)) { 709 size = 0; 710 mib[0] = CTL_KERN; 711 mib[1] = KERN_LWP; 712 mib[2] = pid; 713 mib[3] = esize; 714 mib[4] = 0; 715 st = sysctl(mib, 5, NULL, &size, NULL, 0); 716 if (st == -1) { 717 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 718 return NULL; 719 } 720 721 mib[4] = size / esize; 722 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size); 723 if (kd->lwpbase == NULL) 724 return NULL; 725 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, 0); 726 if (st == -1) { 727 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 728 return NULL; 729 } 730 nlwps = size / esize; 731 } else { 732 /* grovel through the memory image */ 733 struct proc p; 734 struct lwp l; 735 u_long laddr; 736 int i; 737 738 st = kvm_read(kd, paddr, &p, sizeof(p)); 739 if (st == -1) { 740 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 741 return NULL; 742 } 743 744 nlwps = p.p_nlwps; 745 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, 746 nlwps * sizeof(struct kinfo_lwp)); 747 if (kd->lwpbase == NULL) 748 return NULL; 749 laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first); 750 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 751 st = kvm_read(kd, laddr, &l, sizeof(l)); 752 if (st == -1) { 753 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 754 return NULL; 755 } 756 kl = &kd->lwpbase[i]; 757 kl->l_laddr = laddr; 758 kl->l_forw = PTRTOINT64(l.l_forw); 759 kl->l_back = PTRTOINT64(l.l_back); 760 kl->l_addr = PTRTOINT64(l.l_addr); 761 kl->l_lid = l.l_lid; 762 kl->l_flag = l.l_flag; 763 kl->l_swtime = l.l_swtime; 764 kl->l_slptime = l.l_slptime; 765 kl->l_schedflags = 0; /* XXX */ 766 kl->l_holdcnt = l.l_holdcnt; 767 kl->l_priority = l.l_priority; 768 kl->l_usrpri = l.l_usrpri; 769 kl->l_stat = l.l_stat; 770 kl->l_wchan = PTRTOINT64(l.l_wchan); 771 if (l.l_wmesg) 772 (void)kvm_read(kd, (u_long)l.l_wmesg, 773 kl->l_wmesg, WMESGLEN); 774 kl->l_cpuid = KI_NOCPU; 775 laddr = (u_long)PTRTOINT64(l.l_sibling.le_next); 776 } 777 } 778 779 *cnt = nlwps; 780 return kd->lwpbase; 781 } 782 783 struct kinfo_proc * 784 kvm_getprocs(kd, op, arg, cnt) 785 kvm_t *kd; 786 int op, arg; 787 int *cnt; 788 { 789 size_t size; 790 int mib[4], st, nprocs; 791 792 if (kd->procbase != NULL) { 793 free(kd->procbase); 794 /* 795 * Clear this pointer in case this call fails. Otherwise, 796 * kvm_close() will free it again. 797 */ 798 kd->procbase = NULL; 799 } 800 if (ISKMEM(kd)) { 801 size = 0; 802 mib[0] = CTL_KERN; 803 mib[1] = KERN_PROC; 804 mib[2] = op; 805 mib[3] = arg; 806 st = sysctl(mib, 4, NULL, &size, NULL, 0); 807 if (st == -1) { 808 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 809 return NULL; 810 } 811 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 812 if (kd->procbase == NULL) 813 return NULL; 814 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 815 if (st == -1) { 816 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 817 return NULL; 818 } 819 if (size % sizeof(struct kinfo_proc) != 0) { 820 _kvm_err(kd, kd->program, 821 "proc size mismatch (%lu total, %lu chunks)", 822 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 823 return NULL; 824 } 825 nprocs = size / sizeof(struct kinfo_proc); 826 } else if (ISSYSCTL(kd)) { 827 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 828 "can't use kvm_getprocs"); 829 return NULL; 830 } else { 831 struct nlist nl[5], *p; 832 833 nl[0].n_name = "_nprocs"; 834 nl[1].n_name = "_allproc"; 835 nl[2].n_name = "_deadproc"; 836 nl[3].n_name = "_zombproc"; 837 nl[4].n_name = NULL; 838 839 if (kvm_nlist(kd, nl) != 0) { 840 for (p = nl; p->n_type != 0; ++p) 841 ; 842 _kvm_err(kd, kd->program, 843 "%s: no such symbol", p->n_name); 844 return NULL; 845 } 846 if (KREAD(kd, nl[0].n_value, &nprocs)) { 847 _kvm_err(kd, kd->program, "can't read nprocs"); 848 return NULL; 849 } 850 size = nprocs * sizeof(struct kinfo_proc); 851 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 852 if (kd->procbase == NULL) 853 return NULL; 854 855 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 856 nl[2].n_value, nl[3].n_value, nprocs); 857 if (nprocs < 0) 858 return NULL; 859 #ifdef notdef 860 size = nprocs * sizeof(struct kinfo_proc); 861 (void)realloc(kd->procbase, size); 862 #endif 863 } 864 *cnt = nprocs; 865 return (kd->procbase); 866 } 867 868 void 869 _kvm_freeprocs(kd) 870 kvm_t *kd; 871 { 872 if (kd->procbase) { 873 free(kd->procbase); 874 kd->procbase = NULL; 875 } 876 } 877 878 void * 879 _kvm_realloc(kd, p, n) 880 kvm_t *kd; 881 void *p; 882 size_t n; 883 { 884 void *np = realloc(p, n); 885 886 if (np == NULL) 887 _kvm_err(kd, kd->program, "out of memory"); 888 return (np); 889 } 890 891 /* 892 * Read in an argument vector from the user address space of process p. 893 * addr if the user-space base address of narg null-terminated contiguous 894 * strings. This is used to read in both the command arguments and 895 * environment strings. Read at most maxcnt characters of strings. 896 */ 897 static char ** 898 kvm_argv(kd, p, addr, narg, maxcnt) 899 kvm_t *kd; 900 const struct miniproc *p; 901 u_long addr; 902 int narg; 903 int maxcnt; 904 { 905 char *np, *cp, *ep, *ap; 906 u_long oaddr = (u_long)~0L; 907 u_long len; 908 size_t cc; 909 char **argv; 910 911 /* 912 * Check that there aren't an unreasonable number of agruments, 913 * and that the address is in user space. 914 */ 915 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 916 return NULL; 917 918 if (kd->argv == NULL) { 919 /* 920 * Try to avoid reallocs. 921 */ 922 kd->argc = MAX(narg + 1, 32); 923 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 924 sizeof(*kd->argv)); 925 if (kd->argv == NULL) 926 return NULL; 927 } else if (narg + 1 > kd->argc) { 928 kd->argc = MAX(2 * kd->argc, narg + 1); 929 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 930 sizeof(*kd->argv)); 931 if (kd->argv == NULL) 932 return NULL; 933 } 934 if (kd->argspc == NULL) { 935 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 936 if (kd->argspc == NULL) 937 return NULL; 938 kd->arglen = kd->nbpg; 939 } 940 if (kd->argbuf == NULL) { 941 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 942 if (kd->argbuf == NULL) 943 return NULL; 944 } 945 cc = sizeof(char *) * narg; 946 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 947 return NULL; 948 ap = np = kd->argspc; 949 argv = kd->argv; 950 len = 0; 951 /* 952 * Loop over pages, filling in the argument vector. 953 */ 954 while (argv < kd->argv + narg && *argv != NULL) { 955 addr = (u_long)*argv & ~(kd->nbpg - 1); 956 if (addr != oaddr) { 957 if (kvm_ureadm(kd, p, addr, kd->argbuf, 958 (size_t)kd->nbpg) != kd->nbpg) 959 return NULL; 960 oaddr = addr; 961 } 962 addr = (u_long)*argv & (kd->nbpg - 1); 963 cp = kd->argbuf + (size_t)addr; 964 cc = kd->nbpg - (size_t)addr; 965 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 966 cc = (size_t)(maxcnt - len); 967 ep = memchr(cp, '\0', cc); 968 if (ep != NULL) 969 cc = ep - cp + 1; 970 if (len + cc > kd->arglen) { 971 int off; 972 char **pp; 973 char *op = kd->argspc; 974 975 kd->arglen *= 2; 976 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 977 (size_t)kd->arglen); 978 if (kd->argspc == NULL) 979 return NULL; 980 /* 981 * Adjust argv pointers in case realloc moved 982 * the string space. 983 */ 984 off = kd->argspc - op; 985 for (pp = kd->argv; pp < argv; pp++) 986 *pp += off; 987 ap += off; 988 np += off; 989 } 990 memcpy(np, cp, cc); 991 np += cc; 992 len += cc; 993 if (ep != NULL) { 994 *argv++ = ap; 995 ap = np; 996 } else 997 *argv += cc; 998 if (maxcnt > 0 && len >= maxcnt) { 999 /* 1000 * We're stopping prematurely. Terminate the 1001 * current string. 1002 */ 1003 if (ep == NULL) { 1004 *np = '\0'; 1005 *argv++ = ap; 1006 } 1007 break; 1008 } 1009 } 1010 /* Make sure argv is terminated. */ 1011 *argv = NULL; 1012 return (kd->argv); 1013 } 1014 1015 static void 1016 ps_str_a(p, addr, n) 1017 struct ps_strings *p; 1018 u_long *addr; 1019 int *n; 1020 { 1021 *addr = (u_long)p->ps_argvstr; 1022 *n = p->ps_nargvstr; 1023 } 1024 1025 static void 1026 ps_str_e(p, addr, n) 1027 struct ps_strings *p; 1028 u_long *addr; 1029 int *n; 1030 { 1031 *addr = (u_long)p->ps_envstr; 1032 *n = p->ps_nenvstr; 1033 } 1034 1035 /* 1036 * Determine if the proc indicated by p is still active. 1037 * This test is not 100% foolproof in theory, but chances of 1038 * being wrong are very low. 1039 */ 1040 static int 1041 proc_verify(kd, kernp, p) 1042 kvm_t *kd; 1043 u_long kernp; 1044 const struct miniproc *p; 1045 { 1046 struct proc kernproc; 1047 1048 /* 1049 * Just read in the whole proc. It's not that big relative 1050 * to the cost of the read system call. 1051 */ 1052 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1053 sizeof(kernproc)) 1054 return 0; 1055 return (p->p_pid == kernproc.p_pid && 1056 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1057 } 1058 1059 static char ** 1060 kvm_doargv(kd, p, nchr, info) 1061 kvm_t *kd; 1062 const struct miniproc *p; 1063 int nchr; 1064 void (*info)(struct ps_strings *, u_long *, int *); 1065 { 1066 char **ap; 1067 u_long addr; 1068 int cnt; 1069 struct ps_strings arginfo; 1070 1071 /* 1072 * Pointers are stored at the top of the user stack. 1073 */ 1074 if (p->p_stat == SZOMB) 1075 return NULL; 1076 cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1077 (void *)&arginfo, sizeof(arginfo)); 1078 if (cnt != sizeof(arginfo)) 1079 return NULL; 1080 1081 (*info)(&arginfo, &addr, &cnt); 1082 if (cnt == 0) 1083 return NULL; 1084 ap = kvm_argv(kd, p, addr, cnt, nchr); 1085 /* 1086 * For live kernels, make sure this process didn't go away. 1087 */ 1088 if (ap != NULL && ISALIVE(kd) && 1089 !proc_verify(kd, (u_long)p->p_paddr, p)) 1090 ap = NULL; 1091 return (ap); 1092 } 1093 1094 /* 1095 * Get the command args. This code is now machine independent. 1096 */ 1097 char ** 1098 kvm_getargv(kd, kp, nchr) 1099 kvm_t *kd; 1100 const struct kinfo_proc *kp; 1101 int nchr; 1102 { 1103 struct miniproc p; 1104 1105 KPTOMINI(kp, &p); 1106 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1107 } 1108 1109 char ** 1110 kvm_getenvv(kd, kp, nchr) 1111 kvm_t *kd; 1112 const struct kinfo_proc *kp; 1113 int nchr; 1114 { 1115 struct miniproc p; 1116 1117 KPTOMINI(kp, &p); 1118 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1119 } 1120 1121 static char ** 1122 kvm_doargv2(kd, pid, type, nchr) 1123 kvm_t *kd; 1124 pid_t pid; 1125 int type; 1126 int nchr; 1127 { 1128 size_t bufs; 1129 int narg, mib[4]; 1130 size_t newarglen; 1131 char **ap, *bp, *endp; 1132 1133 /* 1134 * Check that there aren't an unreasonable number of agruments. 1135 */ 1136 if (nchr > ARG_MAX) 1137 return NULL; 1138 1139 if (nchr == 0) 1140 nchr = ARG_MAX; 1141 1142 /* Get number of strings in argv */ 1143 mib[0] = CTL_KERN; 1144 mib[1] = KERN_PROC_ARGS; 1145 mib[2] = pid; 1146 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1147 bufs = sizeof(narg); 1148 if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1) 1149 return NULL; 1150 1151 if (kd->argv == NULL) { 1152 /* 1153 * Try to avoid reallocs. 1154 */ 1155 kd->argc = MAX(narg + 1, 32); 1156 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 1157 sizeof(*kd->argv)); 1158 if (kd->argv == NULL) 1159 return NULL; 1160 } else if (narg + 1 > kd->argc) { 1161 kd->argc = MAX(2 * kd->argc, narg + 1); 1162 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 1163 sizeof(*kd->argv)); 1164 if (kd->argv == NULL) 1165 return NULL; 1166 } 1167 1168 newarglen = MIN(nchr, ARG_MAX); 1169 if (kd->arglen < newarglen) { 1170 if (kd->arglen == 0) 1171 kd->argspc = (char *)_kvm_malloc(kd, newarglen); 1172 else 1173 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 1174 newarglen); 1175 if (kd->argspc == NULL) 1176 return NULL; 1177 kd->arglen = newarglen; 1178 } 1179 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */ 1180 1181 mib[0] = CTL_KERN; 1182 mib[1] = KERN_PROC_ARGS; 1183 mib[2] = pid; 1184 mib[3] = type; 1185 bufs = kd->arglen; 1186 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1) 1187 return NULL; 1188 1189 bp = kd->argspc; 1190 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */ 1191 ap = kd->argv; 1192 endp = bp + MIN(nchr, bufs); 1193 1194 while (bp < endp) { 1195 *ap++ = bp; 1196 /* XXX: don't need following anymore, or stick check for max argc in above while loop? */ 1197 if (ap >= kd->argv + kd->argc) { 1198 kd->argc *= 2; 1199 kd->argv = _kvm_realloc(kd, kd->argv, 1200 kd->argc * sizeof(*kd->argv)); 1201 ap = kd->argv; 1202 } 1203 bp += strlen(bp) + 1; 1204 } 1205 *ap = NULL; 1206 1207 return (kd->argv); 1208 } 1209 1210 char ** 1211 kvm_getargv2(kd, kp, nchr) 1212 kvm_t *kd; 1213 const struct kinfo_proc2 *kp; 1214 int nchr; 1215 { 1216 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1217 } 1218 1219 char ** 1220 kvm_getenvv2(kd, kp, nchr) 1221 kvm_t *kd; 1222 const struct kinfo_proc2 *kp; 1223 int nchr; 1224 { 1225 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1226 } 1227 1228 /* 1229 * Read from user space. The user context is given by p. 1230 */ 1231 static ssize_t 1232 kvm_ureadm(kd, p, uva, buf, len) 1233 kvm_t *kd; 1234 const struct miniproc *p; 1235 u_long uva; 1236 char *buf; 1237 size_t len; 1238 { 1239 char *cp; 1240 1241 cp = buf; 1242 while (len > 0) { 1243 size_t cc; 1244 char *dp; 1245 u_long cnt; 1246 1247 dp = _kvm_ureadm(kd, p, uva, &cnt); 1248 if (dp == NULL) { 1249 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1250 return 0; 1251 } 1252 cc = (size_t)MIN(cnt, len); 1253 memcpy(cp, dp, cc); 1254 cp += cc; 1255 uva += cc; 1256 len -= cc; 1257 } 1258 return (ssize_t)(cp - buf); 1259 } 1260 1261 ssize_t 1262 kvm_uread(kd, p, uva, buf, len) 1263 kvm_t *kd; 1264 const struct proc *p; 1265 u_long uva; 1266 char *buf; 1267 size_t len; 1268 { 1269 struct miniproc mp; 1270 1271 PTOMINI(p, &mp); 1272 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1273 } 1274