1 /*- 2 * Copyright (c) 1994 Charles Hannum. 3 * Copyright (c) 1989, 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software developed by the Computer Systems 7 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 8 * BG 91-66 and contributed to Berkeley. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if defined(LIBC_SCCS) && !defined(lint) 40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 41 #endif /* LIBC_SCCS and not lint */ 42 43 /* 44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 45 * users of this code, so we've factored it out into a separate module. 46 * Thus, we keep this grunge out of the other kvm applications (i.e., 47 * most other applications are interested only in open/close/read/nlist). 48 */ 49 50 #include <sys/param.h> 51 #include <sys/user.h> 52 #include <sys/proc.h> 53 #include <sys/exec.h> 54 #include <sys/stat.h> 55 #include <sys/ioctl.h> 56 #include <sys/tty.h> 57 #include <stdlib.h> 58 #include <unistd.h> 59 #include <nlist.h> 60 #include <kvm.h> 61 62 #include <vm/vm.h> 63 #include <vm/vm_param.h> 64 #include <vm/swap_pager.h> 65 66 #include <sys/sysctl.h> 67 68 #include <limits.h> 69 #include <db.h> 70 #include <paths.h> 71 72 #include "kvm_private.h" 73 74 #define KREAD(kd, addr, obj) \ 75 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 76 77 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long)); 78 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, size_t)); 79 80 static char * 81 kvm_readswap(kd, p, va, cnt) 82 kvm_t *kd; 83 const struct proc *p; 84 u_long va; 85 u_long *cnt; 86 { 87 register u_long addr, head; 88 register u_long offset; 89 struct vm_map_entry vme; 90 struct vm_object vmo; 91 92 if (kd->swapspc == 0) { 93 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg); 94 if (kd->swapspc == 0) 95 return (0); 96 } 97 head = (u_long)&p->p_vmspace->vm_map.header; 98 /* 99 * Look through the address map for the memory object 100 * that corresponds to the given virtual address. 101 * The header just has the entire valid range. 102 */ 103 addr = head; 104 while (1) { 105 if (KREAD(kd, addr, &vme)) 106 return (0); 107 108 if (va >= vme.start && va < vme.end && 109 vme.object.vm_object != 0) 110 break; 111 112 addr = (u_long)vme.next; 113 if (addr == head) 114 return (0); 115 } 116 117 /* 118 * We found the right object -- follow shadow links. 119 */ 120 offset = va - vme.start + vme.offset; 121 addr = (u_long)vme.object.vm_object; 122 while (1) { 123 if (KREAD(kd, addr, &vmo)) 124 return (0); 125 126 /* If there is a pager here, see if it has the page. */ 127 if (vmo.pager != 0 && 128 _kvm_readfrompager(kd, &vmo, offset)) 129 break; 130 131 /* Move down the shadow chain. */ 132 addr = (u_long)vmo.shadow; 133 if (addr == 0) 134 return (0); 135 offset += vmo.shadow_offset; 136 } 137 138 /* Found the page. */ 139 offset %= kd->nbpg; 140 *cnt = kd->nbpg - offset; 141 return (&kd->swapspc[offset]); 142 } 143 144 int 145 _kvm_readfrompager(kd, vmop, offset) 146 kvm_t *kd; 147 struct vm_object *vmop; 148 u_long offset; 149 { 150 u_long addr; 151 struct pager_struct pager; 152 struct swpager swap; 153 int ix; 154 struct swblock swb; 155 register off_t seekpoint; 156 157 /* Read in the pager info and make sure it's a swap device. */ 158 addr = (u_long)vmop->pager; 159 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP) 160 return (0); 161 162 /* Read in the swap_pager private data. */ 163 addr = (u_long)pager.pg_data; 164 if (KREAD(kd, addr, &swap)) 165 return (0); 166 167 /* 168 * Calculate the paging offset, and make sure it's within the 169 * bounds of the pager. 170 */ 171 offset += vmop->paging_offset; 172 ix = offset / dbtob(swap.sw_bsize); 173 #if 0 174 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) 175 return (0); 176 #else 177 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) { 178 int i; 179 printf("BUG BUG BUG BUG:\n"); 180 printf("object %x offset %x pgoffset %x pager %x swpager %x\n", 181 vmop, offset - vmop->paging_offset, vmop->paging_offset, 182 vmop->pager, pager.pg_data); 183 printf("osize %x bsize %x blocks %x nblocks %x\n", 184 swap.sw_osize, swap.sw_bsize, swap.sw_blocks, 185 swap.sw_nblocks); 186 for (ix = 0; ix < swap.sw_nblocks; ix++) { 187 addr = (u_long)&swap.sw_blocks[ix]; 188 if (KREAD(kd, addr, &swb)) 189 return (0); 190 printf("sw_blocks[%d]: block %x mask %x\n", ix, 191 swb.swb_block, swb.swb_mask); 192 } 193 return (0); 194 } 195 #endif 196 197 /* Read in the swap records. */ 198 addr = (u_long)&swap.sw_blocks[ix]; 199 if (KREAD(kd, addr, &swb)) 200 return (0); 201 202 /* Calculate offset within pager. */ 203 offset %= dbtob(swap.sw_bsize); 204 205 /* Check that the page is actually present. */ 206 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0) 207 return (0); 208 209 /* Calculate the physical address and read the page. */ 210 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1)); 211 if (lseek(kd->swfd, seekpoint, 0) == -1) 212 return (0); 213 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg) 214 return (0); 215 216 return (1); 217 } 218 219 /* 220 * Read proc's from memory file into buffer bp, which has space to hold 221 * at most maxcnt procs. 222 */ 223 static int 224 kvm_proclist(kd, what, arg, p, bp, maxcnt) 225 kvm_t *kd; 226 int what, arg; 227 struct proc *p; 228 struct kinfo_proc *bp; 229 int maxcnt; 230 { 231 register int cnt = 0; 232 struct eproc eproc; 233 struct pgrp pgrp; 234 struct session sess; 235 struct tty tty; 236 struct proc proc; 237 238 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 239 if (KREAD(kd, (u_long)p, &proc)) { 240 _kvm_err(kd, kd->program, "can't read proc at %x", p); 241 return (-1); 242 } 243 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 244 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 245 &eproc.e_ucred); 246 247 switch(what) { 248 249 case KERN_PROC_PID: 250 if (proc.p_pid != (pid_t)arg) 251 continue; 252 break; 253 254 case KERN_PROC_UID: 255 if (eproc.e_ucred.cr_uid != (uid_t)arg) 256 continue; 257 break; 258 259 case KERN_PROC_RUID: 260 if (eproc.e_pcred.p_ruid != (uid_t)arg) 261 continue; 262 break; 263 } 264 /* 265 * We're going to add another proc to the set. If this 266 * will overflow the buffer, assume the reason is because 267 * nprocs (or the proc list) is corrupt and declare an error. 268 */ 269 if (cnt >= maxcnt) { 270 _kvm_err(kd, kd->program, "nprocs corrupt"); 271 return (-1); 272 } 273 /* 274 * gather eproc 275 */ 276 eproc.e_paddr = p; 277 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 278 _kvm_err(kd, kd->program, "can't read pgrp at %x", 279 proc.p_pgrp); 280 return (-1); 281 } 282 eproc.e_sess = pgrp.pg_session; 283 eproc.e_pgid = pgrp.pg_id; 284 eproc.e_jobc = pgrp.pg_jobc; 285 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 286 _kvm_err(kd, kd->program, "can't read session at %x", 287 pgrp.pg_session); 288 return (-1); 289 } 290 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 291 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 292 _kvm_err(kd, kd->program, 293 "can't read tty at %x", sess.s_ttyp); 294 return (-1); 295 } 296 eproc.e_tdev = tty.t_dev; 297 eproc.e_tsess = tty.t_session; 298 if (tty.t_pgrp != NULL) { 299 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 300 _kvm_err(kd, kd->program, 301 "can't read tpgrp at &x", 302 tty.t_pgrp); 303 return (-1); 304 } 305 eproc.e_tpgid = pgrp.pg_id; 306 } else 307 eproc.e_tpgid = -1; 308 } else 309 eproc.e_tdev = NODEV; 310 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 311 if (sess.s_leader == p) 312 eproc.e_flag |= EPROC_SLEADER; 313 if (proc.p_wmesg) 314 (void)kvm_read(kd, (u_long)proc.p_wmesg, 315 eproc.e_wmesg, WMESGLEN); 316 317 #ifdef sparc 318 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 319 (char *)&eproc.e_vm.vm_rssize, 320 sizeof(eproc.e_vm.vm_rssize)); 321 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 322 (char *)&eproc.e_vm.vm_tsize, 323 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */ 324 #else 325 (void)kvm_read(kd, (u_long)proc.p_vmspace, 326 (char *)&eproc.e_vm, sizeof(eproc.e_vm)); 327 #endif 328 eproc.e_xsize = eproc.e_xrssize = 0; 329 eproc.e_xccount = eproc.e_xswrss = 0; 330 331 switch (what) { 332 333 case KERN_PROC_PGRP: 334 if (eproc.e_pgid != (pid_t)arg) 335 continue; 336 break; 337 338 case KERN_PROC_TTY: 339 if ((proc.p_flag & P_CONTROLT) == 0 || 340 eproc.e_tdev != (dev_t)arg) 341 continue; 342 break; 343 } 344 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 345 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 346 ++bp; 347 ++cnt; 348 } 349 return (cnt); 350 } 351 352 /* 353 * Build proc info array by reading in proc list from a crash dump. 354 * Return number of procs read. maxcnt is the max we will read. 355 */ 356 static int 357 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 358 kvm_t *kd; 359 int what, arg; 360 u_long a_allproc; 361 u_long a_zombproc; 362 int maxcnt; 363 { 364 register struct kinfo_proc *bp = kd->procbase; 365 register int acnt, zcnt; 366 struct proc *p; 367 368 if (KREAD(kd, a_allproc, &p)) { 369 _kvm_err(kd, kd->program, "cannot read allproc"); 370 return (-1); 371 } 372 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 373 if (acnt < 0) 374 return (acnt); 375 376 if (KREAD(kd, a_zombproc, &p)) { 377 _kvm_err(kd, kd->program, "cannot read zombproc"); 378 return (-1); 379 } 380 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 381 if (zcnt < 0) 382 zcnt = 0; 383 384 return (acnt + zcnt); 385 } 386 387 struct kinfo_proc * 388 kvm_getprocs(kd, op, arg, cnt) 389 kvm_t *kd; 390 int op, arg; 391 int *cnt; 392 { 393 size_t size; 394 int mib[4], st, nprocs; 395 396 if (kd->procbase != 0) { 397 free((void *)kd->procbase); 398 /* 399 * Clear this pointer in case this call fails. Otherwise, 400 * kvm_close() will free it again. 401 */ 402 kd->procbase = 0; 403 } 404 if (ISALIVE(kd)) { 405 size = 0; 406 mib[0] = CTL_KERN; 407 mib[1] = KERN_PROC; 408 mib[2] = op; 409 mib[3] = arg; 410 st = sysctl(mib, 4, NULL, &size, NULL, 0); 411 if (st == -1) { 412 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 413 return (0); 414 } 415 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 416 if (kd->procbase == 0) 417 return (0); 418 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 419 if (st == -1) { 420 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 421 return (0); 422 } 423 if (size % sizeof(struct kinfo_proc) != 0) { 424 _kvm_err(kd, kd->program, 425 "proc size mismatch (%d total, %d chunks)", 426 size, sizeof(struct kinfo_proc)); 427 return (0); 428 } 429 nprocs = size / sizeof(struct kinfo_proc); 430 } else { 431 struct nlist nl[4], *p; 432 433 nl[0].n_name = "_nprocs"; 434 nl[1].n_name = "_allproc"; 435 nl[2].n_name = "_zombproc"; 436 nl[3].n_name = 0; 437 438 if (kvm_nlist(kd, nl) != 0) { 439 for (p = nl; p->n_type != 0; ++p) 440 ; 441 _kvm_err(kd, kd->program, 442 "%s: no such symbol", p->n_name); 443 return (0); 444 } 445 if (KREAD(kd, nl[0].n_value, &nprocs)) { 446 _kvm_err(kd, kd->program, "can't read nprocs"); 447 return (0); 448 } 449 size = nprocs * sizeof(struct kinfo_proc); 450 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 451 if (kd->procbase == 0) 452 return (0); 453 454 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 455 nl[2].n_value, nprocs); 456 #ifdef notdef 457 size = nprocs * sizeof(struct kinfo_proc); 458 (void)realloc(kd->procbase, size); 459 #endif 460 } 461 *cnt = nprocs; 462 return (kd->procbase); 463 } 464 465 void 466 _kvm_freeprocs(kd) 467 kvm_t *kd; 468 { 469 if (kd->procbase) { 470 free(kd->procbase); 471 kd->procbase = 0; 472 } 473 } 474 475 void * 476 _kvm_realloc(kd, p, n) 477 kvm_t *kd; 478 void *p; 479 size_t n; 480 { 481 void *np = (void *)realloc(p, n); 482 483 if (np == 0) 484 _kvm_err(kd, kd->program, "out of memory"); 485 return (np); 486 } 487 488 #ifndef MAX 489 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 490 #endif 491 492 /* 493 * Read in an argument vector from the user address space of process p. 494 * addr if the user-space base address of narg null-terminated contiguous 495 * strings. This is used to read in both the command arguments and 496 * environment strings. Read at most maxcnt characters of strings. 497 */ 498 static char ** 499 kvm_argv(kd, p, addr, narg, maxcnt) 500 kvm_t *kd; 501 struct proc *p; 502 register u_long addr; 503 register int narg; 504 register int maxcnt; 505 { 506 register char *cp; 507 register int len, cc; 508 register char **argv; 509 510 /* 511 * Check that there aren't an unreasonable number of agruments, 512 * and that the address is in user space. 513 */ 514 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 515 return (0); 516 517 if (kd->argv == 0) { 518 /* 519 * Try to avoid reallocs. 520 */ 521 kd->argc = MAX(narg + 1, 32); 522 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 523 sizeof(*kd->argv)); 524 if (kd->argv == 0) 525 return (0); 526 } else if (narg + 1 > kd->argc) { 527 kd->argc = MAX(2 * kd->argc, narg + 1); 528 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 529 sizeof(*kd->argv)); 530 if (kd->argv == 0) 531 return (0); 532 } 533 if (kd->argspc == 0) { 534 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg); 535 if (kd->argspc == 0) 536 return (0); 537 kd->arglen = kd->nbpg; 538 } 539 cp = kd->argspc; 540 argv = kd->argv; 541 *argv = cp; 542 len = 0; 543 /* 544 * Loop over pages, filling in the argument vector. 545 */ 546 while (addr < VM_MAXUSER_ADDRESS) { 547 cc = kd->nbpg - (addr & (kd->nbpg - 1)); 548 if (maxcnt > 0 && cc > maxcnt - len) 549 cc = maxcnt - len;; 550 if (len + cc > kd->arglen) { 551 register int off; 552 register char **pp; 553 register char *op = kd->argspc; 554 555 kd->arglen *= 2; 556 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 557 kd->arglen); 558 if (kd->argspc == 0) 559 return (0); 560 cp = &kd->argspc[len]; 561 /* 562 * Adjust argv pointers in case realloc moved 563 * the string space. 564 */ 565 off = kd->argspc - op; 566 for (pp = kd->argv; pp < argv; ++pp) 567 *pp += off; 568 } 569 if (kvm_uread(kd, p, addr, cp, cc) != cc) 570 /* XXX */ 571 return (0); 572 len += cc; 573 addr += cc; 574 575 if (maxcnt == 0 && len > 16 * kd->nbpg) 576 /* sanity */ 577 return (0); 578 579 while (--cc >= 0) { 580 if (*cp++ == 0) { 581 if (--narg <= 0) { 582 *++argv = 0; 583 return (kd->argv); 584 } else 585 *++argv = cp; 586 } 587 } 588 if (maxcnt > 0 && len >= maxcnt) { 589 /* 590 * We're stopping prematurely. Terminate the 591 * argv and current string. 592 */ 593 *++argv = 0; 594 *cp = 0; 595 return (kd->argv); 596 } 597 } 598 } 599 600 static void 601 ps_str_a(p, addr, n) 602 struct ps_strings *p; 603 u_long *addr; 604 int *n; 605 { 606 *addr = (u_long)p->ps_argvstr; 607 *n = p->ps_nargvstr; 608 } 609 610 static void 611 ps_str_e(p, addr, n) 612 struct ps_strings *p; 613 u_long *addr; 614 int *n; 615 { 616 *addr = (u_long)p->ps_envstr; 617 *n = p->ps_nenvstr; 618 } 619 620 /* 621 * Determine if the proc indicated by p is still active. 622 * This test is not 100% foolproof in theory, but chances of 623 * being wrong are very low. 624 */ 625 static int 626 proc_verify(kd, kernp, p) 627 kvm_t *kd; 628 u_long kernp; 629 const struct proc *p; 630 { 631 struct proc kernproc; 632 633 /* 634 * Just read in the whole proc. It's not that big relative 635 * to the cost of the read system call. 636 */ 637 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) != 638 sizeof(kernproc)) 639 return (0); 640 return (p->p_pid == kernproc.p_pid && 641 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 642 } 643 644 static char ** 645 kvm_doargv(kd, kp, nchr, info) 646 kvm_t *kd; 647 const struct kinfo_proc *kp; 648 int nchr; 649 int (*info)(struct ps_strings*, u_long *, int *); 650 { 651 register const struct proc *p = &kp->kp_proc; 652 register char **ap; 653 u_long addr; 654 int cnt; 655 struct ps_strings arginfo; 656 657 /* 658 * Pointers are stored at the top of the user stack. 659 */ 660 if (p->p_stat == SZOMB || 661 kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo, 662 sizeof(arginfo)) != sizeof(arginfo)) 663 return (0); 664 665 (*info)(&arginfo, &addr, &cnt); 666 if (cnt == 0) 667 return (0); 668 ap = kvm_argv(kd, p, addr, cnt, nchr); 669 /* 670 * For live kernels, make sure this process didn't go away. 671 */ 672 if (ap != 0 && ISALIVE(kd) && 673 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 674 ap = 0; 675 return (ap); 676 } 677 678 /* 679 * Get the command args. This code is now machine independent. 680 */ 681 char ** 682 kvm_getargv(kd, kp, nchr) 683 kvm_t *kd; 684 const struct kinfo_proc *kp; 685 int nchr; 686 { 687 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 688 } 689 690 char ** 691 kvm_getenvv(kd, kp, nchr) 692 kvm_t *kd; 693 const struct kinfo_proc *kp; 694 int nchr; 695 { 696 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 697 } 698 699 /* 700 * Read from user space. The user context is given by p. 701 */ 702 ssize_t 703 kvm_uread(kd, p, uva, buf, len) 704 kvm_t *kd; 705 register const struct proc *p; 706 register u_long uva; 707 register char *buf; 708 register size_t len; 709 { 710 register char *cp; 711 712 cp = buf; 713 while (len > 0) { 714 u_long pa; 715 register int cc; 716 717 cc = _kvm_uvatop(kd, p, uva, &pa); 718 if (cc > 0) { 719 if (cc > len) 720 cc = len; 721 errno = 0; 722 if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) { 723 _kvm_err(kd, 0, "invalid address (%x)", uva); 724 break; 725 } 726 cc = read(kd->pmfd, cp, cc); 727 if (cc < 0) { 728 _kvm_syserr(kd, 0, _PATH_MEM); 729 break; 730 } else if (cc < len) { 731 _kvm_err(kd, kd->program, "short read"); 732 break; 733 } 734 } else if (ISALIVE(kd)) { 735 /* try swap */ 736 register char *dp; 737 int cnt; 738 739 dp = kvm_readswap(kd, p, uva, &cnt); 740 if (dp == 0) { 741 _kvm_err(kd, 0, "invalid address (%x)", uva); 742 return (0); 743 } 744 cc = MIN(cnt, len); 745 bcopy(dp, cp, cc); 746 } else 747 break; 748 cp += cc; 749 uva += cc; 750 len -= cc; 751 } 752 return (ssize_t)(cp - buf); 753 } 754