xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision ae9172d6cd9432a6a1a56760d86b32c57a66c39c)
1 /*-
2  * Copyright (c) 1994 Charles Hannum.
3  * Copyright (c) 1989, 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software developed by the Computer Systems
7  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
8  * BG 91-66 and contributed to Berkeley.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if defined(LIBC_SCCS) && !defined(lint)
40 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41 #endif /* LIBC_SCCS and not lint */
42 
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49 
50 #include <sys/param.h>
51 #include <sys/user.h>
52 #include <sys/proc.h>
53 #include <sys/exec.h>
54 #include <sys/stat.h>
55 #include <sys/ioctl.h>
56 #include <sys/tty.h>
57 #include <stdlib.h>
58 #include <unistd.h>
59 #include <nlist.h>
60 #include <kvm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/swap_pager.h>
65 
66 #include <sys/sysctl.h>
67 
68 #include <limits.h>
69 #include <db.h>
70 #include <paths.h>
71 
72 #include "kvm_private.h"
73 
74 #define KREAD(kd, addr, obj) \
75 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
76 
77 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
78 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, size_t));
79 
80 static char *
81 kvm_readswap(kd, p, va, cnt)
82 	kvm_t *kd;
83 	const struct proc *p;
84 	u_long va;
85 	u_long *cnt;
86 {
87 	register u_long addr, head;
88 	register u_long offset;
89 	struct vm_map_entry vme;
90 	struct vm_object vmo;
91 
92 	if (kd->swapspc == 0) {
93 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
94 		if (kd->swapspc == 0)
95 			return (0);
96 	}
97 	head = (u_long)&p->p_vmspace->vm_map.header;
98 	/*
99 	 * Look through the address map for the memory object
100 	 * that corresponds to the given virtual address.
101 	 * The header just has the entire valid range.
102 	 */
103 	addr = head;
104 	while (1) {
105 		if (KREAD(kd, addr, &vme))
106 			return (0);
107 
108 		if (va >= vme.start && va < vme.end &&
109 		    vme.object.vm_object != 0)
110 			break;
111 
112 		addr = (u_long)vme.next;
113 		if (addr == head)
114 			return (0);
115 	}
116 
117 	/*
118 	 * We found the right object -- follow shadow links.
119 	 */
120 	offset = va - vme.start + vme.offset;
121 	addr = (u_long)vme.object.vm_object;
122 	while (1) {
123 		if (KREAD(kd, addr, &vmo))
124 			return (0);
125 
126 		/* If there is a pager here, see if it has the page. */
127 		if (vmo.pager != 0 &&
128 		    _kvm_readfrompager(kd, &vmo, offset))
129 			break;
130 
131 		/* Move down the shadow chain. */
132 		addr = (u_long)vmo.shadow;
133 		if (addr == 0)
134 			return (0);
135 		offset += vmo.shadow_offset;
136 	}
137 
138 	/* Found the page. */
139 	offset %= kd->nbpg;
140 	*cnt = kd->nbpg - offset;
141 	return (&kd->swapspc[offset]);
142 }
143 
144 int
145 _kvm_readfrompager(kd, vmop, offset)
146 	kvm_t *kd;
147 	struct vm_object *vmop;
148 	u_long offset;
149 {
150 	u_long addr;
151 	struct pager_struct pager;
152 	struct swpager swap;
153 	int ix;
154 	struct swblock swb;
155 	register off_t seekpoint;
156 
157 	/* Read in the pager info and make sure it's a swap device. */
158 	addr = (u_long)vmop->pager;
159 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
160 		return (0);
161 
162 	/* Read in the swap_pager private data. */
163 	addr = (u_long)pager.pg_data;
164 	if (KREAD(kd, addr, &swap))
165 		return (0);
166 
167 	/*
168 	 * Calculate the paging offset, and make sure it's within the
169 	 * bounds of the pager.
170 	 */
171 	offset += vmop->paging_offset;
172 	ix = offset / dbtob(swap.sw_bsize);
173 #if 0
174 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
175 		return (0);
176 #else
177 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
178 		int i;
179 		printf("BUG BUG BUG BUG:\n");
180 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
181 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
182 		    vmop->pager, pager.pg_data);
183 		printf("osize %x bsize %x blocks %x nblocks %x\n",
184 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
185 		    swap.sw_nblocks);
186 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
187 			addr = (u_long)&swap.sw_blocks[ix];
188 			if (KREAD(kd, addr, &swb))
189 				return (0);
190 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
191 			    swb.swb_block, swb.swb_mask);
192 		}
193 		return (0);
194 	}
195 #endif
196 
197 	/* Read in the swap records. */
198 	addr = (u_long)&swap.sw_blocks[ix];
199 	if (KREAD(kd, addr, &swb))
200 		return (0);
201 
202 	/* Calculate offset within pager. */
203 	offset %= dbtob(swap.sw_bsize);
204 
205 	/* Check that the page is actually present. */
206 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
207 		return (0);
208 
209 	/* Calculate the physical address and read the page. */
210 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
211 	if (lseek(kd->swfd, seekpoint, 0) == -1)
212 		return (0);
213 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
214 		return (0);
215 
216 	return (1);
217 }
218 
219 /*
220  * Read proc's from memory file into buffer bp, which has space to hold
221  * at most maxcnt procs.
222  */
223 static int
224 kvm_proclist(kd, what, arg, p, bp, maxcnt)
225 	kvm_t *kd;
226 	int what, arg;
227 	struct proc *p;
228 	struct kinfo_proc *bp;
229 	int maxcnt;
230 {
231 	register int cnt = 0;
232 	struct eproc eproc;
233 	struct pgrp pgrp;
234 	struct session sess;
235 	struct tty tty;
236 	struct proc proc;
237 
238 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
239 		if (KREAD(kd, (u_long)p, &proc)) {
240 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
241 			return (-1);
242 		}
243 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
244 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
245 			      &eproc.e_ucred);
246 
247 		switch(what) {
248 
249 		case KERN_PROC_PID:
250 			if (proc.p_pid != (pid_t)arg)
251 				continue;
252 			break;
253 
254 		case KERN_PROC_UID:
255 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
256 				continue;
257 			break;
258 
259 		case KERN_PROC_RUID:
260 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
261 				continue;
262 			break;
263 		}
264 		/*
265 		 * We're going to add another proc to the set.  If this
266 		 * will overflow the buffer, assume the reason is because
267 		 * nprocs (or the proc list) is corrupt and declare an error.
268 		 */
269 		if (cnt >= maxcnt) {
270 			_kvm_err(kd, kd->program, "nprocs corrupt");
271 			return (-1);
272 		}
273 		/*
274 		 * gather eproc
275 		 */
276 		eproc.e_paddr = p;
277 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
278 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
279 				 proc.p_pgrp);
280 			return (-1);
281 		}
282 		eproc.e_sess = pgrp.pg_session;
283 		eproc.e_pgid = pgrp.pg_id;
284 		eproc.e_jobc = pgrp.pg_jobc;
285 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
286 			_kvm_err(kd, kd->program, "can't read session at %x",
287 				pgrp.pg_session);
288 			return (-1);
289 		}
290 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
291 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
292 				_kvm_err(kd, kd->program,
293 					 "can't read tty at %x", sess.s_ttyp);
294 				return (-1);
295 			}
296 			eproc.e_tdev = tty.t_dev;
297 			eproc.e_tsess = tty.t_session;
298 			if (tty.t_pgrp != NULL) {
299 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
300 					_kvm_err(kd, kd->program,
301 						 "can't read tpgrp at &x",
302 						tty.t_pgrp);
303 					return (-1);
304 				}
305 				eproc.e_tpgid = pgrp.pg_id;
306 			} else
307 				eproc.e_tpgid = -1;
308 		} else
309 			eproc.e_tdev = NODEV;
310 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
311 		if (sess.s_leader == p)
312 			eproc.e_flag |= EPROC_SLEADER;
313 		if (proc.p_wmesg)
314 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
315 			    eproc.e_wmesg, WMESGLEN);
316 
317 #ifdef sparc
318 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
319 		    (char *)&eproc.e_vm.vm_rssize,
320 		    sizeof(eproc.e_vm.vm_rssize));
321 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
322 		    (char *)&eproc.e_vm.vm_tsize,
323 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
324 #else
325 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
326 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
327 #endif
328 		eproc.e_xsize = eproc.e_xrssize = 0;
329 		eproc.e_xccount = eproc.e_xswrss = 0;
330 
331 		switch (what) {
332 
333 		case KERN_PROC_PGRP:
334 			if (eproc.e_pgid != (pid_t)arg)
335 				continue;
336 			break;
337 
338 		case KERN_PROC_TTY:
339 			if ((proc.p_flag & P_CONTROLT) == 0 ||
340 			     eproc.e_tdev != (dev_t)arg)
341 				continue;
342 			break;
343 		}
344 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
345 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
346 		++bp;
347 		++cnt;
348 	}
349 	return (cnt);
350 }
351 
352 /*
353  * Build proc info array by reading in proc list from a crash dump.
354  * Return number of procs read.  maxcnt is the max we will read.
355  */
356 static int
357 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
358 	kvm_t *kd;
359 	int what, arg;
360 	u_long a_allproc;
361 	u_long a_zombproc;
362 	int maxcnt;
363 {
364 	register struct kinfo_proc *bp = kd->procbase;
365 	register int acnt, zcnt;
366 	struct proc *p;
367 
368 	if (KREAD(kd, a_allproc, &p)) {
369 		_kvm_err(kd, kd->program, "cannot read allproc");
370 		return (-1);
371 	}
372 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
373 	if (acnt < 0)
374 		return (acnt);
375 
376 	if (KREAD(kd, a_zombproc, &p)) {
377 		_kvm_err(kd, kd->program, "cannot read zombproc");
378 		return (-1);
379 	}
380 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
381 	if (zcnt < 0)
382 		zcnt = 0;
383 
384 	return (acnt + zcnt);
385 }
386 
387 struct kinfo_proc *
388 kvm_getprocs(kd, op, arg, cnt)
389 	kvm_t *kd;
390 	int op, arg;
391 	int *cnt;
392 {
393 	size_t size;
394 	int mib[4], st, nprocs;
395 
396 	if (kd->procbase != 0) {
397 		free((void *)kd->procbase);
398 		/*
399 		 * Clear this pointer in case this call fails.  Otherwise,
400 		 * kvm_close() will free it again.
401 		 */
402 		kd->procbase = 0;
403 	}
404 	if (ISALIVE(kd)) {
405 		size = 0;
406 		mib[0] = CTL_KERN;
407 		mib[1] = KERN_PROC;
408 		mib[2] = op;
409 		mib[3] = arg;
410 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
411 		if (st == -1) {
412 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
413 			return (0);
414 		}
415 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
416 		if (kd->procbase == 0)
417 			return (0);
418 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
419 		if (st == -1) {
420 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
421 			return (0);
422 		}
423 		if (size % sizeof(struct kinfo_proc) != 0) {
424 			_kvm_err(kd, kd->program,
425 				"proc size mismatch (%d total, %d chunks)",
426 				size, sizeof(struct kinfo_proc));
427 			return (0);
428 		}
429 		nprocs = size / sizeof(struct kinfo_proc);
430 	} else {
431 		struct nlist nl[4], *p;
432 
433 		nl[0].n_name = "_nprocs";
434 		nl[1].n_name = "_allproc";
435 		nl[2].n_name = "_zombproc";
436 		nl[3].n_name = 0;
437 
438 		if (kvm_nlist(kd, nl) != 0) {
439 			for (p = nl; p->n_type != 0; ++p)
440 				;
441 			_kvm_err(kd, kd->program,
442 				 "%s: no such symbol", p->n_name);
443 			return (0);
444 		}
445 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
446 			_kvm_err(kd, kd->program, "can't read nprocs");
447 			return (0);
448 		}
449 		size = nprocs * sizeof(struct kinfo_proc);
450 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
451 		if (kd->procbase == 0)
452 			return (0);
453 
454 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
455 				      nl[2].n_value, nprocs);
456 #ifdef notdef
457 		size = nprocs * sizeof(struct kinfo_proc);
458 		(void)realloc(kd->procbase, size);
459 #endif
460 	}
461 	*cnt = nprocs;
462 	return (kd->procbase);
463 }
464 
465 void
466 _kvm_freeprocs(kd)
467 	kvm_t *kd;
468 {
469 	if (kd->procbase) {
470 		free(kd->procbase);
471 		kd->procbase = 0;
472 	}
473 }
474 
475 void *
476 _kvm_realloc(kd, p, n)
477 	kvm_t *kd;
478 	void *p;
479 	size_t n;
480 {
481 	void *np = (void *)realloc(p, n);
482 
483 	if (np == 0)
484 		_kvm_err(kd, kd->program, "out of memory");
485 	return (np);
486 }
487 
488 #ifndef MAX
489 #define MAX(a, b) ((a) > (b) ? (a) : (b))
490 #endif
491 
492 /*
493  * Read in an argument vector from the user address space of process p.
494  * addr if the user-space base address of narg null-terminated contiguous
495  * strings.  This is used to read in both the command arguments and
496  * environment strings.  Read at most maxcnt characters of strings.
497  */
498 static char **
499 kvm_argv(kd, p, addr, narg, maxcnt)
500 	kvm_t *kd;
501 	struct proc *p;
502 	register u_long addr;
503 	register int narg;
504 	register int maxcnt;
505 {
506 	register char *cp;
507 	register int len, cc;
508 	register char **argv;
509 
510 	/*
511 	 * Check that there aren't an unreasonable number of agruments,
512 	 * and that the address is in user space.
513 	 */
514 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
515 		return (0);
516 
517 	if (kd->argv == 0) {
518 		/*
519 		 * Try to avoid reallocs.
520 		 */
521 		kd->argc = MAX(narg + 1, 32);
522 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
523 						sizeof(*kd->argv));
524 		if (kd->argv == 0)
525 			return (0);
526 	} else if (narg + 1 > kd->argc) {
527 		kd->argc = MAX(2 * kd->argc, narg + 1);
528 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
529 						sizeof(*kd->argv));
530 		if (kd->argv == 0)
531 			return (0);
532 	}
533 	if (kd->argspc == 0) {
534 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
535 		if (kd->argspc == 0)
536 			return (0);
537 		kd->arglen = kd->nbpg;
538 	}
539 	cp = kd->argspc;
540 	argv = kd->argv;
541 	*argv = cp;
542 	len = 0;
543 	/*
544 	 * Loop over pages, filling in the argument vector.
545 	 */
546 	while (addr < VM_MAXUSER_ADDRESS) {
547 		cc = kd->nbpg - (addr & (kd->nbpg - 1));
548 		if (maxcnt > 0 && cc > maxcnt - len)
549 			cc = maxcnt - len;;
550 		if (len + cc > kd->arglen) {
551 			register int off;
552 			register char **pp;
553 			register char *op = kd->argspc;
554 
555 			kd->arglen *= 2;
556 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
557 							  kd->arglen);
558 			if (kd->argspc == 0)
559 				return (0);
560 			cp = &kd->argspc[len];
561 			/*
562 			 * Adjust argv pointers in case realloc moved
563 			 * the string space.
564 			 */
565 			off = kd->argspc - op;
566 			for (pp = kd->argv; pp < argv; ++pp)
567 				*pp += off;
568 		}
569 		if (kvm_uread(kd, p, addr, cp, cc) != cc)
570 			/* XXX */
571 			return (0);
572 		len += cc;
573 		addr += cc;
574 
575 		if (maxcnt == 0 && len > 16 * kd->nbpg)
576 			/* sanity */
577 			return (0);
578 
579 		while (--cc >= 0) {
580 			if (*cp++ == 0) {
581 				if (--narg <= 0) {
582 					*++argv = 0;
583 					return (kd->argv);
584 				} else
585 					*++argv = cp;
586 			}
587 		}
588 		if (maxcnt > 0 && len >= maxcnt) {
589 			/*
590 			 * We're stopping prematurely.  Terminate the
591 			 * argv and current string.
592 			 */
593 			*++argv = 0;
594 			*cp = 0;
595 			return (kd->argv);
596 		}
597 	}
598 }
599 
600 static void
601 ps_str_a(p, addr, n)
602 	struct ps_strings *p;
603 	u_long *addr;
604 	int *n;
605 {
606 	*addr = (u_long)p->ps_argvstr;
607 	*n = p->ps_nargvstr;
608 }
609 
610 static void
611 ps_str_e(p, addr, n)
612 	struct ps_strings *p;
613 	u_long *addr;
614 	int *n;
615 {
616 	*addr = (u_long)p->ps_envstr;
617 	*n = p->ps_nenvstr;
618 }
619 
620 /*
621  * Determine if the proc indicated by p is still active.
622  * This test is not 100% foolproof in theory, but chances of
623  * being wrong are very low.
624  */
625 static int
626 proc_verify(kd, kernp, p)
627 	kvm_t *kd;
628 	u_long kernp;
629 	const struct proc *p;
630 {
631 	struct proc kernproc;
632 
633 	/*
634 	 * Just read in the whole proc.  It's not that big relative
635 	 * to the cost of the read system call.
636 	 */
637 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
638 	    sizeof(kernproc))
639 		return (0);
640 	return (p->p_pid == kernproc.p_pid &&
641 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
642 }
643 
644 static char **
645 kvm_doargv(kd, kp, nchr, info)
646 	kvm_t *kd;
647 	const struct kinfo_proc *kp;
648 	int nchr;
649 	int (*info)(struct ps_strings*, u_long *, int *);
650 {
651 	register const struct proc *p = &kp->kp_proc;
652 	register char **ap;
653 	u_long addr;
654 	int cnt;
655 	struct ps_strings arginfo;
656 
657 	/*
658 	 * Pointers are stored at the top of the user stack.
659 	 */
660 	if (p->p_stat == SZOMB ||
661 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
662 		      sizeof(arginfo)) != sizeof(arginfo))
663 		return (0);
664 
665 	(*info)(&arginfo, &addr, &cnt);
666 	if (cnt == 0)
667 		return (0);
668 	ap = kvm_argv(kd, p, addr, cnt, nchr);
669 	/*
670 	 * For live kernels, make sure this process didn't go away.
671 	 */
672 	if (ap != 0 && ISALIVE(kd) &&
673 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
674 		ap = 0;
675 	return (ap);
676 }
677 
678 /*
679  * Get the command args.  This code is now machine independent.
680  */
681 char **
682 kvm_getargv(kd, kp, nchr)
683 	kvm_t *kd;
684 	const struct kinfo_proc *kp;
685 	int nchr;
686 {
687 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
688 }
689 
690 char **
691 kvm_getenvv(kd, kp, nchr)
692 	kvm_t *kd;
693 	const struct kinfo_proc *kp;
694 	int nchr;
695 {
696 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
697 }
698 
699 /*
700  * Read from user space.  The user context is given by p.
701  */
702 ssize_t
703 kvm_uread(kd, p, uva, buf, len)
704 	kvm_t *kd;
705 	register const struct proc *p;
706 	register u_long uva;
707 	register char *buf;
708 	register size_t len;
709 {
710 	register char *cp;
711 
712 	cp = buf;
713 	while (len > 0) {
714 		u_long pa;
715 		register int cc;
716 
717 		cc = _kvm_uvatop(kd, p, uva, &pa);
718 		if (cc > 0) {
719 			if (cc > len)
720 				cc = len;
721 			errno = 0;
722 			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
723 				_kvm_err(kd, 0, "invalid address (%x)", uva);
724 				break;
725 			}
726 			cc = read(kd->pmfd, cp, cc);
727 			if (cc < 0) {
728 				_kvm_syserr(kd, 0, _PATH_MEM);
729 				break;
730 			} else if (cc < len) {
731 				_kvm_err(kd, kd->program, "short read");
732 				break;
733 			}
734 		} else if (ISALIVE(kd)) {
735 			/* try swap */
736 			register char *dp;
737 			int cnt;
738 
739 			dp = kvm_readswap(kd, p, uva, &cnt);
740 			if (dp == 0) {
741 				_kvm_err(kd, 0, "invalid address (%x)", uva);
742 				return (0);
743 			}
744 			cc = MIN(cnt, len);
745 			bcopy(dp, cp, cc);
746 		} else
747 			break;
748 		cp += cc;
749 		uva += cc;
750 		len -= cc;
751 	}
752 	return (ssize_t)(cp - buf);
753 }
754