xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision 9573504567626934c7ee01c7dce0c4bb1dfe7403)
1 /*-
2  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
3  * Copyright (c) 1989, 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software developed by the Computer Systems
7  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
8  * BG 91-66 and contributed to Berkeley.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if defined(LIBC_SCCS) && !defined(lint)
40 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41 #endif /* LIBC_SCCS and not lint */
42 
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49 
50 #include <sys/param.h>
51 #include <sys/user.h>
52 #include <sys/proc.h>
53 #include <sys/exec.h>
54 #include <sys/stat.h>
55 #include <sys/ioctl.h>
56 #include <sys/tty.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <unistd.h>
60 #include <nlist.h>
61 #include <kvm.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/swap_pager.h>
66 
67 #include <sys/sysctl.h>
68 
69 #include <limits.h>
70 #include <db.h>
71 #include <paths.h>
72 
73 #include "kvm_private.h"
74 
75 #define KREAD(kd, addr, obj) \
76 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
77 
78 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
79 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
80 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
81 		    size_t));
82 
83 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
84 		    int));
85 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
86 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
87 		    void (*)(struct ps_strings *, u_long *, int *)));
88 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
89 		    struct kinfo_proc *, int));
90 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
91 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
92 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
93 
94 char *
95 _kvm_uread(kd, p, va, cnt)
96 	kvm_t *kd;
97 	const struct proc *p;
98 	u_long va;
99 	u_long *cnt;
100 {
101 	register u_long addr, head;
102 	register u_long offset;
103 	struct vm_map_entry vme;
104 	struct vm_object vmo;
105 	int rv;
106 
107 	if (kd->swapspc == 0) {
108 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
109 		if (kd->swapspc == 0)
110 			return (0);
111 	}
112 
113 	/*
114 	 * Look through the address map for the memory object
115 	 * that corresponds to the given virtual address.
116 	 * The header just has the entire valid range.
117 	 */
118 	head = (u_long)&p->p_vmspace->vm_map.header;
119 	addr = head;
120 	while (1) {
121 		if (KREAD(kd, addr, &vme))
122 			return (0);
123 
124 		if (va >= vme.start && va < vme.end &&
125 		    vme.object.vm_object != 0)
126 			break;
127 
128 		addr = (u_long)vme.next;
129 		if (addr == head)
130 			return (0);
131 	}
132 
133 	/*
134 	 * We found the right object -- follow shadow links.
135 	 */
136 	offset = va - vme.start + vme.offset;
137 	addr = (u_long)vme.object.vm_object;
138 
139 	while (1) {
140 		/* Try reading the page from core first. */
141 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
142 			break;
143 
144 		if (KREAD(kd, addr, &vmo))
145 			return (0);
146 
147 		/* If there is a pager here, see if it has the page. */
148 		if (vmo.pager != 0 &&
149 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
150 			break;
151 
152 		/* Move down the shadow chain. */
153 		addr = (u_long)vmo.shadow;
154 		if (addr == 0)
155 			return (0);
156 		offset += vmo.shadow_offset;
157 	}
158 
159 	if (rv == -1)
160 		return (0);
161 
162 	/* Found the page. */
163 	offset %= kd->nbpg;
164 	*cnt = kd->nbpg - offset;
165 	return (&kd->swapspc[offset]);
166 }
167 
168 #define	vm_page_hash(kd, object, offset) \
169 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
170 
171 int
172 _kvm_coreinit(kd)
173 	kvm_t *kd;
174 {
175 	struct nlist nlist[3];
176 
177 	nlist[0].n_name = "_vm_page_buckets";
178 	nlist[1].n_name = "_vm_page_hash_mask";
179 	nlist[2].n_name = 0;
180 	if (kvm_nlist(kd, nlist) != 0)
181 		return (-1);
182 
183 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
184 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
185 		return (-1);
186 
187 	return (0);
188 }
189 
190 int
191 _kvm_readfromcore(kd, object, offset)
192 	kvm_t *kd;
193 	u_long object, offset;
194 {
195 	u_long addr;
196 	struct pglist bucket;
197 	struct vm_page mem;
198 	off_t seekpoint;
199 
200 	if (kd->vm_page_buckets == 0 &&
201 	    _kvm_coreinit(kd))
202 		return (-1);
203 
204 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
205 	if (KREAD(kd, addr, &bucket))
206 		return (-1);
207 
208 	addr = (u_long)bucket.tqh_first;
209 	offset &= ~(kd->nbpg -1);
210 	while (1) {
211 		if (addr == 0)
212 			return (0);
213 
214 		if (KREAD(kd, addr, &mem))
215 			return (-1);
216 
217 		if ((u_long)mem.object == object &&
218 		    (u_long)mem.offset == offset)
219 			break;
220 
221 		addr = (u_long)mem.hashq.tqe_next;
222 	}
223 
224 	seekpoint = mem.phys_addr;
225 
226 	if (lseek(kd->pmfd, seekpoint, 0) == -1)
227 		return (-1);
228 	if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
229 		return (-1);
230 
231 	return (1);
232 }
233 
234 int
235 _kvm_readfrompager(kd, vmop, offset)
236 	kvm_t *kd;
237 	struct vm_object *vmop;
238 	u_long offset;
239 {
240 	u_long addr;
241 	struct pager_struct pager;
242 	struct swpager swap;
243 	int ix;
244 	struct swblock swb;
245 	off_t seekpoint;
246 
247 	/* Read in the pager info and make sure it's a swap device. */
248 	addr = (u_long)vmop->pager;
249 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
250 		return (-1);
251 
252 	/* Read in the swap_pager private data. */
253 	addr = (u_long)pager.pg_data;
254 	if (KREAD(kd, addr, &swap))
255 		return (-1);
256 
257 	/*
258 	 * Calculate the paging offset, and make sure it's within the
259 	 * bounds of the pager.
260 	 */
261 	offset += vmop->paging_offset;
262 	ix = offset / dbtob(swap.sw_bsize);
263 #if 0
264 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
265 		return (-1);
266 #else
267 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
268 		int i;
269 		printf("BUG BUG BUG BUG:\n");
270 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
271 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
272 		    vmop->pager, pager.pg_data);
273 		printf("osize %x bsize %x blocks %x nblocks %x\n",
274 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
275 		    swap.sw_nblocks);
276 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
277 			addr = (u_long)&swap.sw_blocks[ix];
278 			if (KREAD(kd, addr, &swb))
279 				return (0);
280 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
281 			    swb.swb_block, swb.swb_mask);
282 		}
283 		return (-1);
284 	}
285 #endif
286 
287 	/* Read in the swap records. */
288 	addr = (u_long)&swap.sw_blocks[ix];
289 	if (KREAD(kd, addr, &swb))
290 		return (-1);
291 
292 	/* Calculate offset within pager. */
293 	offset %= dbtob(swap.sw_bsize);
294 
295 	/* Check that the page is actually present. */
296 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
297 		return (0);
298 
299 	if (!ISALIVE(kd))
300 		return (-1);
301 
302 	/* Calculate the physical address and read the page. */
303 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
304 
305 	if (lseek(kd->swfd, seekpoint, 0) == -1)
306 		return (-1);
307 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
308 		return (-1);
309 
310 	return (1);
311 }
312 
313 /*
314  * Read proc's from memory file into buffer bp, which has space to hold
315  * at most maxcnt procs.
316  */
317 static int
318 kvm_proclist(kd, what, arg, p, bp, maxcnt)
319 	kvm_t *kd;
320 	int what, arg;
321 	struct proc *p;
322 	struct kinfo_proc *bp;
323 	int maxcnt;
324 {
325 	register int cnt = 0;
326 	struct eproc eproc;
327 	struct pgrp pgrp;
328 	struct session sess;
329 	struct tty tty;
330 	struct proc proc;
331 
332 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
333 		if (KREAD(kd, (u_long)p, &proc)) {
334 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
335 			return (-1);
336 		}
337 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
338 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
339 			      &eproc.e_ucred);
340 
341 		switch(what) {
342 
343 		case KERN_PROC_PID:
344 			if (proc.p_pid != (pid_t)arg)
345 				continue;
346 			break;
347 
348 		case KERN_PROC_UID:
349 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
350 				continue;
351 			break;
352 
353 		case KERN_PROC_RUID:
354 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
355 				continue;
356 			break;
357 		}
358 		/*
359 		 * We're going to add another proc to the set.  If this
360 		 * will overflow the buffer, assume the reason is because
361 		 * nprocs (or the proc list) is corrupt and declare an error.
362 		 */
363 		if (cnt >= maxcnt) {
364 			_kvm_err(kd, kd->program, "nprocs corrupt");
365 			return (-1);
366 		}
367 		/*
368 		 * gather eproc
369 		 */
370 		eproc.e_paddr = p;
371 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
372 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
373 				 proc.p_pgrp);
374 			return (-1);
375 		}
376 		eproc.e_sess = pgrp.pg_session;
377 		eproc.e_pgid = pgrp.pg_id;
378 		eproc.e_jobc = pgrp.pg_jobc;
379 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
380 			_kvm_err(kd, kd->program, "can't read session at %x",
381 				pgrp.pg_session);
382 			return (-1);
383 		}
384 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
385 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
386 				_kvm_err(kd, kd->program,
387 					 "can't read tty at %x", sess.s_ttyp);
388 				return (-1);
389 			}
390 			eproc.e_tdev = tty.t_dev;
391 			eproc.e_tsess = tty.t_session;
392 			if (tty.t_pgrp != NULL) {
393 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
394 					_kvm_err(kd, kd->program,
395 						 "can't read tpgrp at &x",
396 						tty.t_pgrp);
397 					return (-1);
398 				}
399 				eproc.e_tpgid = pgrp.pg_id;
400 			} else
401 				eproc.e_tpgid = -1;
402 		} else
403 			eproc.e_tdev = NODEV;
404 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
405 		if (sess.s_leader == p)
406 			eproc.e_flag |= EPROC_SLEADER;
407 		if (proc.p_wmesg)
408 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
409 			    eproc.e_wmesg, WMESGLEN);
410 
411 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
412 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
413 
414 		eproc.e_xsize = eproc.e_xrssize = 0;
415 		eproc.e_xccount = eproc.e_xswrss = 0;
416 
417 		switch (what) {
418 
419 		case KERN_PROC_PGRP:
420 			if (eproc.e_pgid != (pid_t)arg)
421 				continue;
422 			break;
423 
424 		case KERN_PROC_TTY:
425 			if ((proc.p_flag & P_CONTROLT) == 0 ||
426 			     eproc.e_tdev != (dev_t)arg)
427 				continue;
428 			break;
429 		}
430 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
431 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
432 		++bp;
433 		++cnt;
434 	}
435 	return (cnt);
436 }
437 
438 /*
439  * Build proc info array by reading in proc list from a crash dump.
440  * Return number of procs read.  maxcnt is the max we will read.
441  */
442 static int
443 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
444 	kvm_t *kd;
445 	int what, arg;
446 	u_long a_allproc;
447 	u_long a_zombproc;
448 	int maxcnt;
449 {
450 	register struct kinfo_proc *bp = kd->procbase;
451 	register int acnt, zcnt;
452 	struct proc *p;
453 
454 	if (KREAD(kd, a_allproc, &p)) {
455 		_kvm_err(kd, kd->program, "cannot read allproc");
456 		return (-1);
457 	}
458 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
459 	if (acnt < 0)
460 		return (acnt);
461 
462 	if (KREAD(kd, a_zombproc, &p)) {
463 		_kvm_err(kd, kd->program, "cannot read zombproc");
464 		return (-1);
465 	}
466 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
467 	if (zcnt < 0)
468 		zcnt = 0;
469 
470 	return (acnt + zcnt);
471 }
472 
473 struct kinfo_proc *
474 kvm_getprocs(kd, op, arg, cnt)
475 	kvm_t *kd;
476 	int op, arg;
477 	int *cnt;
478 {
479 	size_t size;
480 	int mib[4], st, nprocs;
481 
482 	if (kd->procbase != 0) {
483 		free((void *)kd->procbase);
484 		/*
485 		 * Clear this pointer in case this call fails.  Otherwise,
486 		 * kvm_close() will free it again.
487 		 */
488 		kd->procbase = 0;
489 	}
490 	if (ISALIVE(kd)) {
491 		size = 0;
492 		mib[0] = CTL_KERN;
493 		mib[1] = KERN_PROC;
494 		mib[2] = op;
495 		mib[3] = arg;
496 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
497 		if (st == -1) {
498 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
499 			return (0);
500 		}
501 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
502 		if (kd->procbase == 0)
503 			return (0);
504 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
505 		if (st == -1) {
506 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
507 			return (0);
508 		}
509 		if (size % sizeof(struct kinfo_proc) != 0) {
510 			_kvm_err(kd, kd->program,
511 				"proc size mismatch (%d total, %d chunks)",
512 				size, sizeof(struct kinfo_proc));
513 			return (0);
514 		}
515 		nprocs = size / sizeof(struct kinfo_proc);
516 	} else {
517 		struct nlist nl[4], *p;
518 
519 		nl[0].n_name = "_nprocs";
520 		nl[1].n_name = "_allproc";
521 		nl[2].n_name = "_zombproc";
522 		nl[3].n_name = 0;
523 
524 		if (kvm_nlist(kd, nl) != 0) {
525 			for (p = nl; p->n_type != 0; ++p)
526 				;
527 			_kvm_err(kd, kd->program,
528 				 "%s: no such symbol", p->n_name);
529 			return (0);
530 		}
531 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
532 			_kvm_err(kd, kd->program, "can't read nprocs");
533 			return (0);
534 		}
535 		size = nprocs * sizeof(struct kinfo_proc);
536 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
537 		if (kd->procbase == 0)
538 			return (0);
539 
540 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
541 				      nl[2].n_value, nprocs);
542 #ifdef notdef
543 		size = nprocs * sizeof(struct kinfo_proc);
544 		(void)realloc(kd->procbase, size);
545 #endif
546 	}
547 	*cnt = nprocs;
548 	return (kd->procbase);
549 }
550 
551 void
552 _kvm_freeprocs(kd)
553 	kvm_t *kd;
554 {
555 	if (kd->procbase) {
556 		free(kd->procbase);
557 		kd->procbase = 0;
558 	}
559 }
560 
561 void *
562 _kvm_realloc(kd, p, n)
563 	kvm_t *kd;
564 	void *p;
565 	size_t n;
566 {
567 	void *np = (void *)realloc(p, n);
568 
569 	if (np == 0)
570 		_kvm_err(kd, kd->program, "out of memory");
571 	return (np);
572 }
573 
574 #ifndef MAX
575 #define MAX(a, b) ((a) > (b) ? (a) : (b))
576 #endif
577 
578 /*
579  * Read in an argument vector from the user address space of process p.
580  * addr if the user-space base address of narg null-terminated contiguous
581  * strings.  This is used to read in both the command arguments and
582  * environment strings.  Read at most maxcnt characters of strings.
583  */
584 static char **
585 kvm_argv(kd, p, addr, narg, maxcnt)
586 	kvm_t *kd;
587 	const struct proc *p;
588 	register u_long addr;
589 	register int narg;
590 	register int maxcnt;
591 {
592 	register char *np, *cp, *ep, *ap;
593 	register u_long oaddr = -1;
594 	register int len, cc;
595 	register char **argv;
596 
597 	/*
598 	 * Check that there aren't an unreasonable number of agruments,
599 	 * and that the address is in user space.
600 	 */
601 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
602 		return (0);
603 
604 	if (kd->argv == 0) {
605 		/*
606 		 * Try to avoid reallocs.
607 		 */
608 		kd->argc = MAX(narg + 1, 32);
609 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
610 						sizeof(*kd->argv));
611 		if (kd->argv == 0)
612 			return (0);
613 	} else if (narg + 1 > kd->argc) {
614 		kd->argc = MAX(2 * kd->argc, narg + 1);
615 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
616 						sizeof(*kd->argv));
617 		if (kd->argv == 0)
618 			return (0);
619 	}
620 	if (kd->argspc == 0) {
621 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
622 		if (kd->argspc == 0)
623 			return (0);
624 		kd->arglen = kd->nbpg;
625 	}
626 	if (kd->argbuf == 0) {
627 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
628 		if (kd->argbuf == 0)
629 			return (0);
630 	}
631 	cc = sizeof(char *) * narg;
632 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
633 		return (0);
634 	ap = np = kd->argspc;
635 	argv = kd->argv;
636 	len = 0;
637 	/*
638 	 * Loop over pages, filling in the argument vector.
639 	 */
640 	while (argv < kd->argv + narg && *argv != 0) {
641 		addr = (u_long)*argv & ~(kd->nbpg - 1);
642 		if (addr != oaddr) {
643 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
644 			    kd->nbpg)
645 				return (0);
646 			oaddr = addr;
647 		}
648 		addr = (u_long)*argv & (kd->nbpg - 1);
649 		cp = kd->argbuf + addr;
650 		cc = kd->nbpg - addr;
651 		if (maxcnt > 0 && cc > maxcnt - len)
652 			cc = maxcnt - len;;
653 		ep = memchr(cp, '\0', cc);
654 		if (ep != 0)
655 			cc = ep - cp + 1;
656 		if (len + cc > kd->arglen) {
657 			register int off;
658 			register char **pp;
659 			register char *op = kd->argspc;
660 
661 			kd->arglen *= 2;
662 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
663 							  kd->arglen);
664 			if (kd->argspc == 0)
665 				return (0);
666 			/*
667 			 * Adjust argv pointers in case realloc moved
668 			 * the string space.
669 			 */
670 			off = kd->argspc - op;
671 			for (pp = kd->argv; pp < argv; pp++)
672 				*pp += off;
673 			ap += off;
674 			np += off;
675 		}
676 		memcpy(np, cp, cc);
677 		np += cc;
678 		len += cc;
679 		if (ep != 0) {
680 			*argv++ = ap;
681 			ap = np;
682 		} else
683 			*argv += cc;
684 		if (maxcnt > 0 && len >= maxcnt) {
685 			/*
686 			 * We're stopping prematurely.  Terminate the
687 			 * current string.
688 			 */
689 			if (ep == 0) {
690 				*np = '\0';
691 				*argv++ = ap;
692 			}
693 			break;
694 		}
695 	}
696 	/* Make sure argv is terminated. */
697 	*argv = 0;
698 	return (kd->argv);
699 }
700 
701 static void
702 ps_str_a(p, addr, n)
703 	struct ps_strings *p;
704 	u_long *addr;
705 	int *n;
706 {
707 	*addr = (u_long)p->ps_argvstr;
708 	*n = p->ps_nargvstr;
709 }
710 
711 static void
712 ps_str_e(p, addr, n)
713 	struct ps_strings *p;
714 	u_long *addr;
715 	int *n;
716 {
717 	*addr = (u_long)p->ps_envstr;
718 	*n = p->ps_nenvstr;
719 }
720 
721 /*
722  * Determine if the proc indicated by p is still active.
723  * This test is not 100% foolproof in theory, but chances of
724  * being wrong are very low.
725  */
726 static int
727 proc_verify(kd, kernp, p)
728 	kvm_t *kd;
729 	u_long kernp;
730 	const struct proc *p;
731 {
732 	struct proc kernproc;
733 
734 	/*
735 	 * Just read in the whole proc.  It's not that big relative
736 	 * to the cost of the read system call.
737 	 */
738 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
739 	    sizeof(kernproc))
740 		return (0);
741 	return (p->p_pid == kernproc.p_pid &&
742 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
743 }
744 
745 static char **
746 kvm_doargv(kd, kp, nchr, info)
747 	kvm_t *kd;
748 	const struct kinfo_proc *kp;
749 	int nchr;
750 	void (*info)(struct ps_strings *, u_long *, int *);
751 {
752 	register const struct proc *p = &kp->kp_proc;
753 	register char **ap;
754 	u_long addr;
755 	int cnt;
756 	struct ps_strings arginfo;
757 
758 	/*
759 	 * Pointers are stored at the top of the user stack.
760 	 */
761 	if (p->p_stat == SZOMB ||
762 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
763 		      sizeof(arginfo)) != sizeof(arginfo))
764 		return (0);
765 
766 	(*info)(&arginfo, &addr, &cnt);
767 	if (cnt == 0)
768 		return (0);
769 	ap = kvm_argv(kd, p, addr, cnt, nchr);
770 	/*
771 	 * For live kernels, make sure this process didn't go away.
772 	 */
773 	if (ap != 0 && ISALIVE(kd) &&
774 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
775 		ap = 0;
776 	return (ap);
777 }
778 
779 /*
780  * Get the command args.  This code is now machine independent.
781  */
782 char **
783 kvm_getargv(kd, kp, nchr)
784 	kvm_t *kd;
785 	const struct kinfo_proc *kp;
786 	int nchr;
787 {
788 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
789 }
790 
791 char **
792 kvm_getenvv(kd, kp, nchr)
793 	kvm_t *kd;
794 	const struct kinfo_proc *kp;
795 	int nchr;
796 {
797 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
798 }
799 
800 /*
801  * Read from user space.  The user context is given by p.
802  */
803 ssize_t
804 kvm_uread(kd, p, uva, buf, len)
805 	kvm_t *kd;
806 	register const struct proc *p;
807 	register u_long uva;
808 	register char *buf;
809 	register size_t len;
810 {
811 	register char *cp;
812 
813 	cp = buf;
814 	while (len > 0) {
815 		register int cc;
816 		register char *dp;
817 		u_long cnt;
818 
819 		dp = _kvm_uread(kd, p, uva, &cnt);
820 		if (dp == 0) {
821 			_kvm_err(kd, 0, "invalid address (%x)", uva);
822 			return (0);
823 		}
824 		cc = MIN(cnt, len);
825 		bcopy(dp, cp, cc);
826 
827 		cp += cc;
828 		uva += cc;
829 		len -= cc;
830 	}
831 	return (ssize_t)(cp - buf);
832 }
833