1 /* $NetBSD: kvm_proc.c,v 1.82 2009/03/29 01:02:49 mrg Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1989, 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software developed by the Computer Systems 37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 38 * BG 91-66 and contributed to Berkeley. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 */ 64 65 #include <sys/cdefs.h> 66 #if defined(LIBC_SCCS) && !defined(lint) 67 #if 0 68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 69 #else 70 __RCSID("$NetBSD: kvm_proc.c,v 1.82 2009/03/29 01:02:49 mrg Exp $"); 71 #endif 72 #endif /* LIBC_SCCS and not lint */ 73 74 /* 75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 76 * users of this code, so we've factored it out into a separate module. 77 * Thus, we keep this grunge out of the other kvm applications (i.e., 78 * most other applications are interested only in open/close/read/nlist). 79 */ 80 81 #include <sys/param.h> 82 #include <sys/user.h> 83 #include <sys/lwp.h> 84 #include <sys/proc.h> 85 #include <sys/exec.h> 86 #include <sys/stat.h> 87 #include <sys/ioctl.h> 88 #include <sys/tty.h> 89 #include <sys/resourcevar.h> 90 #include <sys/mutex.h> 91 #include <sys/specificdata.h> 92 93 #include <errno.h> 94 #include <stdlib.h> 95 #include <stddef.h> 96 #include <string.h> 97 #include <unistd.h> 98 #include <nlist.h> 99 #include <kvm.h> 100 101 #include <uvm/uvm_extern.h> 102 #include <uvm/uvm_param.h> 103 #include <uvm/uvm_amap.h> 104 105 #include <sys/sysctl.h> 106 107 #include <limits.h> 108 #include <db.h> 109 #include <paths.h> 110 111 #include "kvm_private.h" 112 113 /* 114 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 115 */ 116 struct miniproc { 117 struct vmspace *p_vmspace; 118 char p_stat; 119 struct proc *p_paddr; 120 pid_t p_pid; 121 }; 122 123 /* 124 * Convert from struct proc and kinfo_proc{,2} to miniproc. 125 */ 126 #define PTOMINI(kp, p) \ 127 do { \ 128 (p)->p_stat = (kp)->p_stat; \ 129 (p)->p_pid = (kp)->p_pid; \ 130 (p)->p_paddr = NULL; \ 131 (p)->p_vmspace = (kp)->p_vmspace; \ 132 } while (/*CONSTCOND*/0); 133 134 #define KPTOMINI(kp, p) \ 135 do { \ 136 (p)->p_stat = (kp)->kp_proc.p_stat; \ 137 (p)->p_pid = (kp)->kp_proc.p_pid; \ 138 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 139 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 140 } while (/*CONSTCOND*/0); 141 142 #define KP2TOMINI(kp, p) \ 143 do { \ 144 (p)->p_stat = (kp)->p_stat; \ 145 (p)->p_pid = (kp)->p_pid; \ 146 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 147 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 148 } while (/*CONSTCOND*/0); 149 150 /* 151 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, 152 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to 153 * kvm(3) so dumps can be read properly. 154 * 155 * Whenever NetBSD starts exporting credentials to userland consistently (using 156 * 'struct uucred', or something) this will have to be updated again. 157 */ 158 struct kvm_kauth_cred { 159 u_int cr_refcnt; /* reference count */ 160 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)]; 161 uid_t cr_uid; /* user id */ 162 uid_t cr_euid; /* effective user id */ 163 uid_t cr_svuid; /* saved effective user id */ 164 gid_t cr_gid; /* group id */ 165 gid_t cr_egid; /* effective group id */ 166 gid_t cr_svgid; /* saved effective group id */ 167 u_int cr_ngroups; /* number of groups */ 168 gid_t cr_groups[NGROUPS]; /* group memberships */ 169 specificdata_reference cr_sd; /* specific data */ 170 }; 171 172 #define KREAD(kd, addr, obj) \ 173 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 174 175 /* XXX: What uses these two functions? */ 176 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 177 u_long *)); 178 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 179 size_t)); 180 181 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 182 u_long *)); 183 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 184 char *, size_t)); 185 186 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 187 int)); 188 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 189 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 190 void (*)(struct ps_strings *, u_long *, int *))); 191 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 192 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 193 struct kinfo_proc *, int)); 194 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 195 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 196 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 197 198 199 static char * 200 _kvm_ureadm(kd, p, va, cnt) 201 kvm_t *kd; 202 const struct miniproc *p; 203 u_long va; 204 u_long *cnt; 205 { 206 u_long addr, head; 207 u_long offset; 208 struct vm_map_entry vme; 209 struct vm_amap amap; 210 struct vm_anon *anonp, anon; 211 struct vm_page pg; 212 u_long slot; 213 214 if (kd->swapspc == NULL) { 215 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 216 if (kd->swapspc == NULL) 217 return (NULL); 218 } 219 220 /* 221 * Look through the address map for the memory object 222 * that corresponds to the given virtual address. 223 * The header just has the entire valid range. 224 */ 225 head = (u_long)&p->p_vmspace->vm_map.header; 226 addr = head; 227 for (;;) { 228 if (KREAD(kd, addr, &vme)) 229 return (NULL); 230 231 if (va >= vme.start && va < vme.end && 232 vme.aref.ar_amap != NULL) 233 break; 234 235 addr = (u_long)vme.next; 236 if (addr == head) 237 return (NULL); 238 } 239 240 /* 241 * we found the map entry, now to find the object... 242 */ 243 if (vme.aref.ar_amap == NULL) 244 return (NULL); 245 246 addr = (u_long)vme.aref.ar_amap; 247 if (KREAD(kd, addr, &amap)) 248 return (NULL); 249 250 offset = va - vme.start; 251 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 252 /* sanity-check slot number */ 253 if (slot > amap.am_nslot) 254 return (NULL); 255 256 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 257 if (KREAD(kd, addr, &anonp)) 258 return (NULL); 259 260 addr = (u_long)anonp; 261 if (KREAD(kd, addr, &anon)) 262 return (NULL); 263 264 addr = (u_long)anon.an_page; 265 if (addr) { 266 if (KREAD(kd, addr, &pg)) 267 return (NULL); 268 269 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 270 (off_t)pg.phys_addr) != kd->nbpg) 271 return (NULL); 272 } else { 273 if (kd->swfd < 0 || 274 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg, 275 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 276 return (NULL); 277 } 278 279 /* Found the page. */ 280 offset %= kd->nbpg; 281 *cnt = kd->nbpg - offset; 282 return (&kd->swapspc[(size_t)offset]); 283 } 284 285 char * 286 _kvm_uread(kd, p, va, cnt) 287 kvm_t *kd; 288 const struct proc *p; 289 u_long va; 290 u_long *cnt; 291 { 292 struct miniproc mp; 293 294 PTOMINI(p, &mp); 295 return (_kvm_ureadm(kd, &mp, va, cnt)); 296 } 297 298 /* 299 * Convert credentials located in kernel space address 'cred' and store 300 * them in the appropriate members of 'eproc'. 301 */ 302 static int 303 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) 304 { 305 struct kvm_kauth_cred kauthcred; 306 struct ki_pcred *pc = &eproc->e_pcred; 307 struct ki_ucred *uc = &eproc->e_ucred; 308 309 if (KREAD(kd, cred, &kauthcred) != 0) 310 return (-1); 311 312 /* inlined version of kauth_cred_to_pcred, see kauth(9). */ 313 pc->p_ruid = kauthcred.cr_uid; 314 pc->p_svuid = kauthcred.cr_svuid; 315 pc->p_rgid = kauthcred.cr_gid; 316 pc->p_svgid = kauthcred.cr_svgid; 317 pc->p_refcnt = kauthcred.cr_refcnt; 318 pc->p_pad = NULL; 319 320 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ 321 uc->cr_ref = kauthcred.cr_refcnt; 322 uc->cr_uid = kauthcred.cr_euid; 323 uc->cr_gid = kauthcred.cr_egid; 324 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups, 325 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); 326 memcpy(uc->cr_groups, kauthcred.cr_groups, 327 uc->cr_ngroups * sizeof(uc->cr_groups[0])); 328 329 return (0); 330 } 331 332 /* 333 * Read proc's from memory file into buffer bp, which has space to hold 334 * at most maxcnt procs. 335 */ 336 static int 337 kvm_proclist(kd, what, arg, p, bp, maxcnt) 338 kvm_t *kd; 339 int what, arg; 340 struct proc *p; 341 struct kinfo_proc *bp; 342 int maxcnt; 343 { 344 int cnt = 0; 345 int nlwps; 346 struct kinfo_lwp *kl; 347 struct eproc eproc; 348 struct pgrp pgrp; 349 struct session sess; 350 struct tty tty; 351 struct proc proc; 352 353 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 354 if (KREAD(kd, (u_long)p, &proc)) { 355 _kvm_err(kd, kd->program, "can't read proc at %p", p); 356 return (-1); 357 } 358 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { 359 _kvm_err(kd, kd->program, 360 "can't read proc credentials at %p", p); 361 return (-1); 362 } 363 364 switch (what) { 365 366 case KERN_PROC_PID: 367 if (proc.p_pid != (pid_t)arg) 368 continue; 369 break; 370 371 case KERN_PROC_UID: 372 if (eproc.e_ucred.cr_uid != (uid_t)arg) 373 continue; 374 break; 375 376 case KERN_PROC_RUID: 377 if (eproc.e_pcred.p_ruid != (uid_t)arg) 378 continue; 379 break; 380 } 381 /* 382 * We're going to add another proc to the set. If this 383 * will overflow the buffer, assume the reason is because 384 * nprocs (or the proc list) is corrupt and declare an error. 385 */ 386 if (cnt >= maxcnt) { 387 _kvm_err(kd, kd->program, "nprocs corrupt"); 388 return (-1); 389 } 390 /* 391 * gather eproc 392 */ 393 eproc.e_paddr = p; 394 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 395 _kvm_err(kd, kd->program, "can't read pgrp at %p", 396 proc.p_pgrp); 397 return (-1); 398 } 399 eproc.e_sess = pgrp.pg_session; 400 eproc.e_pgid = pgrp.pg_id; 401 eproc.e_jobc = pgrp.pg_jobc; 402 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 403 _kvm_err(kd, kd->program, "can't read session at %p", 404 pgrp.pg_session); 405 return (-1); 406 } 407 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { 408 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 409 _kvm_err(kd, kd->program, 410 "can't read tty at %p", sess.s_ttyp); 411 return (-1); 412 } 413 eproc.e_tdev = (uint32_t)tty.t_dev; 414 eproc.e_tsess = tty.t_session; 415 if (tty.t_pgrp != NULL) { 416 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 417 _kvm_err(kd, kd->program, 418 "can't read tpgrp at %p", 419 tty.t_pgrp); 420 return (-1); 421 } 422 eproc.e_tpgid = pgrp.pg_id; 423 } else 424 eproc.e_tpgid = -1; 425 } else 426 eproc.e_tdev = (uint32_t)NODEV; 427 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 428 eproc.e_sid = sess.s_sid; 429 if (sess.s_leader == p) 430 eproc.e_flag |= EPROC_SLEADER; 431 /* 432 * Fill in the old-style proc.p_wmesg by copying the wmesg 433 * from the first available LWP. 434 */ 435 kl = kvm_getlwps(kd, proc.p_pid, 436 (u_long)PTRTOUINT64(eproc.e_paddr), 437 sizeof(struct kinfo_lwp), &nlwps); 438 if (kl) { 439 if (nlwps > 0) { 440 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 441 } 442 } 443 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 444 sizeof(eproc.e_vm)); 445 446 eproc.e_xsize = eproc.e_xrssize = 0; 447 eproc.e_xccount = eproc.e_xswrss = 0; 448 449 switch (what) { 450 451 case KERN_PROC_PGRP: 452 if (eproc.e_pgid != (pid_t)arg) 453 continue; 454 break; 455 456 case KERN_PROC_TTY: 457 if ((proc.p_lflag & PL_CONTROLT) == 0 || 458 eproc.e_tdev != (dev_t)arg) 459 continue; 460 break; 461 } 462 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 463 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 464 ++bp; 465 ++cnt; 466 } 467 return (cnt); 468 } 469 470 /* 471 * Build proc info array by reading in proc list from a crash dump. 472 * Return number of procs read. maxcnt is the max we will read. 473 */ 474 static int 475 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 476 kvm_t *kd; 477 int what, arg; 478 u_long a_allproc; 479 u_long a_zombproc; 480 int maxcnt; 481 { 482 struct kinfo_proc *bp = kd->procbase; 483 int acnt, zcnt; 484 struct proc *p; 485 486 if (KREAD(kd, a_allproc, &p)) { 487 _kvm_err(kd, kd->program, "cannot read allproc"); 488 return (-1); 489 } 490 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 491 if (acnt < 0) 492 return (acnt); 493 494 if (KREAD(kd, a_zombproc, &p)) { 495 _kvm_err(kd, kd->program, "cannot read zombproc"); 496 return (-1); 497 } 498 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 499 maxcnt - acnt); 500 if (zcnt < 0) 501 zcnt = 0; 502 503 return (acnt + zcnt); 504 } 505 506 struct kinfo_proc2 * 507 kvm_getproc2(kd, op, arg, esize, cnt) 508 kvm_t *kd; 509 int op, arg; 510 size_t esize; 511 int *cnt; 512 { 513 size_t size; 514 int mib[6], st, nprocs; 515 struct pstats pstats; 516 517 if (ISSYSCTL(kd)) { 518 size = 0; 519 mib[0] = CTL_KERN; 520 mib[1] = KERN_PROC2; 521 mib[2] = op; 522 mib[3] = arg; 523 mib[4] = (int)esize; 524 again: 525 mib[5] = 0; 526 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 527 if (st == -1) { 528 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 529 return (NULL); 530 } 531 532 mib[5] = (int) (size / esize); 533 KVM_ALLOC(kd, procbase2, size); 534 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 535 if (st == -1) { 536 if (errno == ENOMEM) { 537 goto again; 538 } 539 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 540 return (NULL); 541 } 542 nprocs = (int) (size / esize); 543 } else { 544 char *kp2c; 545 struct kinfo_proc *kp; 546 struct kinfo_proc2 kp2, *kp2p; 547 struct kinfo_lwp *kl; 548 int i, nlwps; 549 550 kp = kvm_getprocs(kd, op, arg, &nprocs); 551 if (kp == NULL) 552 return (NULL); 553 554 size = nprocs * esize; 555 KVM_ALLOC(kd, procbase2, size); 556 kp2c = (char *)(void *)kd->procbase2; 557 kp2p = &kp2; 558 for (i = 0; i < nprocs; i++, kp++) { 559 struct timeval tv; 560 561 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 562 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 563 sizeof(struct kinfo_lwp), &nlwps); 564 565 if (kl == NULL) { 566 _kvm_syserr(kd, NULL, 567 "kvm_getlwps() failed on process %u\n", 568 kp->kp_proc.p_pid); 569 if (nlwps == 0) 570 return NULL; 571 else 572 continue; 573 } 574 575 /* We use kl[0] as the "representative" LWP */ 576 memset(kp2p, 0, sizeof(kp2)); 577 kp2p->p_forw = kl[0].l_forw; 578 kp2p->p_back = kl[0].l_back; 579 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 580 kp2p->p_addr = kl[0].l_addr; 581 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 582 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 583 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 584 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 585 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 586 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 587 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 588 kp2p->p_tsess = 0; 589 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */ 590 kp2p->p_ru = 0; 591 #else 592 kp2p->p_ru = PTRTOUINT64(pstats.p_ru); 593 #endif 594 595 kp2p->p_eflag = 0; 596 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 597 kp2p->p_flag = kp->kp_proc.p_flag; 598 599 kp2p->p_pid = kp->kp_proc.p_pid; 600 601 kp2p->p_ppid = kp->kp_eproc.e_ppid; 602 kp2p->p_sid = kp->kp_eproc.e_sid; 603 kp2p->p__pgid = kp->kp_eproc.e_pgid; 604 605 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 606 607 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 608 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 609 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 610 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 611 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 612 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 613 614 /*CONSTCOND*/ 615 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 616 MIN(sizeof(kp2p->p_groups), 617 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 618 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 619 620 kp2p->p_jobc = kp->kp_eproc.e_jobc; 621 kp2p->p_tdev = kp->kp_eproc.e_tdev; 622 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 623 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 624 625 kp2p->p_estcpu = 0; 626 bintime2timeval(&kp->kp_proc.p_rtime, &tv); 627 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec; 628 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec; 629 kp2p->p_cpticks = kl[0].l_cpticks; 630 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 631 kp2p->p_swtime = kl[0].l_swtime; 632 kp2p->p_slptime = kl[0].l_slptime; 633 #if 0 /* XXX thorpej */ 634 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 635 #else 636 kp2p->p_schedflags = 0; 637 #endif 638 639 kp2p->p_uticks = kp->kp_proc.p_uticks; 640 kp2p->p_sticks = kp->kp_proc.p_sticks; 641 kp2p->p_iticks = kp->kp_proc.p_iticks; 642 643 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 644 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 645 646 kp2p->p_holdcnt = kl[0].l_holdcnt; 647 648 memcpy(&kp2p->p_siglist, 649 &kp->kp_proc.p_sigpend.sp_set, 650 sizeof(ki_sigset_t)); 651 memset(&kp2p->p_sigmask, 0, 652 sizeof(ki_sigset_t)); 653 memcpy(&kp2p->p_sigignore, 654 &kp->kp_proc.p_sigctx.ps_sigignore, 655 sizeof(ki_sigset_t)); 656 memcpy(&kp2p->p_sigcatch, 657 &kp->kp_proc.p_sigctx.ps_sigcatch, 658 sizeof(ki_sigset_t)); 659 660 kp2p->p_stat = kl[0].l_stat; 661 kp2p->p_priority = kl[0].l_priority; 662 kp2p->p_usrpri = kl[0].l_priority; 663 kp2p->p_nice = kp->kp_proc.p_nice; 664 665 kp2p->p_xstat = kp->kp_proc.p_xstat; 666 kp2p->p_acflag = kp->kp_proc.p_acflag; 667 668 /*CONSTCOND*/ 669 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 670 MIN(sizeof(kp2p->p_comm), 671 sizeof(kp->kp_proc.p_comm))); 672 673 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 674 sizeof(kp2p->p_wmesg)); 675 kp2p->p_wchan = kl[0].l_wchan; 676 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 677 sizeof(kp2p->p_login)); 678 679 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 680 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 681 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 682 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 683 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size; 684 /* Adjust mapped size */ 685 kp2p->p_vm_msize = 686 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) - 687 kp->kp_eproc.e_vm.vm_issize + 688 kp->kp_eproc.e_vm.vm_ssize; 689 690 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 691 692 kp2p->p_realflag = kp->kp_proc.p_flag; 693 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 694 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 695 kp2p->p_realstat = kp->kp_proc.p_stat; 696 697 if (P_ZOMBIE(&kp->kp_proc) || 698 kp->kp_proc.p_stats == NULL || 699 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 700 kp2p->p_uvalid = 0; 701 } else { 702 kp2p->p_uvalid = 1; 703 704 kp2p->p_ustart_sec = (u_int32_t) 705 pstats.p_start.tv_sec; 706 kp2p->p_ustart_usec = (u_int32_t) 707 pstats.p_start.tv_usec; 708 709 kp2p->p_uutime_sec = (u_int32_t) 710 pstats.p_ru.ru_utime.tv_sec; 711 kp2p->p_uutime_usec = (u_int32_t) 712 pstats.p_ru.ru_utime.tv_usec; 713 kp2p->p_ustime_sec = (u_int32_t) 714 pstats.p_ru.ru_stime.tv_sec; 715 kp2p->p_ustime_usec = (u_int32_t) 716 pstats.p_ru.ru_stime.tv_usec; 717 718 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 719 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 720 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 721 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 722 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 723 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 724 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 725 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 726 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 727 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 728 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 729 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 730 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 731 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 732 733 kp2p->p_uctime_sec = (u_int32_t) 734 (pstats.p_cru.ru_utime.tv_sec + 735 pstats.p_cru.ru_stime.tv_sec); 736 kp2p->p_uctime_usec = (u_int32_t) 737 (pstats.p_cru.ru_utime.tv_usec + 738 pstats.p_cru.ru_stime.tv_usec); 739 } 740 741 memcpy(kp2c, &kp2, esize); 742 kp2c += esize; 743 } 744 } 745 *cnt = nprocs; 746 return (kd->procbase2); 747 } 748 749 struct kinfo_lwp * 750 kvm_getlwps(kd, pid, paddr, esize, cnt) 751 kvm_t *kd; 752 int pid; 753 u_long paddr; 754 size_t esize; 755 int *cnt; 756 { 757 size_t size; 758 int mib[5], nlwps; 759 ssize_t st; 760 struct kinfo_lwp *kl; 761 762 if (ISSYSCTL(kd)) { 763 size = 0; 764 mib[0] = CTL_KERN; 765 mib[1] = KERN_LWP; 766 mib[2] = pid; 767 mib[3] = (int)esize; 768 mib[4] = 0; 769 again: 770 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 771 if (st == -1) { 772 switch (errno) { 773 case ESRCH: /* Treat this as a soft error; see kvm.c */ 774 _kvm_syserr(kd, NULL, "kvm_getlwps"); 775 return NULL; 776 default: 777 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 778 return NULL; 779 } 780 } 781 mib[4] = (int) (size / esize); 782 KVM_ALLOC(kd, lwpbase, size); 783 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 784 if (st == -1) { 785 switch (errno) { 786 case ESRCH: /* Treat this as a soft error; see kvm.c */ 787 _kvm_syserr(kd, NULL, "kvm_getlwps"); 788 return NULL; 789 case ENOMEM: 790 goto again; 791 default: 792 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 793 return NULL; 794 } 795 } 796 nlwps = (int) (size / esize); 797 } else { 798 /* grovel through the memory image */ 799 struct proc p; 800 struct lwp l; 801 u_long laddr; 802 void *back; 803 int i; 804 805 st = kvm_read(kd, paddr, &p, sizeof(p)); 806 if (st == -1) { 807 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 808 return (NULL); 809 } 810 811 nlwps = p.p_nlwps; 812 size = nlwps * sizeof(*kd->lwpbase); 813 KVM_ALLOC(kd, lwpbase, size); 814 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 815 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 816 st = kvm_read(kd, laddr, &l, sizeof(l)); 817 if (st == -1) { 818 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 819 return (NULL); 820 } 821 kl = &kd->lwpbase[i]; 822 kl->l_laddr = laddr; 823 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next); 824 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev); 825 st = kvm_read(kd, laddr, &back, sizeof(back)); 826 if (st == -1) { 827 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 828 return (NULL); 829 } 830 kl->l_back = PTRTOUINT64(back); 831 kl->l_addr = PTRTOUINT64(l.l_addr); 832 kl->l_lid = l.l_lid; 833 kl->l_flag = l.l_flag; 834 kl->l_swtime = l.l_swtime; 835 kl->l_slptime = l.l_slptime; 836 kl->l_schedflags = 0; /* XXX */ 837 kl->l_holdcnt = l.l_holdcnt; 838 kl->l_priority = l.l_priority; 839 kl->l_usrpri = l.l_priority; 840 kl->l_stat = l.l_stat; 841 kl->l_wchan = PTRTOUINT64(l.l_wchan); 842 if (l.l_wmesg) 843 (void)kvm_read(kd, (u_long)l.l_wmesg, 844 kl->l_wmesg, (size_t)WMESGLEN); 845 kl->l_cpuid = KI_NOCPU; 846 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 847 } 848 } 849 850 *cnt = nlwps; 851 return (kd->lwpbase); 852 } 853 854 struct kinfo_proc * 855 kvm_getprocs(kd, op, arg, cnt) 856 kvm_t *kd; 857 int op, arg; 858 int *cnt; 859 { 860 size_t size; 861 int mib[4], st, nprocs; 862 863 if (ISKMEM(kd)) { 864 size = 0; 865 mib[0] = CTL_KERN; 866 mib[1] = KERN_PROC; 867 mib[2] = op; 868 mib[3] = arg; 869 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 870 if (st == -1) { 871 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 872 return (NULL); 873 } 874 KVM_ALLOC(kd, procbase, size); 875 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 876 if (st == -1) { 877 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 878 return (NULL); 879 } 880 if (size % sizeof(struct kinfo_proc) != 0) { 881 _kvm_err(kd, kd->program, 882 "proc size mismatch (%lu total, %lu chunks)", 883 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 884 return (NULL); 885 } 886 nprocs = (int) (size / sizeof(struct kinfo_proc)); 887 } else if (ISSYSCTL(kd)) { 888 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 889 "can't use kvm_getprocs"); 890 return (NULL); 891 } else { 892 struct nlist nl[4], *p; 893 894 (void)memset(nl, 0, sizeof(nl)); 895 nl[0].n_name = "_nprocs"; 896 nl[1].n_name = "_allproc"; 897 nl[2].n_name = "_zombproc"; 898 nl[3].n_name = NULL; 899 900 if (kvm_nlist(kd, nl) != 0) { 901 for (p = nl; p->n_type != 0; ++p) 902 continue; 903 _kvm_err(kd, kd->program, 904 "%s: no such symbol", p->n_name); 905 return (NULL); 906 } 907 if (KREAD(kd, nl[0].n_value, &nprocs)) { 908 _kvm_err(kd, kd->program, "can't read nprocs"); 909 return (NULL); 910 } 911 size = nprocs * sizeof(*kd->procbase); 912 KVM_ALLOC(kd, procbase, size); 913 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 914 nl[2].n_value, nprocs); 915 if (nprocs < 0) 916 return (NULL); 917 #ifdef notdef 918 size = nprocs * sizeof(struct kinfo_proc); 919 (void)realloc(kd->procbase, size); 920 #endif 921 } 922 *cnt = nprocs; 923 return (kd->procbase); 924 } 925 926 void * 927 _kvm_realloc(kd, p, n) 928 kvm_t *kd; 929 void *p; 930 size_t n; 931 { 932 void *np = realloc(p, n); 933 934 if (np == NULL) 935 _kvm_err(kd, kd->program, "out of memory"); 936 return (np); 937 } 938 939 /* 940 * Read in an argument vector from the user address space of process p. 941 * addr if the user-space base address of narg null-terminated contiguous 942 * strings. This is used to read in both the command arguments and 943 * environment strings. Read at most maxcnt characters of strings. 944 */ 945 static char ** 946 kvm_argv(kd, p, addr, narg, maxcnt) 947 kvm_t *kd; 948 const struct miniproc *p; 949 u_long addr; 950 int narg; 951 int maxcnt; 952 { 953 char *np, *cp, *ep, *ap; 954 u_long oaddr = (u_long)~0L; 955 u_long len; 956 size_t cc; 957 char **argv; 958 959 /* 960 * Check that there aren't an unreasonable number of arguments, 961 * and that the address is in user space. 962 */ 963 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 964 return (NULL); 965 966 if (kd->argv == NULL) { 967 /* 968 * Try to avoid reallocs. 969 */ 970 kd->argc = MAX(narg + 1, 32); 971 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 972 if (kd->argv == NULL) 973 return (NULL); 974 } else if (narg + 1 > kd->argc) { 975 kd->argc = MAX(2 * kd->argc, narg + 1); 976 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 977 sizeof(*kd->argv)); 978 if (kd->argv == NULL) 979 return (NULL); 980 } 981 if (kd->argspc == NULL) { 982 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 983 if (kd->argspc == NULL) 984 return (NULL); 985 kd->argspc_len = kd->nbpg; 986 } 987 if (kd->argbuf == NULL) { 988 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 989 if (kd->argbuf == NULL) 990 return (NULL); 991 } 992 cc = sizeof(char *) * narg; 993 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 994 return (NULL); 995 ap = np = kd->argspc; 996 argv = kd->argv; 997 len = 0; 998 /* 999 * Loop over pages, filling in the argument vector. 1000 */ 1001 while (argv < kd->argv + narg && *argv != NULL) { 1002 addr = (u_long)*argv & ~(kd->nbpg - 1); 1003 if (addr != oaddr) { 1004 if (kvm_ureadm(kd, p, addr, kd->argbuf, 1005 (size_t)kd->nbpg) != kd->nbpg) 1006 return (NULL); 1007 oaddr = addr; 1008 } 1009 addr = (u_long)*argv & (kd->nbpg - 1); 1010 cp = kd->argbuf + (size_t)addr; 1011 cc = kd->nbpg - (size_t)addr; 1012 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 1013 cc = (size_t)(maxcnt - len); 1014 ep = memchr(cp, '\0', cc); 1015 if (ep != NULL) 1016 cc = ep - cp + 1; 1017 if (len + cc > kd->argspc_len) { 1018 ptrdiff_t off; 1019 char **pp; 1020 char *op = kd->argspc; 1021 1022 kd->argspc_len *= 2; 1023 kd->argspc = _kvm_realloc(kd, kd->argspc, 1024 kd->argspc_len); 1025 if (kd->argspc == NULL) 1026 return (NULL); 1027 /* 1028 * Adjust argv pointers in case realloc moved 1029 * the string space. 1030 */ 1031 off = kd->argspc - op; 1032 for (pp = kd->argv; pp < argv; pp++) 1033 *pp += off; 1034 ap += off; 1035 np += off; 1036 } 1037 memcpy(np, cp, cc); 1038 np += cc; 1039 len += cc; 1040 if (ep != NULL) { 1041 *argv++ = ap; 1042 ap = np; 1043 } else 1044 *argv += cc; 1045 if (maxcnt > 0 && len >= maxcnt) { 1046 /* 1047 * We're stopping prematurely. Terminate the 1048 * current string. 1049 */ 1050 if (ep == NULL) { 1051 *np = '\0'; 1052 *argv++ = ap; 1053 } 1054 break; 1055 } 1056 } 1057 /* Make sure argv is terminated. */ 1058 *argv = NULL; 1059 return (kd->argv); 1060 } 1061 1062 static void 1063 ps_str_a(p, addr, n) 1064 struct ps_strings *p; 1065 u_long *addr; 1066 int *n; 1067 { 1068 1069 *addr = (u_long)p->ps_argvstr; 1070 *n = p->ps_nargvstr; 1071 } 1072 1073 static void 1074 ps_str_e(p, addr, n) 1075 struct ps_strings *p; 1076 u_long *addr; 1077 int *n; 1078 { 1079 1080 *addr = (u_long)p->ps_envstr; 1081 *n = p->ps_nenvstr; 1082 } 1083 1084 /* 1085 * Determine if the proc indicated by p is still active. 1086 * This test is not 100% foolproof in theory, but chances of 1087 * being wrong are very low. 1088 */ 1089 static int 1090 proc_verify(kd, kernp, p) 1091 kvm_t *kd; 1092 u_long kernp; 1093 const struct miniproc *p; 1094 { 1095 struct proc kernproc; 1096 1097 /* 1098 * Just read in the whole proc. It's not that big relative 1099 * to the cost of the read system call. 1100 */ 1101 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1102 sizeof(kernproc)) 1103 return (0); 1104 return (p->p_pid == kernproc.p_pid && 1105 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1106 } 1107 1108 static char ** 1109 kvm_doargv(kd, p, nchr, info) 1110 kvm_t *kd; 1111 const struct miniproc *p; 1112 int nchr; 1113 void (*info)(struct ps_strings *, u_long *, int *); 1114 { 1115 char **ap; 1116 u_long addr; 1117 int cnt; 1118 struct ps_strings arginfo; 1119 1120 /* 1121 * Pointers are stored at the top of the user stack. 1122 */ 1123 if (p->p_stat == SZOMB) 1124 return (NULL); 1125 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1126 (void *)&arginfo, sizeof(arginfo)); 1127 if (cnt != sizeof(arginfo)) 1128 return (NULL); 1129 1130 (*info)(&arginfo, &addr, &cnt); 1131 if (cnt == 0) 1132 return (NULL); 1133 ap = kvm_argv(kd, p, addr, cnt, nchr); 1134 /* 1135 * For live kernels, make sure this process didn't go away. 1136 */ 1137 if (ap != NULL && ISALIVE(kd) && 1138 !proc_verify(kd, (u_long)p->p_paddr, p)) 1139 ap = NULL; 1140 return (ap); 1141 } 1142 1143 /* 1144 * Get the command args. This code is now machine independent. 1145 */ 1146 char ** 1147 kvm_getargv(kd, kp, nchr) 1148 kvm_t *kd; 1149 const struct kinfo_proc *kp; 1150 int nchr; 1151 { 1152 struct miniproc p; 1153 1154 KPTOMINI(kp, &p); 1155 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1156 } 1157 1158 char ** 1159 kvm_getenvv(kd, kp, nchr) 1160 kvm_t *kd; 1161 const struct kinfo_proc *kp; 1162 int nchr; 1163 { 1164 struct miniproc p; 1165 1166 KPTOMINI(kp, &p); 1167 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1168 } 1169 1170 static char ** 1171 kvm_doargv2(kd, pid, type, nchr) 1172 kvm_t *kd; 1173 pid_t pid; 1174 int type; 1175 int nchr; 1176 { 1177 size_t bufs; 1178 int narg, mib[4]; 1179 size_t newargspc_len; 1180 char **ap, *bp, *endp; 1181 1182 /* 1183 * Check that there aren't an unreasonable number of arguments. 1184 */ 1185 if (nchr > ARG_MAX) 1186 return (NULL); 1187 1188 if (nchr == 0) 1189 nchr = ARG_MAX; 1190 1191 /* Get number of strings in argv */ 1192 mib[0] = CTL_KERN; 1193 mib[1] = KERN_PROC_ARGS; 1194 mib[2] = pid; 1195 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1196 bufs = sizeof(narg); 1197 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1198 return (NULL); 1199 1200 if (kd->argv == NULL) { 1201 /* 1202 * Try to avoid reallocs. 1203 */ 1204 kd->argc = MAX(narg + 1, 32); 1205 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1206 if (kd->argv == NULL) 1207 return (NULL); 1208 } else if (narg + 1 > kd->argc) { 1209 kd->argc = MAX(2 * kd->argc, narg + 1); 1210 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1211 sizeof(*kd->argv)); 1212 if (kd->argv == NULL) 1213 return (NULL); 1214 } 1215 1216 newargspc_len = MIN(nchr, ARG_MAX); 1217 KVM_ALLOC(kd, argspc, newargspc_len); 1218 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1219 1220 mib[0] = CTL_KERN; 1221 mib[1] = KERN_PROC_ARGS; 1222 mib[2] = pid; 1223 mib[3] = type; 1224 bufs = kd->argspc_len; 1225 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1226 return (NULL); 1227 1228 bp = kd->argspc; 1229 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1230 ap = kd->argv; 1231 endp = bp + MIN(nchr, bufs); 1232 1233 while (bp < endp) { 1234 *ap++ = bp; 1235 /* 1236 * XXX: don't need following anymore, or stick check 1237 * for max argc in above while loop? 1238 */ 1239 if (ap >= kd->argv + kd->argc) { 1240 kd->argc *= 2; 1241 kd->argv = _kvm_realloc(kd, kd->argv, 1242 kd->argc * sizeof(*kd->argv)); 1243 ap = kd->argv; 1244 } 1245 bp += strlen(bp) + 1; 1246 } 1247 *ap = NULL; 1248 1249 return (kd->argv); 1250 } 1251 1252 char ** 1253 kvm_getargv2(kd, kp, nchr) 1254 kvm_t *kd; 1255 const struct kinfo_proc2 *kp; 1256 int nchr; 1257 { 1258 1259 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1260 } 1261 1262 char ** 1263 kvm_getenvv2(kd, kp, nchr) 1264 kvm_t *kd; 1265 const struct kinfo_proc2 *kp; 1266 int nchr; 1267 { 1268 1269 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1270 } 1271 1272 /* 1273 * Read from user space. The user context is given by p. 1274 */ 1275 static ssize_t 1276 kvm_ureadm(kd, p, uva, buf, len) 1277 kvm_t *kd; 1278 const struct miniproc *p; 1279 u_long uva; 1280 char *buf; 1281 size_t len; 1282 { 1283 char *cp; 1284 1285 cp = buf; 1286 while (len > 0) { 1287 size_t cc; 1288 char *dp; 1289 u_long cnt; 1290 1291 dp = _kvm_ureadm(kd, p, uva, &cnt); 1292 if (dp == NULL) { 1293 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1294 return (0); 1295 } 1296 cc = (size_t)MIN(cnt, len); 1297 memcpy(cp, dp, cc); 1298 cp += cc; 1299 uva += cc; 1300 len -= cc; 1301 } 1302 return (ssize_t)(cp - buf); 1303 } 1304 1305 ssize_t 1306 kvm_uread(kd, p, uva, buf, len) 1307 kvm_t *kd; 1308 const struct proc *p; 1309 u_long uva; 1310 char *buf; 1311 size_t len; 1312 { 1313 struct miniproc mp; 1314 1315 PTOMINI(p, &mp); 1316 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1317 } 1318