xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: kvm_proc.c,v 1.16 1996/03/18 22:33:57 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
5  * Copyright (c) 1989, 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software developed by the Computer Systems
9  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10  * BG 91-66 and contributed to Berkeley.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  */
40 
41 #if defined(LIBC_SCCS) && !defined(lint)
42 #if 0
43 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
44 #else
45 static char *rcsid = "$NetBSD: kvm_proc.c,v 1.16 1996/03/18 22:33:57 thorpej Exp $";
46 #endif
47 #endif /* LIBC_SCCS and not lint */
48 
49 /*
50  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
51  * users of this code, so we've factored it out into a separate module.
52  * Thus, we keep this grunge out of the other kvm applications (i.e.,
53  * most other applications are interested only in open/close/read/nlist).
54  */
55 
56 #include <sys/param.h>
57 #include <sys/user.h>
58 #include <sys/proc.h>
59 #include <sys/exec.h>
60 #include <sys/stat.h>
61 #include <sys/ioctl.h>
62 #include <sys/tty.h>
63 #include <stdlib.h>
64 #include <string.h>
65 #include <unistd.h>
66 #include <nlist.h>
67 #include <kvm.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/swap_pager.h>
72 
73 #include <sys/sysctl.h>
74 
75 #include <limits.h>
76 #include <db.h>
77 #include <paths.h>
78 
79 #include "kvm_private.h"
80 
81 #define KREAD(kd, addr, obj) \
82 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
83 
84 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
85 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
86 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
87 		    size_t));
88 
89 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
90 		    int));
91 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
92 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
93 		    void (*)(struct ps_strings *, u_long *, int *)));
94 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
95 		    struct kinfo_proc *, int));
96 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
97 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
98 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
99 
100 char *
101 _kvm_uread(kd, p, va, cnt)
102 	kvm_t *kd;
103 	const struct proc *p;
104 	u_long va;
105 	u_long *cnt;
106 {
107 	register u_long addr, head;
108 	register u_long offset;
109 	struct vm_map_entry vme;
110 	struct vm_object vmo;
111 	int rv;
112 
113 	if (kd->swapspc == 0) {
114 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
115 		if (kd->swapspc == 0)
116 			return (0);
117 	}
118 
119 	/*
120 	 * Look through the address map for the memory object
121 	 * that corresponds to the given virtual address.
122 	 * The header just has the entire valid range.
123 	 */
124 	head = (u_long)&p->p_vmspace->vm_map.header;
125 	addr = head;
126 	while (1) {
127 		if (KREAD(kd, addr, &vme))
128 			return (0);
129 
130 		if (va >= vme.start && va < vme.end &&
131 		    vme.object.vm_object != 0)
132 			break;
133 
134 		addr = (u_long)vme.next;
135 		if (addr == head)
136 			return (0);
137 	}
138 
139 	/*
140 	 * We found the right object -- follow shadow links.
141 	 */
142 	offset = va - vme.start + vme.offset;
143 	addr = (u_long)vme.object.vm_object;
144 
145 	while (1) {
146 		/* Try reading the page from core first. */
147 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
148 			break;
149 
150 		if (KREAD(kd, addr, &vmo))
151 			return (0);
152 
153 		/* If there is a pager here, see if it has the page. */
154 		if (vmo.pager != 0 &&
155 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
156 			break;
157 
158 		/* Move down the shadow chain. */
159 		addr = (u_long)vmo.shadow;
160 		if (addr == 0)
161 			return (0);
162 		offset += vmo.shadow_offset;
163 	}
164 
165 	if (rv == -1)
166 		return (0);
167 
168 	/* Found the page. */
169 	offset %= kd->nbpg;
170 	*cnt = kd->nbpg - offset;
171 	return (&kd->swapspc[offset]);
172 }
173 
174 #define	vm_page_hash(kd, object, offset) \
175 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
176 
177 int
178 _kvm_coreinit(kd)
179 	kvm_t *kd;
180 {
181 	struct nlist nlist[3];
182 
183 	nlist[0].n_name = "_vm_page_buckets";
184 	nlist[1].n_name = "_vm_page_hash_mask";
185 	nlist[2].n_name = 0;
186 	if (kvm_nlist(kd, nlist) != 0)
187 		return (-1);
188 
189 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
190 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
191 		return (-1);
192 
193 	return (0);
194 }
195 
196 int
197 _kvm_readfromcore(kd, object, offset)
198 	kvm_t *kd;
199 	u_long object, offset;
200 {
201 	u_long addr;
202 	struct pglist bucket;
203 	struct vm_page mem;
204 	off_t seekpoint;
205 
206 	if (kd->vm_page_buckets == 0 &&
207 	    _kvm_coreinit(kd))
208 		return (-1);
209 
210 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
211 	if (KREAD(kd, addr, &bucket))
212 		return (-1);
213 
214 	addr = (u_long)bucket.tqh_first;
215 	offset &= ~(kd->nbpg -1);
216 	while (1) {
217 		if (addr == 0)
218 			return (0);
219 
220 		if (KREAD(kd, addr, &mem))
221 			return (-1);
222 
223 		if ((u_long)mem.object == object &&
224 		    (u_long)mem.offset == offset)
225 			break;
226 
227 		addr = (u_long)mem.hashq.tqe_next;
228 	}
229 
230 	seekpoint = mem.phys_addr;
231 
232 	if (lseek(kd->pmfd, seekpoint, 0) == -1)
233 		return (-1);
234 	if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
235 		return (-1);
236 
237 	return (1);
238 }
239 
240 int
241 _kvm_readfrompager(kd, vmop, offset)
242 	kvm_t *kd;
243 	struct vm_object *vmop;
244 	u_long offset;
245 {
246 	u_long addr;
247 	struct pager_struct pager;
248 	struct swpager swap;
249 	int ix;
250 	struct swblock swb;
251 	off_t seekpoint;
252 
253 	/* Read in the pager info and make sure it's a swap device. */
254 	addr = (u_long)vmop->pager;
255 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
256 		return (-1);
257 
258 	/* Read in the swap_pager private data. */
259 	addr = (u_long)pager.pg_data;
260 	if (KREAD(kd, addr, &swap))
261 		return (-1);
262 
263 	/*
264 	 * Calculate the paging offset, and make sure it's within the
265 	 * bounds of the pager.
266 	 */
267 	offset += vmop->paging_offset;
268 	ix = offset / dbtob(swap.sw_bsize);
269 #if 0
270 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
271 		return (-1);
272 #else
273 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
274 		int i;
275 		printf("BUG BUG BUG BUG:\n");
276 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
277 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
278 		    vmop->pager, pager.pg_data);
279 		printf("osize %x bsize %x blocks %x nblocks %x\n",
280 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
281 		    swap.sw_nblocks);
282 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
283 			addr = (u_long)&swap.sw_blocks[ix];
284 			if (KREAD(kd, addr, &swb))
285 				return (0);
286 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
287 			    swb.swb_block, swb.swb_mask);
288 		}
289 		return (-1);
290 	}
291 #endif
292 
293 	/* Read in the swap records. */
294 	addr = (u_long)&swap.sw_blocks[ix];
295 	if (KREAD(kd, addr, &swb))
296 		return (-1);
297 
298 	/* Calculate offset within pager. */
299 	offset %= dbtob(swap.sw_bsize);
300 
301 	/* Check that the page is actually present. */
302 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
303 		return (0);
304 
305 	if (!ISALIVE(kd))
306 		return (-1);
307 
308 	/* Calculate the physical address and read the page. */
309 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
310 
311 	if (lseek(kd->swfd, seekpoint, 0) == -1)
312 		return (-1);
313 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
314 		return (-1);
315 
316 	return (1);
317 }
318 
319 /*
320  * Read proc's from memory file into buffer bp, which has space to hold
321  * at most maxcnt procs.
322  */
323 static int
324 kvm_proclist(kd, what, arg, p, bp, maxcnt)
325 	kvm_t *kd;
326 	int what, arg;
327 	struct proc *p;
328 	struct kinfo_proc *bp;
329 	int maxcnt;
330 {
331 	register int cnt = 0;
332 	struct eproc eproc;
333 	struct pgrp pgrp;
334 	struct session sess;
335 	struct tty tty;
336 	struct proc proc;
337 
338 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
339 		if (KREAD(kd, (u_long)p, &proc)) {
340 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
341 			return (-1);
342 		}
343 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
344 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
345 			      &eproc.e_ucred);
346 
347 		switch(what) {
348 
349 		case KERN_PROC_PID:
350 			if (proc.p_pid != (pid_t)arg)
351 				continue;
352 			break;
353 
354 		case KERN_PROC_UID:
355 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
356 				continue;
357 			break;
358 
359 		case KERN_PROC_RUID:
360 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
361 				continue;
362 			break;
363 		}
364 		/*
365 		 * We're going to add another proc to the set.  If this
366 		 * will overflow the buffer, assume the reason is because
367 		 * nprocs (or the proc list) is corrupt and declare an error.
368 		 */
369 		if (cnt >= maxcnt) {
370 			_kvm_err(kd, kd->program, "nprocs corrupt");
371 			return (-1);
372 		}
373 		/*
374 		 * gather eproc
375 		 */
376 		eproc.e_paddr = p;
377 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
378 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
379 				 proc.p_pgrp);
380 			return (-1);
381 		}
382 		eproc.e_sess = pgrp.pg_session;
383 		eproc.e_pgid = pgrp.pg_id;
384 		eproc.e_jobc = pgrp.pg_jobc;
385 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
386 			_kvm_err(kd, kd->program, "can't read session at %x",
387 				pgrp.pg_session);
388 			return (-1);
389 		}
390 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
391 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
392 				_kvm_err(kd, kd->program,
393 					 "can't read tty at %x", sess.s_ttyp);
394 				return (-1);
395 			}
396 			eproc.e_tdev = tty.t_dev;
397 			eproc.e_tsess = tty.t_session;
398 			if (tty.t_pgrp != NULL) {
399 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
400 					_kvm_err(kd, kd->program,
401 						 "can't read tpgrp at &x",
402 						tty.t_pgrp);
403 					return (-1);
404 				}
405 				eproc.e_tpgid = pgrp.pg_id;
406 			} else
407 				eproc.e_tpgid = -1;
408 		} else
409 			eproc.e_tdev = NODEV;
410 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
411 		if (sess.s_leader == p)
412 			eproc.e_flag |= EPROC_SLEADER;
413 		if (proc.p_wmesg)
414 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
415 			    eproc.e_wmesg, WMESGLEN);
416 
417 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
418 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
419 
420 		eproc.e_xsize = eproc.e_xrssize = 0;
421 		eproc.e_xccount = eproc.e_xswrss = 0;
422 
423 		switch (what) {
424 
425 		case KERN_PROC_PGRP:
426 			if (eproc.e_pgid != (pid_t)arg)
427 				continue;
428 			break;
429 
430 		case KERN_PROC_TTY:
431 			if ((proc.p_flag & P_CONTROLT) == 0 ||
432 			     eproc.e_tdev != (dev_t)arg)
433 				continue;
434 			break;
435 		}
436 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
437 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
438 		++bp;
439 		++cnt;
440 	}
441 	return (cnt);
442 }
443 
444 /*
445  * Build proc info array by reading in proc list from a crash dump.
446  * Return number of procs read.  maxcnt is the max we will read.
447  */
448 static int
449 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
450 	kvm_t *kd;
451 	int what, arg;
452 	u_long a_allproc;
453 	u_long a_zombproc;
454 	int maxcnt;
455 {
456 	register struct kinfo_proc *bp = kd->procbase;
457 	register int acnt, zcnt;
458 	struct proc *p;
459 
460 	if (KREAD(kd, a_allproc, &p)) {
461 		_kvm_err(kd, kd->program, "cannot read allproc");
462 		return (-1);
463 	}
464 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
465 	if (acnt < 0)
466 		return (acnt);
467 
468 	if (KREAD(kd, a_zombproc, &p)) {
469 		_kvm_err(kd, kd->program, "cannot read zombproc");
470 		return (-1);
471 	}
472 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
473 	if (zcnt < 0)
474 		zcnt = 0;
475 
476 	return (acnt + zcnt);
477 }
478 
479 struct kinfo_proc *
480 kvm_getprocs(kd, op, arg, cnt)
481 	kvm_t *kd;
482 	int op, arg;
483 	int *cnt;
484 {
485 	size_t size;
486 	int mib[4], st, nprocs;
487 
488 	if (kd->procbase != 0) {
489 		free((void *)kd->procbase);
490 		/*
491 		 * Clear this pointer in case this call fails.  Otherwise,
492 		 * kvm_close() will free it again.
493 		 */
494 		kd->procbase = 0;
495 	}
496 	if (ISALIVE(kd)) {
497 		size = 0;
498 		mib[0] = CTL_KERN;
499 		mib[1] = KERN_PROC;
500 		mib[2] = op;
501 		mib[3] = arg;
502 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
503 		if (st == -1) {
504 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
505 			return (0);
506 		}
507 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
508 		if (kd->procbase == 0)
509 			return (0);
510 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
511 		if (st == -1) {
512 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
513 			return (0);
514 		}
515 		if (size % sizeof(struct kinfo_proc) != 0) {
516 			_kvm_err(kd, kd->program,
517 				"proc size mismatch (%d total, %d chunks)",
518 				size, sizeof(struct kinfo_proc));
519 			return (0);
520 		}
521 		nprocs = size / sizeof(struct kinfo_proc);
522 	} else {
523 		struct nlist nl[4], *p;
524 
525 		nl[0].n_name = "_nprocs";
526 		nl[1].n_name = "_allproc";
527 		nl[2].n_name = "_zombproc";
528 		nl[3].n_name = 0;
529 
530 		if (kvm_nlist(kd, nl) != 0) {
531 			for (p = nl; p->n_type != 0; ++p)
532 				;
533 			_kvm_err(kd, kd->program,
534 				 "%s: no such symbol", p->n_name);
535 			return (0);
536 		}
537 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
538 			_kvm_err(kd, kd->program, "can't read nprocs");
539 			return (0);
540 		}
541 		size = nprocs * sizeof(struct kinfo_proc);
542 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
543 		if (kd->procbase == 0)
544 			return (0);
545 
546 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
547 				      nl[2].n_value, nprocs);
548 #ifdef notdef
549 		size = nprocs * sizeof(struct kinfo_proc);
550 		(void)realloc(kd->procbase, size);
551 #endif
552 	}
553 	*cnt = nprocs;
554 	return (kd->procbase);
555 }
556 
557 void
558 _kvm_freeprocs(kd)
559 	kvm_t *kd;
560 {
561 	if (kd->procbase) {
562 		free(kd->procbase);
563 		kd->procbase = 0;
564 	}
565 }
566 
567 void *
568 _kvm_realloc(kd, p, n)
569 	kvm_t *kd;
570 	void *p;
571 	size_t n;
572 {
573 	void *np = (void *)realloc(p, n);
574 
575 	if (np == 0)
576 		_kvm_err(kd, kd->program, "out of memory");
577 	return (np);
578 }
579 
580 #ifndef MAX
581 #define MAX(a, b) ((a) > (b) ? (a) : (b))
582 #endif
583 
584 /*
585  * Read in an argument vector from the user address space of process p.
586  * addr if the user-space base address of narg null-terminated contiguous
587  * strings.  This is used to read in both the command arguments and
588  * environment strings.  Read at most maxcnt characters of strings.
589  */
590 static char **
591 kvm_argv(kd, p, addr, narg, maxcnt)
592 	kvm_t *kd;
593 	const struct proc *p;
594 	register u_long addr;
595 	register int narg;
596 	register int maxcnt;
597 {
598 	register char *np, *cp, *ep, *ap;
599 	register u_long oaddr = -1;
600 	register int len, cc;
601 	register char **argv;
602 
603 	/*
604 	 * Check that there aren't an unreasonable number of agruments,
605 	 * and that the address is in user space.
606 	 */
607 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
608 		return (0);
609 
610 	if (kd->argv == 0) {
611 		/*
612 		 * Try to avoid reallocs.
613 		 */
614 		kd->argc = MAX(narg + 1, 32);
615 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
616 						sizeof(*kd->argv));
617 		if (kd->argv == 0)
618 			return (0);
619 	} else if (narg + 1 > kd->argc) {
620 		kd->argc = MAX(2 * kd->argc, narg + 1);
621 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
622 						sizeof(*kd->argv));
623 		if (kd->argv == 0)
624 			return (0);
625 	}
626 	if (kd->argspc == 0) {
627 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
628 		if (kd->argspc == 0)
629 			return (0);
630 		kd->arglen = kd->nbpg;
631 	}
632 	if (kd->argbuf == 0) {
633 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
634 		if (kd->argbuf == 0)
635 			return (0);
636 	}
637 	cc = sizeof(char *) * narg;
638 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
639 		return (0);
640 	ap = np = kd->argspc;
641 	argv = kd->argv;
642 	len = 0;
643 	/*
644 	 * Loop over pages, filling in the argument vector.
645 	 */
646 	while (argv < kd->argv + narg && *argv != 0) {
647 		addr = (u_long)*argv & ~(kd->nbpg - 1);
648 		if (addr != oaddr) {
649 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
650 			    kd->nbpg)
651 				return (0);
652 			oaddr = addr;
653 		}
654 		addr = (u_long)*argv & (kd->nbpg - 1);
655 		cp = kd->argbuf + addr;
656 		cc = kd->nbpg - addr;
657 		if (maxcnt > 0 && cc > maxcnt - len)
658 			cc = maxcnt - len;;
659 		ep = memchr(cp, '\0', cc);
660 		if (ep != 0)
661 			cc = ep - cp + 1;
662 		if (len + cc > kd->arglen) {
663 			register int off;
664 			register char **pp;
665 			register char *op = kd->argspc;
666 
667 			kd->arglen *= 2;
668 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
669 							  kd->arglen);
670 			if (kd->argspc == 0)
671 				return (0);
672 			/*
673 			 * Adjust argv pointers in case realloc moved
674 			 * the string space.
675 			 */
676 			off = kd->argspc - op;
677 			for (pp = kd->argv; pp < argv; pp++)
678 				*pp += off;
679 			ap += off;
680 			np += off;
681 		}
682 		memcpy(np, cp, cc);
683 		np += cc;
684 		len += cc;
685 		if (ep != 0) {
686 			*argv++ = ap;
687 			ap = np;
688 		} else
689 			*argv += cc;
690 		if (maxcnt > 0 && len >= maxcnt) {
691 			/*
692 			 * We're stopping prematurely.  Terminate the
693 			 * current string.
694 			 */
695 			if (ep == 0) {
696 				*np = '\0';
697 				*argv++ = ap;
698 			}
699 			break;
700 		}
701 	}
702 	/* Make sure argv is terminated. */
703 	*argv = 0;
704 	return (kd->argv);
705 }
706 
707 static void
708 ps_str_a(p, addr, n)
709 	struct ps_strings *p;
710 	u_long *addr;
711 	int *n;
712 {
713 	*addr = (u_long)p->ps_argvstr;
714 	*n = p->ps_nargvstr;
715 }
716 
717 static void
718 ps_str_e(p, addr, n)
719 	struct ps_strings *p;
720 	u_long *addr;
721 	int *n;
722 {
723 	*addr = (u_long)p->ps_envstr;
724 	*n = p->ps_nenvstr;
725 }
726 
727 /*
728  * Determine if the proc indicated by p is still active.
729  * This test is not 100% foolproof in theory, but chances of
730  * being wrong are very low.
731  */
732 static int
733 proc_verify(kd, kernp, p)
734 	kvm_t *kd;
735 	u_long kernp;
736 	const struct proc *p;
737 {
738 	struct proc kernproc;
739 
740 	/*
741 	 * Just read in the whole proc.  It's not that big relative
742 	 * to the cost of the read system call.
743 	 */
744 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
745 	    sizeof(kernproc))
746 		return (0);
747 	return (p->p_pid == kernproc.p_pid &&
748 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
749 }
750 
751 static char **
752 kvm_doargv(kd, kp, nchr, info)
753 	kvm_t *kd;
754 	const struct kinfo_proc *kp;
755 	int nchr;
756 	void (*info)(struct ps_strings *, u_long *, int *);
757 {
758 	register const struct proc *p = &kp->kp_proc;
759 	register char **ap;
760 	u_long addr;
761 	int cnt;
762 	struct ps_strings arginfo;
763 
764 	/*
765 	 * Pointers are stored at the top of the user stack.
766 	 */
767 	if (p->p_stat == SZOMB ||
768 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
769 		      sizeof(arginfo)) != sizeof(arginfo))
770 		return (0);
771 
772 	(*info)(&arginfo, &addr, &cnt);
773 	if (cnt == 0)
774 		return (0);
775 	ap = kvm_argv(kd, p, addr, cnt, nchr);
776 	/*
777 	 * For live kernels, make sure this process didn't go away.
778 	 */
779 	if (ap != 0 && ISALIVE(kd) &&
780 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
781 		ap = 0;
782 	return (ap);
783 }
784 
785 /*
786  * Get the command args.  This code is now machine independent.
787  */
788 char **
789 kvm_getargv(kd, kp, nchr)
790 	kvm_t *kd;
791 	const struct kinfo_proc *kp;
792 	int nchr;
793 {
794 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
795 }
796 
797 char **
798 kvm_getenvv(kd, kp, nchr)
799 	kvm_t *kd;
800 	const struct kinfo_proc *kp;
801 	int nchr;
802 {
803 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
804 }
805 
806 /*
807  * Read from user space.  The user context is given by p.
808  */
809 ssize_t
810 kvm_uread(kd, p, uva, buf, len)
811 	kvm_t *kd;
812 	register const struct proc *p;
813 	register u_long uva;
814 	register char *buf;
815 	register size_t len;
816 {
817 	register char *cp;
818 
819 	cp = buf;
820 	while (len > 0) {
821 		register int cc;
822 		register char *dp;
823 		u_long cnt;
824 
825 		dp = _kvm_uread(kd, p, uva, &cnt);
826 		if (dp == 0) {
827 			_kvm_err(kd, 0, "invalid address (%x)", uva);
828 			return (0);
829 		}
830 		cc = MIN(cnt, len);
831 		bcopy(dp, cp, cc);
832 
833 		cp += cc;
834 		uva += cc;
835 		len -= cc;
836 	}
837 	return (ssize_t)(cp - buf);
838 }
839