1 /*- 2 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. 3 * Copyright (c) 1989, 1992, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * This code is derived from software developed by the Computer Systems 7 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 8 * BG 91-66 and contributed to Berkeley. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if defined(LIBC_SCCS) && !defined(lint) 40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 41 #endif /* LIBC_SCCS and not lint */ 42 43 /* 44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 45 * users of this code, so we've factored it out into a separate module. 46 * Thus, we keep this grunge out of the other kvm applications (i.e., 47 * most other applications are interested only in open/close/read/nlist). 48 */ 49 50 #include <sys/param.h> 51 #include <sys/user.h> 52 #include <sys/proc.h> 53 #include <sys/exec.h> 54 #include <sys/stat.h> 55 #include <sys/ioctl.h> 56 #include <sys/tty.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <unistd.h> 60 #include <nlist.h> 61 #include <kvm.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/swap_pager.h> 66 67 #include <sys/sysctl.h> 68 69 #include <limits.h> 70 #include <db.h> 71 #include <paths.h> 72 73 #include "kvm_private.h" 74 75 #define KREAD(kd, addr, obj) \ 76 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 77 78 int _kvm_readfromcore __P((kvm_t *, u_long, u_long)); 79 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long)); 80 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 81 size_t)); 82 83 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int, 84 int)); 85 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 86 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int, 87 void (*)(struct ps_strings *, u_long *, int *))); 88 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 89 struct kinfo_proc *, int)); 90 static int proc_verify __P((kvm_t *, u_long, const struct proc *)); 91 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 92 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 93 94 char * 95 _kvm_uread(kd, p, va, cnt) 96 kvm_t *kd; 97 const struct proc *p; 98 u_long va; 99 u_long *cnt; 100 { 101 register u_long addr, head; 102 register u_long offset; 103 struct vm_map_entry vme; 104 struct vm_object vmo; 105 int rv; 106 107 if (kd->swapspc == 0) { 108 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg); 109 if (kd->swapspc == 0) 110 return (0); 111 } 112 113 /* 114 * Look through the address map for the memory object 115 * that corresponds to the given virtual address. 116 * The header just has the entire valid range. 117 */ 118 head = (u_long)&p->p_vmspace->vm_map.header; 119 addr = head; 120 while (1) { 121 if (KREAD(kd, addr, &vme)) 122 return (0); 123 124 if (va >= vme.start && va < vme.end && 125 vme.object.vm_object != 0) 126 break; 127 128 addr = (u_long)vme.next; 129 if (addr == head) 130 return (0); 131 } 132 133 /* 134 * We found the right object -- follow shadow links. 135 */ 136 offset = va - vme.start + vme.offset; 137 addr = (u_long)vme.object.vm_object; 138 139 while (1) { 140 /* Try reading the page from core first. */ 141 if ((rv = _kvm_readfromcore(kd, addr, offset))) 142 break; 143 144 if (KREAD(kd, addr, &vmo)) 145 return (0); 146 147 /* If there is a pager here, see if it has the page. */ 148 if (vmo.pager != 0 && 149 (rv = _kvm_readfrompager(kd, &vmo, offset))) 150 break; 151 152 /* Move down the shadow chain. */ 153 addr = (u_long)vmo.shadow; 154 if (addr == 0) 155 return (0); 156 offset += vmo.shadow_offset; 157 } 158 159 if (rv == -1) 160 return (0); 161 162 /* Found the page. */ 163 offset %= kd->nbpg; 164 *cnt = kd->nbpg - offset; 165 return (&kd->swapspc[offset]); 166 } 167 168 #define vm_page_hash(kd, object, offset) \ 169 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask) 170 171 int 172 _kvm_coreinit(kd) 173 kvm_t *kd; 174 { 175 struct nlist nlist[3]; 176 177 nlist[0].n_name = "_vm_page_buckets"; 178 nlist[1].n_name = "_vm_page_hash_mask"; 179 nlist[2].n_name = 0; 180 if (kvm_nlist(kd, nlist) != 0) 181 return (-1); 182 183 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) || 184 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask)) 185 return (-1); 186 187 return (0); 188 } 189 190 int 191 _kvm_readfromcore(kd, object, offset) 192 kvm_t *kd; 193 u_long object, offset; 194 { 195 u_long addr; 196 struct pglist bucket; 197 struct vm_page mem; 198 off_t seekpoint; 199 200 if (kd->vm_page_buckets == 0 && 201 _kvm_coreinit(kd)) 202 return (-1); 203 204 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)]; 205 if (KREAD(kd, addr, &bucket)) 206 return (-1); 207 208 addr = (u_long)bucket.tqh_first; 209 offset &= ~(kd->nbpg -1); 210 while (1) { 211 if (addr == 0) 212 return (0); 213 214 if (KREAD(kd, addr, &mem)) 215 return (-1); 216 217 if ((u_long)mem.object == object && 218 (u_long)mem.offset == offset) 219 break; 220 221 addr = (u_long)mem.hashq.tqe_next; 222 } 223 224 seekpoint = mem.phys_addr; 225 226 if (lseek(kd->pmfd, seekpoint, 0) == -1) 227 return (-1); 228 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg) 229 return (-1); 230 231 return (1); 232 } 233 234 int 235 _kvm_readfrompager(kd, vmop, offset) 236 kvm_t *kd; 237 struct vm_object *vmop; 238 u_long offset; 239 { 240 u_long addr; 241 struct pager_struct pager; 242 struct swpager swap; 243 int ix; 244 struct swblock swb; 245 off_t seekpoint; 246 247 /* Read in the pager info and make sure it's a swap device. */ 248 addr = (u_long)vmop->pager; 249 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP) 250 return (-1); 251 252 /* Read in the swap_pager private data. */ 253 addr = (u_long)pager.pg_data; 254 if (KREAD(kd, addr, &swap)) 255 return (-1); 256 257 /* 258 * Calculate the paging offset, and make sure it's within the 259 * bounds of the pager. 260 */ 261 offset += vmop->paging_offset; 262 ix = offset / dbtob(swap.sw_bsize); 263 #if 0 264 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) 265 return (-1); 266 #else 267 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) { 268 int i; 269 printf("BUG BUG BUG BUG:\n"); 270 printf("object %x offset %x pgoffset %x pager %x swpager %x\n", 271 vmop, offset - vmop->paging_offset, vmop->paging_offset, 272 vmop->pager, pager.pg_data); 273 printf("osize %x bsize %x blocks %x nblocks %x\n", 274 swap.sw_osize, swap.sw_bsize, swap.sw_blocks, 275 swap.sw_nblocks); 276 for (ix = 0; ix < swap.sw_nblocks; ix++) { 277 addr = (u_long)&swap.sw_blocks[ix]; 278 if (KREAD(kd, addr, &swb)) 279 return (0); 280 printf("sw_blocks[%d]: block %x mask %x\n", ix, 281 swb.swb_block, swb.swb_mask); 282 } 283 return (-1); 284 } 285 #endif 286 287 /* Read in the swap records. */ 288 addr = (u_long)&swap.sw_blocks[ix]; 289 if (KREAD(kd, addr, &swb)) 290 return (-1); 291 292 /* Calculate offset within pager. */ 293 offset %= dbtob(swap.sw_bsize); 294 295 /* Check that the page is actually present. */ 296 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0) 297 return (0); 298 299 if (!ISALIVE(kd)) 300 return (-1); 301 302 /* Calculate the physical address and read the page. */ 303 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1)); 304 305 if (lseek(kd->swfd, seekpoint, 0) == -1) 306 return (-1); 307 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg) 308 return (-1); 309 310 return (1); 311 } 312 313 /* 314 * Read proc's from memory file into buffer bp, which has space to hold 315 * at most maxcnt procs. 316 */ 317 static int 318 kvm_proclist(kd, what, arg, p, bp, maxcnt) 319 kvm_t *kd; 320 int what, arg; 321 struct proc *p; 322 struct kinfo_proc *bp; 323 int maxcnt; 324 { 325 register int cnt = 0; 326 struct eproc eproc; 327 struct pgrp pgrp; 328 struct session sess; 329 struct tty tty; 330 struct proc proc; 331 332 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 333 if (KREAD(kd, (u_long)p, &proc)) { 334 _kvm_err(kd, kd->program, "can't read proc at %x", p); 335 return (-1); 336 } 337 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 338 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 339 &eproc.e_ucred); 340 341 switch(what) { 342 343 case KERN_PROC_PID: 344 if (proc.p_pid != (pid_t)arg) 345 continue; 346 break; 347 348 case KERN_PROC_UID: 349 if (eproc.e_ucred.cr_uid != (uid_t)arg) 350 continue; 351 break; 352 353 case KERN_PROC_RUID: 354 if (eproc.e_pcred.p_ruid != (uid_t)arg) 355 continue; 356 break; 357 } 358 /* 359 * We're going to add another proc to the set. If this 360 * will overflow the buffer, assume the reason is because 361 * nprocs (or the proc list) is corrupt and declare an error. 362 */ 363 if (cnt >= maxcnt) { 364 _kvm_err(kd, kd->program, "nprocs corrupt"); 365 return (-1); 366 } 367 /* 368 * gather eproc 369 */ 370 eproc.e_paddr = p; 371 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 372 _kvm_err(kd, kd->program, "can't read pgrp at %x", 373 proc.p_pgrp); 374 return (-1); 375 } 376 eproc.e_sess = pgrp.pg_session; 377 eproc.e_pgid = pgrp.pg_id; 378 eproc.e_jobc = pgrp.pg_jobc; 379 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 380 _kvm_err(kd, kd->program, "can't read session at %x", 381 pgrp.pg_session); 382 return (-1); 383 } 384 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 385 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 386 _kvm_err(kd, kd->program, 387 "can't read tty at %x", sess.s_ttyp); 388 return (-1); 389 } 390 eproc.e_tdev = tty.t_dev; 391 eproc.e_tsess = tty.t_session; 392 if (tty.t_pgrp != NULL) { 393 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 394 _kvm_err(kd, kd->program, 395 "can't read tpgrp at &x", 396 tty.t_pgrp); 397 return (-1); 398 } 399 eproc.e_tpgid = pgrp.pg_id; 400 } else 401 eproc.e_tpgid = -1; 402 } else 403 eproc.e_tdev = NODEV; 404 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 405 if (sess.s_leader == p) 406 eproc.e_flag |= EPROC_SLEADER; 407 if (proc.p_wmesg) 408 (void)kvm_read(kd, (u_long)proc.p_wmesg, 409 eproc.e_wmesg, WMESGLEN); 410 411 (void)kvm_read(kd, (u_long)proc.p_vmspace, 412 (char *)&eproc.e_vm, sizeof(eproc.e_vm)); 413 414 eproc.e_xsize = eproc.e_xrssize = 0; 415 eproc.e_xccount = eproc.e_xswrss = 0; 416 417 switch (what) { 418 419 case KERN_PROC_PGRP: 420 if (eproc.e_pgid != (pid_t)arg) 421 continue; 422 break; 423 424 case KERN_PROC_TTY: 425 if ((proc.p_flag & P_CONTROLT) == 0 || 426 eproc.e_tdev != (dev_t)arg) 427 continue; 428 break; 429 } 430 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 431 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 432 ++bp; 433 ++cnt; 434 } 435 return (cnt); 436 } 437 438 /* 439 * Build proc info array by reading in proc list from a crash dump. 440 * Return number of procs read. maxcnt is the max we will read. 441 */ 442 static int 443 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 444 kvm_t *kd; 445 int what, arg; 446 u_long a_allproc; 447 u_long a_zombproc; 448 int maxcnt; 449 { 450 register struct kinfo_proc *bp = kd->procbase; 451 register int acnt, zcnt; 452 struct proc *p; 453 454 if (KREAD(kd, a_allproc, &p)) { 455 _kvm_err(kd, kd->program, "cannot read allproc"); 456 return (-1); 457 } 458 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 459 if (acnt < 0) 460 return (acnt); 461 462 if (KREAD(kd, a_zombproc, &p)) { 463 _kvm_err(kd, kd->program, "cannot read zombproc"); 464 return (-1); 465 } 466 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 467 if (zcnt < 0) 468 zcnt = 0; 469 470 return (acnt + zcnt); 471 } 472 473 struct kinfo_proc * 474 kvm_getprocs(kd, op, arg, cnt) 475 kvm_t *kd; 476 int op, arg; 477 int *cnt; 478 { 479 size_t size; 480 int mib[4], st, nprocs; 481 482 if (kd->procbase != 0) { 483 free((void *)kd->procbase); 484 /* 485 * Clear this pointer in case this call fails. Otherwise, 486 * kvm_close() will free it again. 487 */ 488 kd->procbase = 0; 489 } 490 if (ISALIVE(kd)) { 491 size = 0; 492 mib[0] = CTL_KERN; 493 mib[1] = KERN_PROC; 494 mib[2] = op; 495 mib[3] = arg; 496 st = sysctl(mib, 4, NULL, &size, NULL, 0); 497 if (st == -1) { 498 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 499 return (0); 500 } 501 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 502 if (kd->procbase == 0) 503 return (0); 504 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 505 if (st == -1) { 506 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 507 return (0); 508 } 509 if (size % sizeof(struct kinfo_proc) != 0) { 510 _kvm_err(kd, kd->program, 511 "proc size mismatch (%d total, %d chunks)", 512 size, sizeof(struct kinfo_proc)); 513 return (0); 514 } 515 nprocs = size / sizeof(struct kinfo_proc); 516 } else { 517 struct nlist nl[4], *p; 518 519 nl[0].n_name = "_nprocs"; 520 nl[1].n_name = "_allproc"; 521 nl[2].n_name = "_zombproc"; 522 nl[3].n_name = 0; 523 524 if (kvm_nlist(kd, nl) != 0) { 525 for (p = nl; p->n_type != 0; ++p) 526 ; 527 _kvm_err(kd, kd->program, 528 "%s: no such symbol", p->n_name); 529 return (0); 530 } 531 if (KREAD(kd, nl[0].n_value, &nprocs)) { 532 _kvm_err(kd, kd->program, "can't read nprocs"); 533 return (0); 534 } 535 size = nprocs * sizeof(struct kinfo_proc); 536 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 537 if (kd->procbase == 0) 538 return (0); 539 540 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 541 nl[2].n_value, nprocs); 542 #ifdef notdef 543 size = nprocs * sizeof(struct kinfo_proc); 544 (void)realloc(kd->procbase, size); 545 #endif 546 } 547 *cnt = nprocs; 548 return (kd->procbase); 549 } 550 551 void 552 _kvm_freeprocs(kd) 553 kvm_t *kd; 554 { 555 if (kd->procbase) { 556 free(kd->procbase); 557 kd->procbase = 0; 558 } 559 } 560 561 void * 562 _kvm_realloc(kd, p, n) 563 kvm_t *kd; 564 void *p; 565 size_t n; 566 { 567 void *np = (void *)realloc(p, n); 568 569 if (np == 0) 570 _kvm_err(kd, kd->program, "out of memory"); 571 return (np); 572 } 573 574 #ifndef MAX 575 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 576 #endif 577 578 /* 579 * Read in an argument vector from the user address space of process p. 580 * addr if the user-space base address of narg null-terminated contiguous 581 * strings. This is used to read in both the command arguments and 582 * environment strings. Read at most maxcnt characters of strings. 583 */ 584 static char ** 585 kvm_argv(kd, p, addr, narg, maxcnt) 586 kvm_t *kd; 587 const struct proc *p; 588 register u_long addr; 589 register int narg; 590 register int maxcnt; 591 { 592 register char *np, *cp, *ep, *ap; 593 register u_long oaddr = -1; 594 register int len, cc; 595 register char **argv; 596 597 /* 598 * Check that there aren't an unreasonable number of agruments, 599 * and that the address is in user space. 600 */ 601 if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 602 return (0); 603 604 if (kd->argv == 0) { 605 /* 606 * Try to avoid reallocs. 607 */ 608 kd->argc = MAX(narg + 1, 32); 609 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 610 sizeof(*kd->argv)); 611 if (kd->argv == 0) 612 return (0); 613 } else if (narg + 1 > kd->argc) { 614 kd->argc = MAX(2 * kd->argc, narg + 1); 615 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 616 sizeof(*kd->argv)); 617 if (kd->argv == 0) 618 return (0); 619 } 620 if (kd->argspc == 0) { 621 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg); 622 if (kd->argspc == 0) 623 return (0); 624 kd->arglen = kd->nbpg; 625 } 626 if (kd->argbuf == 0) { 627 kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg); 628 if (kd->argbuf == 0) 629 return (0); 630 } 631 cc = sizeof(char *) * narg; 632 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc) 633 return (0); 634 ap = np = kd->argspc; 635 argv = kd->argv; 636 len = 0; 637 /* 638 * Loop over pages, filling in the argument vector. 639 */ 640 while (argv < kd->argv + narg && *argv != 0) { 641 addr = (u_long)*argv & ~(kd->nbpg - 1); 642 if (addr != oaddr) { 643 if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) != 644 kd->nbpg) 645 return (0); 646 oaddr = addr; 647 } 648 addr = (u_long)*argv & (kd->nbpg - 1); 649 cp = kd->argbuf + addr; 650 cc = kd->nbpg - addr; 651 if (maxcnt > 0 && cc > maxcnt - len) 652 cc = maxcnt - len;; 653 ep = memchr(cp, '\0', cc); 654 if (ep != 0) 655 cc = ep - cp + 1; 656 if (len + cc > kd->arglen) { 657 register int off; 658 register char **pp; 659 register char *op = kd->argspc; 660 661 kd->arglen *= 2; 662 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 663 kd->arglen); 664 if (kd->argspc == 0) 665 return (0); 666 /* 667 * Adjust argv pointers in case realloc moved 668 * the string space. 669 */ 670 off = kd->argspc - op; 671 for (pp = kd->argv; pp < argv; pp++) 672 *pp += off; 673 ap += off; 674 np += off; 675 } 676 memcpy(np, cp, cc); 677 np += cc; 678 len += cc; 679 if (ep != 0) { 680 *argv++ = ap; 681 ap = np; 682 } else 683 *argv += cc; 684 if (maxcnt > 0 && len >= maxcnt) { 685 /* 686 * We're stopping prematurely. Terminate the 687 * current string. 688 */ 689 if (ep == 0) { 690 *np = '\0'; 691 *argv++ = ap; 692 } 693 break; 694 } 695 } 696 /* Make sure argv is terminated. */ 697 *argv = 0; 698 return (kd->argv); 699 } 700 701 static void 702 ps_str_a(p, addr, n) 703 struct ps_strings *p; 704 u_long *addr; 705 int *n; 706 { 707 *addr = (u_long)p->ps_argvstr; 708 *n = p->ps_nargvstr; 709 } 710 711 static void 712 ps_str_e(p, addr, n) 713 struct ps_strings *p; 714 u_long *addr; 715 int *n; 716 { 717 *addr = (u_long)p->ps_envstr; 718 *n = p->ps_nenvstr; 719 } 720 721 /* 722 * Determine if the proc indicated by p is still active. 723 * This test is not 100% foolproof in theory, but chances of 724 * being wrong are very low. 725 */ 726 static int 727 proc_verify(kd, kernp, p) 728 kvm_t *kd; 729 u_long kernp; 730 const struct proc *p; 731 { 732 struct proc kernproc; 733 734 /* 735 * Just read in the whole proc. It's not that big relative 736 * to the cost of the read system call. 737 */ 738 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) != 739 sizeof(kernproc)) 740 return (0); 741 return (p->p_pid == kernproc.p_pid && 742 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 743 } 744 745 static char ** 746 kvm_doargv(kd, kp, nchr, info) 747 kvm_t *kd; 748 const struct kinfo_proc *kp; 749 int nchr; 750 void (*info)(struct ps_strings *, u_long *, int *); 751 { 752 register const struct proc *p = &kp->kp_proc; 753 register char **ap; 754 u_long addr; 755 int cnt; 756 struct ps_strings arginfo; 757 758 /* 759 * Pointers are stored at the top of the user stack. 760 */ 761 if (p->p_stat == SZOMB || 762 kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo, 763 sizeof(arginfo)) != sizeof(arginfo)) 764 return (0); 765 766 (*info)(&arginfo, &addr, &cnt); 767 if (cnt == 0) 768 return (0); 769 ap = kvm_argv(kd, p, addr, cnt, nchr); 770 /* 771 * For live kernels, make sure this process didn't go away. 772 */ 773 if (ap != 0 && ISALIVE(kd) && 774 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 775 ap = 0; 776 return (ap); 777 } 778 779 /* 780 * Get the command args. This code is now machine independent. 781 */ 782 char ** 783 kvm_getargv(kd, kp, nchr) 784 kvm_t *kd; 785 const struct kinfo_proc *kp; 786 int nchr; 787 { 788 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 789 } 790 791 char ** 792 kvm_getenvv(kd, kp, nchr) 793 kvm_t *kd; 794 const struct kinfo_proc *kp; 795 int nchr; 796 { 797 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 798 } 799 800 /* 801 * Read from user space. The user context is given by p. 802 */ 803 ssize_t 804 kvm_uread(kd, p, uva, buf, len) 805 kvm_t *kd; 806 register const struct proc *p; 807 register u_long uva; 808 register char *buf; 809 register size_t len; 810 { 811 register char *cp; 812 813 cp = buf; 814 while (len > 0) { 815 register int cc; 816 register char *dp; 817 u_long cnt; 818 819 dp = _kvm_uread(kd, p, uva, &cnt); 820 if (dp == 0) { 821 _kvm_err(kd, 0, "invalid address (%x)", uva); 822 return (0); 823 } 824 cc = MIN(cnt, len); 825 bcopy(dp, cp, cc); 826 827 cp += cc; 828 uva += cc; 829 len -= cc; 830 } 831 return (ssize_t)(cp - buf); 832 } 833