xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision 74809f044aa1c34df701bf79c7bfb9794896fdf8)
1 /*	$NetBSD: kvm_proc.c,v 1.78 2008/04/28 20:23:01 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1989, 1992, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * This code is derived from software developed by the Computer Systems
37  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38  * BG 91-66 and contributed to Berkeley.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.78 2008/04/28 20:23:01 martin Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73 
74 /*
75  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
76  * users of this code, so we've factored it out into a separate module.
77  * Thus, we keep this grunge out of the other kvm applications (i.e.,
78  * most other applications are interested only in open/close/read/nlist).
79  */
80 
81 #include <sys/param.h>
82 #include <sys/user.h>
83 #include <sys/lwp.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92 
93 #include <errno.h>
94 #include <stdlib.h>
95 #include <stddef.h>
96 #include <string.h>
97 #include <unistd.h>
98 #include <nlist.h>
99 #include <kvm.h>
100 
101 #include <uvm/uvm_extern.h>
102 #include <uvm/uvm_amap.h>
103 
104 #include <sys/sysctl.h>
105 
106 #include <limits.h>
107 #include <db.h>
108 #include <paths.h>
109 
110 #include "kvm_private.h"
111 
112 /*
113  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
114  */
115 struct miniproc {
116 	struct	vmspace *p_vmspace;
117 	char	p_stat;
118 	struct	proc *p_paddr;
119 	pid_t	p_pid;
120 };
121 
122 /*
123  * Convert from struct proc and kinfo_proc{,2} to miniproc.
124  */
125 #define PTOMINI(kp, p) \
126 	do { \
127 		(p)->p_stat = (kp)->p_stat; \
128 		(p)->p_pid = (kp)->p_pid; \
129 		(p)->p_paddr = NULL; \
130 		(p)->p_vmspace = (kp)->p_vmspace; \
131 	} while (/*CONSTCOND*/0);
132 
133 #define KPTOMINI(kp, p) \
134 	do { \
135 		(p)->p_stat = (kp)->kp_proc.p_stat; \
136 		(p)->p_pid = (kp)->kp_proc.p_pid; \
137 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
138 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
139 	} while (/*CONSTCOND*/0);
140 
141 #define KP2TOMINI(kp, p) \
142 	do { \
143 		(p)->p_stat = (kp)->p_stat; \
144 		(p)->p_pid = (kp)->p_pid; \
145 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
146 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
147 	} while (/*CONSTCOND*/0);
148 
149 /*
150  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
151  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
152  * kvm(3) so dumps can be read properly.
153  *
154  * Whenever NetBSD starts exporting credentials to userland consistently (using
155  * 'struct uucred', or something) this will have to be updated again.
156  */
157 struct kvm_kauth_cred {
158 	u_int cr_refcnt;		/* reference count */
159 	uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
160 	uid_t cr_uid;			/* user id */
161 	uid_t cr_euid;			/* effective user id */
162 	uid_t cr_svuid;			/* saved effective user id */
163 	gid_t cr_gid;			/* group id */
164 	gid_t cr_egid;			/* effective group id */
165 	gid_t cr_svgid;			/* saved effective group id */
166 	u_int cr_ngroups;		/* number of groups */
167 	gid_t cr_groups[NGROUPS];	/* group memberships */
168 	specificdata_reference cr_sd;	/* specific data */
169 };
170 
171 #define KREAD(kd, addr, obj) \
172 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
173 
174 /* XXX: What uses these two functions? */
175 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
176 		    u_long *));
177 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
178 		    size_t));
179 
180 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
181 		    u_long *));
182 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
183 		    char *, size_t));
184 
185 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
186 		    int));
187 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
188 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
189 		    void (*)(struct ps_strings *, u_long *, int *)));
190 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
191 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
192 		    struct kinfo_proc *, int));
193 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
194 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
195 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
196 
197 
198 static char *
199 _kvm_ureadm(kd, p, va, cnt)
200 	kvm_t *kd;
201 	const struct miniproc *p;
202 	u_long va;
203 	u_long *cnt;
204 {
205 	u_long addr, head;
206 	u_long offset;
207 	struct vm_map_entry vme;
208 	struct vm_amap amap;
209 	struct vm_anon *anonp, anon;
210 	struct vm_page pg;
211 	u_long slot;
212 
213 	if (kd->swapspc == NULL) {
214 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
215 		if (kd->swapspc == NULL)
216 			return (NULL);
217 	}
218 
219 	/*
220 	 * Look through the address map for the memory object
221 	 * that corresponds to the given virtual address.
222 	 * The header just has the entire valid range.
223 	 */
224 	head = (u_long)&p->p_vmspace->vm_map.header;
225 	addr = head;
226 	for (;;) {
227 		if (KREAD(kd, addr, &vme))
228 			return (NULL);
229 
230 		if (va >= vme.start && va < vme.end &&
231 		    vme.aref.ar_amap != NULL)
232 			break;
233 
234 		addr = (u_long)vme.next;
235 		if (addr == head)
236 			return (NULL);
237 	}
238 
239 	/*
240 	 * we found the map entry, now to find the object...
241 	 */
242 	if (vme.aref.ar_amap == NULL)
243 		return (NULL);
244 
245 	addr = (u_long)vme.aref.ar_amap;
246 	if (KREAD(kd, addr, &amap))
247 		return (NULL);
248 
249 	offset = va - vme.start;
250 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
251 	/* sanity-check slot number */
252 	if (slot > amap.am_nslot)
253 		return (NULL);
254 
255 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
256 	if (KREAD(kd, addr, &anonp))
257 		return (NULL);
258 
259 	addr = (u_long)anonp;
260 	if (KREAD(kd, addr, &anon))
261 		return (NULL);
262 
263 	addr = (u_long)anon.an_page;
264 	if (addr) {
265 		if (KREAD(kd, addr, &pg))
266 			return (NULL);
267 
268 		if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
269 		    (off_t)pg.phys_addr) != kd->nbpg)
270 			return (NULL);
271 	} else {
272 		if (kd->swfd < 0 ||
273 		    _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
274 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
275 			return (NULL);
276 	}
277 
278 	/* Found the page. */
279 	offset %= kd->nbpg;
280 	*cnt = kd->nbpg - offset;
281 	return (&kd->swapspc[(size_t)offset]);
282 }
283 
284 char *
285 _kvm_uread(kd, p, va, cnt)
286 	kvm_t *kd;
287 	const struct proc *p;
288 	u_long va;
289 	u_long *cnt;
290 {
291 	struct miniproc mp;
292 
293 	PTOMINI(p, &mp);
294 	return (_kvm_ureadm(kd, &mp, va, cnt));
295 }
296 
297 /*
298  * Convert credentials located in kernel space address 'cred' and store
299  * them in the appropriate members of 'eproc'.
300  */
301 static int
302 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
303 {
304 	struct kvm_kauth_cred kauthcred;
305 	struct ki_pcred *pc = &eproc->e_pcred;
306 	struct ki_ucred *uc = &eproc->e_ucred;
307 
308 	if (KREAD(kd, cred, &kauthcred) != 0)
309 		return (-1);
310 
311 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
312 	pc->p_ruid = kauthcred.cr_uid;
313 	pc->p_svuid = kauthcred.cr_svuid;
314 	pc->p_rgid = kauthcred.cr_gid;
315 	pc->p_svgid = kauthcred.cr_svgid;
316 	pc->p_refcnt = kauthcred.cr_refcnt;
317 	pc->p_pad = NULL;
318 
319 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
320 	uc->cr_ref = kauthcred.cr_refcnt;
321 	uc->cr_uid = kauthcred.cr_euid;
322 	uc->cr_gid = kauthcred.cr_egid;
323 	uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
324 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
325 	memcpy(uc->cr_groups, kauthcred.cr_groups,
326 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
327 
328 	return (0);
329 }
330 
331 /*
332  * Read proc's from memory file into buffer bp, which has space to hold
333  * at most maxcnt procs.
334  */
335 static int
336 kvm_proclist(kd, what, arg, p, bp, maxcnt)
337 	kvm_t *kd;
338 	int what, arg;
339 	struct proc *p;
340 	struct kinfo_proc *bp;
341 	int maxcnt;
342 {
343 	int cnt = 0;
344 	int nlwps;
345 	struct kinfo_lwp *kl;
346 	struct eproc eproc;
347 	struct pgrp pgrp;
348 	struct session sess;
349 	struct tty tty;
350 	struct proc proc;
351 
352 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
353 		if (KREAD(kd, (u_long)p, &proc)) {
354 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
355 			return (-1);
356 		}
357 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
358 			_kvm_err(kd, kd->program,
359 			    "can't read proc credentials at %p", p);
360 			return (-1);
361 		}
362 
363 		switch (what) {
364 
365 		case KERN_PROC_PID:
366 			if (proc.p_pid != (pid_t)arg)
367 				continue;
368 			break;
369 
370 		case KERN_PROC_UID:
371 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
372 				continue;
373 			break;
374 
375 		case KERN_PROC_RUID:
376 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
377 				continue;
378 			break;
379 		}
380 		/*
381 		 * We're going to add another proc to the set.  If this
382 		 * will overflow the buffer, assume the reason is because
383 		 * nprocs (or the proc list) is corrupt and declare an error.
384 		 */
385 		if (cnt >= maxcnt) {
386 			_kvm_err(kd, kd->program, "nprocs corrupt");
387 			return (-1);
388 		}
389 		/*
390 		 * gather eproc
391 		 */
392 		eproc.e_paddr = p;
393 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
394 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
395 			    proc.p_pgrp);
396 			return (-1);
397 		}
398 		eproc.e_sess = pgrp.pg_session;
399 		eproc.e_pgid = pgrp.pg_id;
400 		eproc.e_jobc = pgrp.pg_jobc;
401 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
402 			_kvm_err(kd, kd->program, "can't read session at %p",
403 			    pgrp.pg_session);
404 			return (-1);
405 		}
406 		if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
407 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
408 				_kvm_err(kd, kd->program,
409 				    "can't read tty at %p", sess.s_ttyp);
410 				return (-1);
411 			}
412 			eproc.e_tdev = tty.t_dev;
413 			eproc.e_tsess = tty.t_session;
414 			if (tty.t_pgrp != NULL) {
415 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
416 					_kvm_err(kd, kd->program,
417 					    "can't read tpgrp at %p",
418 					    tty.t_pgrp);
419 					return (-1);
420 				}
421 				eproc.e_tpgid = pgrp.pg_id;
422 			} else
423 				eproc.e_tpgid = -1;
424 		} else
425 			eproc.e_tdev = NODEV;
426 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
427 		eproc.e_sid = sess.s_sid;
428 		if (sess.s_leader == p)
429 			eproc.e_flag |= EPROC_SLEADER;
430 		/*
431 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
432 		 * from the first available LWP.
433 		 */
434 		kl = kvm_getlwps(kd, proc.p_pid,
435 		    (u_long)PTRTOUINT64(eproc.e_paddr),
436 		    sizeof(struct kinfo_lwp), &nlwps);
437 		if (kl) {
438 			if (nlwps > 0) {
439 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
440 			}
441 		}
442 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
443 		    sizeof(eproc.e_vm));
444 
445 		eproc.e_xsize = eproc.e_xrssize = 0;
446 		eproc.e_xccount = eproc.e_xswrss = 0;
447 
448 		switch (what) {
449 
450 		case KERN_PROC_PGRP:
451 			if (eproc.e_pgid != (pid_t)arg)
452 				continue;
453 			break;
454 
455 		case KERN_PROC_TTY:
456 			if ((proc.p_lflag & PL_CONTROLT) == 0 ||
457 			    eproc.e_tdev != (dev_t)arg)
458 				continue;
459 			break;
460 		}
461 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
462 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
463 		++bp;
464 		++cnt;
465 	}
466 	return (cnt);
467 }
468 
469 /*
470  * Build proc info array by reading in proc list from a crash dump.
471  * Return number of procs read.  maxcnt is the max we will read.
472  */
473 static int
474 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
475 	kvm_t *kd;
476 	int what, arg;
477 	u_long a_allproc;
478 	u_long a_zombproc;
479 	int maxcnt;
480 {
481 	struct kinfo_proc *bp = kd->procbase;
482 	int acnt, zcnt;
483 	struct proc *p;
484 
485 	if (KREAD(kd, a_allproc, &p)) {
486 		_kvm_err(kd, kd->program, "cannot read allproc");
487 		return (-1);
488 	}
489 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
490 	if (acnt < 0)
491 		return (acnt);
492 
493 	if (KREAD(kd, a_zombproc, &p)) {
494 		_kvm_err(kd, kd->program, "cannot read zombproc");
495 		return (-1);
496 	}
497 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
498 	    maxcnt - acnt);
499 	if (zcnt < 0)
500 		zcnt = 0;
501 
502 	return (acnt + zcnt);
503 }
504 
505 struct kinfo_proc2 *
506 kvm_getproc2(kd, op, arg, esize, cnt)
507 	kvm_t *kd;
508 	int op, arg;
509 	size_t esize;
510 	int *cnt;
511 {
512 	size_t size;
513 	int mib[6], st, nprocs;
514 	struct pstats pstats;
515 
516 	if (ISSYSCTL(kd)) {
517 		size = 0;
518 		mib[0] = CTL_KERN;
519 		mib[1] = KERN_PROC2;
520 		mib[2] = op;
521 		mib[3] = arg;
522 		mib[4] = (int)esize;
523 again:
524 		mib[5] = 0;
525 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
526 		if (st == -1) {
527 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
528 			return (NULL);
529 		}
530 
531 		mib[5] = (int) (size / esize);
532 		KVM_ALLOC(kd, procbase2, size);
533 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
534 		if (st == -1) {
535 			if (errno == ENOMEM) {
536 				goto again;
537 			}
538 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
539 			return (NULL);
540 		}
541 		nprocs = (int) (size / esize);
542 	} else {
543 		char *kp2c;
544 		struct kinfo_proc *kp;
545 		struct kinfo_proc2 kp2, *kp2p;
546 		struct kinfo_lwp *kl;
547 		int i, nlwps;
548 
549 		kp = kvm_getprocs(kd, op, arg, &nprocs);
550 		if (kp == NULL)
551 			return (NULL);
552 
553 		size = nprocs * esize;
554 		KVM_ALLOC(kd, procbase2, size);
555 		kp2c = (char *)(void *)kd->procbase2;
556 		kp2p = &kp2;
557 		for (i = 0; i < nprocs; i++, kp++) {
558 			struct timeval tv;
559 
560 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
561 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
562 			    sizeof(struct kinfo_lwp), &nlwps);
563 
564 			/* We use kl[0] as the "representative" LWP */
565 			memset(kp2p, 0, sizeof(kp2));
566 			kp2p->p_forw = kl[0].l_forw;
567 			kp2p->p_back = kl[0].l_back;
568 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
569 			kp2p->p_addr = kl[0].l_addr;
570 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
571 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
572 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
573 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
574 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
575 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
576 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
577 			kp2p->p_tsess = 0;
578 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
579 			kp2p->p_ru = 0;
580 #else
581 			kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
582 #endif
583 
584 			kp2p->p_eflag = 0;
585 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
586 			kp2p->p_flag = kp->kp_proc.p_flag;
587 
588 			kp2p->p_pid = kp->kp_proc.p_pid;
589 
590 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
591 			kp2p->p_sid = kp->kp_eproc.e_sid;
592 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
593 
594 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
595 
596 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
597 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
598 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
599 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
600 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
601 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
602 
603 			/*CONSTCOND*/
604 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
605 			    MIN(sizeof(kp2p->p_groups),
606 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
607 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
608 
609 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
610 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
611 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
612 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
613 
614 			kp2p->p_estcpu = 0;
615 			bintime2timeval(&kp->kp_proc.p_rtime, &tv);
616 			kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
617 			kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
618 			kp2p->p_cpticks = kl[0].l_cpticks;
619 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
620 			kp2p->p_swtime = kl[0].l_swtime;
621 			kp2p->p_slptime = kl[0].l_slptime;
622 #if 0 /* XXX thorpej */
623 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
624 #else
625 			kp2p->p_schedflags = 0;
626 #endif
627 
628 			kp2p->p_uticks = kp->kp_proc.p_uticks;
629 			kp2p->p_sticks = kp->kp_proc.p_sticks;
630 			kp2p->p_iticks = kp->kp_proc.p_iticks;
631 
632 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
633 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
634 
635 			kp2p->p_holdcnt = kl[0].l_holdcnt;
636 
637 			memcpy(&kp2p->p_siglist,
638 			    &kp->kp_proc.p_sigpend.sp_set,
639 			    sizeof(ki_sigset_t));
640 			memset(&kp2p->p_sigmask, 0,
641 			    sizeof(ki_sigset_t));
642 			memcpy(&kp2p->p_sigignore,
643 			    &kp->kp_proc.p_sigctx.ps_sigignore,
644 			    sizeof(ki_sigset_t));
645 			memcpy(&kp2p->p_sigcatch,
646 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
647 			    sizeof(ki_sigset_t));
648 
649 			kp2p->p_stat = kl[0].l_stat;
650 			kp2p->p_priority = kl[0].l_priority;
651 			kp2p->p_usrpri = kl[0].l_priority;
652 			kp2p->p_nice = kp->kp_proc.p_nice;
653 
654 			kp2p->p_xstat = kp->kp_proc.p_xstat;
655 			kp2p->p_acflag = kp->kp_proc.p_acflag;
656 
657 			/*CONSTCOND*/
658 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
659 			    MIN(sizeof(kp2p->p_comm),
660 			    sizeof(kp->kp_proc.p_comm)));
661 
662 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
663 			    sizeof(kp2p->p_wmesg));
664 			kp2p->p_wchan = kl[0].l_wchan;
665 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
666 			    sizeof(kp2p->p_login));
667 
668 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
669 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
670 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
671 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
672 
673 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
674 
675 			kp2p->p_realflag = kp->kp_proc.p_flag;
676 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
677 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
678 			kp2p->p_realstat = kp->kp_proc.p_stat;
679 
680 			if (P_ZOMBIE(&kp->kp_proc) ||
681 			    kp->kp_proc.p_stats == NULL ||
682 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
683 				kp2p->p_uvalid = 0;
684 			} else {
685 				kp2p->p_uvalid = 1;
686 
687 				kp2p->p_ustart_sec = (u_int32_t)
688 				    pstats.p_start.tv_sec;
689 				kp2p->p_ustart_usec = (u_int32_t)
690 				    pstats.p_start.tv_usec;
691 
692 				kp2p->p_uutime_sec = (u_int32_t)
693 				    pstats.p_ru.ru_utime.tv_sec;
694 				kp2p->p_uutime_usec = (u_int32_t)
695 				    pstats.p_ru.ru_utime.tv_usec;
696 				kp2p->p_ustime_sec = (u_int32_t)
697 				    pstats.p_ru.ru_stime.tv_sec;
698 				kp2p->p_ustime_usec = (u_int32_t)
699 				    pstats.p_ru.ru_stime.tv_usec;
700 
701 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
702 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
703 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
704 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
705 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
706 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
707 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
708 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
709 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
710 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
711 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
712 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
713 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
714 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
715 
716 				kp2p->p_uctime_sec = (u_int32_t)
717 				    (pstats.p_cru.ru_utime.tv_sec +
718 				    pstats.p_cru.ru_stime.tv_sec);
719 				kp2p->p_uctime_usec = (u_int32_t)
720 				    (pstats.p_cru.ru_utime.tv_usec +
721 				    pstats.p_cru.ru_stime.tv_usec);
722 			}
723 
724 			memcpy(kp2c, &kp2, esize);
725 			kp2c += esize;
726 		}
727 	}
728 	*cnt = nprocs;
729 	return (kd->procbase2);
730 }
731 
732 struct kinfo_lwp *
733 kvm_getlwps(kd, pid, paddr, esize, cnt)
734 	kvm_t *kd;
735 	int pid;
736 	u_long paddr;
737 	size_t esize;
738 	int *cnt;
739 {
740 	size_t size;
741 	int mib[5], nlwps;
742 	ssize_t st;
743 	struct kinfo_lwp *kl;
744 
745 	if (ISSYSCTL(kd)) {
746 		size = 0;
747 		mib[0] = CTL_KERN;
748 		mib[1] = KERN_LWP;
749 		mib[2] = pid;
750 		mib[3] = (int)esize;
751 		mib[4] = 0;
752 again:
753 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
754 		if (st == -1) {
755 			switch (errno) {
756 			case ESRCH: /* Treat this as a soft error; see kvm.c */
757 				_kvm_syserr(kd, NULL, "kvm_getlwps");
758 				return NULL;
759 			default:
760 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
761 				return NULL;
762 			}
763 		}
764 		mib[4] = (int) (size / esize);
765 		KVM_ALLOC(kd, lwpbase, size);
766 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
767 		if (st == -1) {
768 			switch (errno) {
769 			case ESRCH: /* Treat this as a soft error; see kvm.c */
770 				_kvm_syserr(kd, NULL, "kvm_getlwps");
771 				return NULL;
772 			case ENOMEM:
773 				goto again;
774 			default:
775 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
776 				return NULL;
777 			}
778 		}
779 		nlwps = (int) (size / esize);
780 	} else {
781 		/* grovel through the memory image */
782 		struct proc p;
783 		struct lwp l;
784 		u_long laddr;
785 		void *back;
786 		int i;
787 
788 		st = kvm_read(kd, paddr, &p, sizeof(p));
789 		if (st == -1) {
790 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
791 			return (NULL);
792 		}
793 
794 		nlwps = p.p_nlwps;
795 		size = nlwps * sizeof(*kd->lwpbase);
796 		KVM_ALLOC(kd, lwpbase, size);
797 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
798 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
799 			st = kvm_read(kd, laddr, &l, sizeof(l));
800 			if (st == -1) {
801 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
802 				return (NULL);
803 			}
804 			kl = &kd->lwpbase[i];
805 			kl->l_laddr = laddr;
806 			kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
807 			laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
808 			st = kvm_read(kd, laddr, &back, sizeof(back));
809 			if (st == -1) {
810 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
811 				return (NULL);
812 			}
813 			kl->l_back = PTRTOUINT64(back);
814 			kl->l_addr = PTRTOUINT64(l.l_addr);
815 			kl->l_lid = l.l_lid;
816 			kl->l_flag = l.l_flag;
817 			kl->l_swtime = l.l_swtime;
818 			kl->l_slptime = l.l_slptime;
819 			kl->l_schedflags = 0; /* XXX */
820 			kl->l_holdcnt = l.l_holdcnt;
821 			kl->l_priority = l.l_priority;
822 			kl->l_usrpri = l.l_priority;
823 			kl->l_stat = l.l_stat;
824 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
825 			if (l.l_wmesg)
826 				(void)kvm_read(kd, (u_long)l.l_wmesg,
827 				    kl->l_wmesg, (size_t)WMESGLEN);
828 			kl->l_cpuid = KI_NOCPU;
829 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
830 		}
831 	}
832 
833 	*cnt = nlwps;
834 	return (kd->lwpbase);
835 }
836 
837 struct kinfo_proc *
838 kvm_getprocs(kd, op, arg, cnt)
839 	kvm_t *kd;
840 	int op, arg;
841 	int *cnt;
842 {
843 	size_t size;
844 	int mib[4], st, nprocs;
845 
846 	if (ISKMEM(kd)) {
847 		size = 0;
848 		mib[0] = CTL_KERN;
849 		mib[1] = KERN_PROC;
850 		mib[2] = op;
851 		mib[3] = arg;
852 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
853 		if (st == -1) {
854 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
855 			return (NULL);
856 		}
857 		KVM_ALLOC(kd, procbase, size);
858 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
859 		if (st == -1) {
860 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
861 			return (NULL);
862 		}
863 		if (size % sizeof(struct kinfo_proc) != 0) {
864 			_kvm_err(kd, kd->program,
865 			    "proc size mismatch (%lu total, %lu chunks)",
866 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
867 			return (NULL);
868 		}
869 		nprocs = (int) (size / sizeof(struct kinfo_proc));
870 	} else if (ISSYSCTL(kd)) {
871 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
872 		    "can't use kvm_getprocs");
873 		return (NULL);
874 	} else {
875 		struct nlist nl[4], *p;
876 
877 		(void)memset(nl, 0, sizeof(nl));
878 		nl[0].n_name = "_nprocs";
879 		nl[1].n_name = "_allproc";
880 		nl[2].n_name = "_zombproc";
881 		nl[3].n_name = NULL;
882 
883 		if (kvm_nlist(kd, nl) != 0) {
884 			for (p = nl; p->n_type != 0; ++p)
885 				continue;
886 			_kvm_err(kd, kd->program,
887 			    "%s: no such symbol", p->n_name);
888 			return (NULL);
889 		}
890 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
891 			_kvm_err(kd, kd->program, "can't read nprocs");
892 			return (NULL);
893 		}
894 		size = nprocs * sizeof(*kd->procbase);
895 		KVM_ALLOC(kd, procbase, size);
896 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
897 		    nl[2].n_value, nprocs);
898 		if (nprocs < 0)
899 			return (NULL);
900 #ifdef notdef
901 		size = nprocs * sizeof(struct kinfo_proc);
902 		(void)realloc(kd->procbase, size);
903 #endif
904 	}
905 	*cnt = nprocs;
906 	return (kd->procbase);
907 }
908 
909 void *
910 _kvm_realloc(kd, p, n)
911 	kvm_t *kd;
912 	void *p;
913 	size_t n;
914 {
915 	void *np = realloc(p, n);
916 
917 	if (np == NULL)
918 		_kvm_err(kd, kd->program, "out of memory");
919 	return (np);
920 }
921 
922 /*
923  * Read in an argument vector from the user address space of process p.
924  * addr if the user-space base address of narg null-terminated contiguous
925  * strings.  This is used to read in both the command arguments and
926  * environment strings.  Read at most maxcnt characters of strings.
927  */
928 static char **
929 kvm_argv(kd, p, addr, narg, maxcnt)
930 	kvm_t *kd;
931 	const struct miniproc *p;
932 	u_long addr;
933 	int narg;
934 	int maxcnt;
935 {
936 	char *np, *cp, *ep, *ap;
937 	u_long oaddr = (u_long)~0L;
938 	u_long len;
939 	size_t cc;
940 	char **argv;
941 
942 	/*
943 	 * Check that there aren't an unreasonable number of arguments,
944 	 * and that the address is in user space.
945 	 */
946 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
947 		return (NULL);
948 
949 	if (kd->argv == NULL) {
950 		/*
951 		 * Try to avoid reallocs.
952 		 */
953 		kd->argc = MAX(narg + 1, 32);
954 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
955 		if (kd->argv == NULL)
956 			return (NULL);
957 	} else if (narg + 1 > kd->argc) {
958 		kd->argc = MAX(2 * kd->argc, narg + 1);
959 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
960 		    sizeof(*kd->argv));
961 		if (kd->argv == NULL)
962 			return (NULL);
963 	}
964 	if (kd->argspc == NULL) {
965 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
966 		if (kd->argspc == NULL)
967 			return (NULL);
968 		kd->argspc_len = kd->nbpg;
969 	}
970 	if (kd->argbuf == NULL) {
971 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
972 		if (kd->argbuf == NULL)
973 			return (NULL);
974 	}
975 	cc = sizeof(char *) * narg;
976 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
977 		return (NULL);
978 	ap = np = kd->argspc;
979 	argv = kd->argv;
980 	len = 0;
981 	/*
982 	 * Loop over pages, filling in the argument vector.
983 	 */
984 	while (argv < kd->argv + narg && *argv != NULL) {
985 		addr = (u_long)*argv & ~(kd->nbpg - 1);
986 		if (addr != oaddr) {
987 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
988 			    (size_t)kd->nbpg) != kd->nbpg)
989 				return (NULL);
990 			oaddr = addr;
991 		}
992 		addr = (u_long)*argv & (kd->nbpg - 1);
993 		cp = kd->argbuf + (size_t)addr;
994 		cc = kd->nbpg - (size_t)addr;
995 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
996 			cc = (size_t)(maxcnt - len);
997 		ep = memchr(cp, '\0', cc);
998 		if (ep != NULL)
999 			cc = ep - cp + 1;
1000 		if (len + cc > kd->argspc_len) {
1001 			ptrdiff_t off;
1002 			char **pp;
1003 			char *op = kd->argspc;
1004 
1005 			kd->argspc_len *= 2;
1006 			kd->argspc = _kvm_realloc(kd, kd->argspc,
1007 			    kd->argspc_len);
1008 			if (kd->argspc == NULL)
1009 				return (NULL);
1010 			/*
1011 			 * Adjust argv pointers in case realloc moved
1012 			 * the string space.
1013 			 */
1014 			off = kd->argspc - op;
1015 			for (pp = kd->argv; pp < argv; pp++)
1016 				*pp += off;
1017 			ap += off;
1018 			np += off;
1019 		}
1020 		memcpy(np, cp, cc);
1021 		np += cc;
1022 		len += cc;
1023 		if (ep != NULL) {
1024 			*argv++ = ap;
1025 			ap = np;
1026 		} else
1027 			*argv += cc;
1028 		if (maxcnt > 0 && len >= maxcnt) {
1029 			/*
1030 			 * We're stopping prematurely.  Terminate the
1031 			 * current string.
1032 			 */
1033 			if (ep == NULL) {
1034 				*np = '\0';
1035 				*argv++ = ap;
1036 			}
1037 			break;
1038 		}
1039 	}
1040 	/* Make sure argv is terminated. */
1041 	*argv = NULL;
1042 	return (kd->argv);
1043 }
1044 
1045 static void
1046 ps_str_a(p, addr, n)
1047 	struct ps_strings *p;
1048 	u_long *addr;
1049 	int *n;
1050 {
1051 
1052 	*addr = (u_long)p->ps_argvstr;
1053 	*n = p->ps_nargvstr;
1054 }
1055 
1056 static void
1057 ps_str_e(p, addr, n)
1058 	struct ps_strings *p;
1059 	u_long *addr;
1060 	int *n;
1061 {
1062 
1063 	*addr = (u_long)p->ps_envstr;
1064 	*n = p->ps_nenvstr;
1065 }
1066 
1067 /*
1068  * Determine if the proc indicated by p is still active.
1069  * This test is not 100% foolproof in theory, but chances of
1070  * being wrong are very low.
1071  */
1072 static int
1073 proc_verify(kd, kernp, p)
1074 	kvm_t *kd;
1075 	u_long kernp;
1076 	const struct miniproc *p;
1077 {
1078 	struct proc kernproc;
1079 
1080 	/*
1081 	 * Just read in the whole proc.  It's not that big relative
1082 	 * to the cost of the read system call.
1083 	 */
1084 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1085 	    sizeof(kernproc))
1086 		return (0);
1087 	return (p->p_pid == kernproc.p_pid &&
1088 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1089 }
1090 
1091 static char **
1092 kvm_doargv(kd, p, nchr, info)
1093 	kvm_t *kd;
1094 	const struct miniproc *p;
1095 	int nchr;
1096 	void (*info)(struct ps_strings *, u_long *, int *);
1097 {
1098 	char **ap;
1099 	u_long addr;
1100 	int cnt;
1101 	struct ps_strings arginfo;
1102 
1103 	/*
1104 	 * Pointers are stored at the top of the user stack.
1105 	 */
1106 	if (p->p_stat == SZOMB)
1107 		return (NULL);
1108 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1109 	    (void *)&arginfo, sizeof(arginfo));
1110 	if (cnt != sizeof(arginfo))
1111 		return (NULL);
1112 
1113 	(*info)(&arginfo, &addr, &cnt);
1114 	if (cnt == 0)
1115 		return (NULL);
1116 	ap = kvm_argv(kd, p, addr, cnt, nchr);
1117 	/*
1118 	 * For live kernels, make sure this process didn't go away.
1119 	 */
1120 	if (ap != NULL && ISALIVE(kd) &&
1121 	    !proc_verify(kd, (u_long)p->p_paddr, p))
1122 		ap = NULL;
1123 	return (ap);
1124 }
1125 
1126 /*
1127  * Get the command args.  This code is now machine independent.
1128  */
1129 char **
1130 kvm_getargv(kd, kp, nchr)
1131 	kvm_t *kd;
1132 	const struct kinfo_proc *kp;
1133 	int nchr;
1134 {
1135 	struct miniproc p;
1136 
1137 	KPTOMINI(kp, &p);
1138 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1139 }
1140 
1141 char **
1142 kvm_getenvv(kd, kp, nchr)
1143 	kvm_t *kd;
1144 	const struct kinfo_proc *kp;
1145 	int nchr;
1146 {
1147 	struct miniproc p;
1148 
1149 	KPTOMINI(kp, &p);
1150 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1151 }
1152 
1153 static char **
1154 kvm_doargv2(kd, pid, type, nchr)
1155 	kvm_t *kd;
1156 	pid_t pid;
1157 	int type;
1158 	int nchr;
1159 {
1160 	size_t bufs;
1161 	int narg, mib[4];
1162 	size_t newargspc_len;
1163 	char **ap, *bp, *endp;
1164 
1165 	/*
1166 	 * Check that there aren't an unreasonable number of arguments.
1167 	 */
1168 	if (nchr > ARG_MAX)
1169 		return (NULL);
1170 
1171 	if (nchr == 0)
1172 		nchr = ARG_MAX;
1173 
1174 	/* Get number of strings in argv */
1175 	mib[0] = CTL_KERN;
1176 	mib[1] = KERN_PROC_ARGS;
1177 	mib[2] = pid;
1178 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1179 	bufs = sizeof(narg);
1180 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1181 		return (NULL);
1182 
1183 	if (kd->argv == NULL) {
1184 		/*
1185 		 * Try to avoid reallocs.
1186 		 */
1187 		kd->argc = MAX(narg + 1, 32);
1188 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1189 		if (kd->argv == NULL)
1190 			return (NULL);
1191 	} else if (narg + 1 > kd->argc) {
1192 		kd->argc = MAX(2 * kd->argc, narg + 1);
1193 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1194 		    sizeof(*kd->argv));
1195 		if (kd->argv == NULL)
1196 			return (NULL);
1197 	}
1198 
1199 	newargspc_len = MIN(nchr, ARG_MAX);
1200 	KVM_ALLOC(kd, argspc, newargspc_len);
1201 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
1202 
1203 	mib[0] = CTL_KERN;
1204 	mib[1] = KERN_PROC_ARGS;
1205 	mib[2] = pid;
1206 	mib[3] = type;
1207 	bufs = kd->argspc_len;
1208 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1209 		return (NULL);
1210 
1211 	bp = kd->argspc;
1212 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
1213 	ap = kd->argv;
1214 	endp = bp + MIN(nchr, bufs);
1215 
1216 	while (bp < endp) {
1217 		*ap++ = bp;
1218 		/*
1219 		 * XXX: don't need following anymore, or stick check
1220 		 * for max argc in above while loop?
1221 		 */
1222 		if (ap >= kd->argv + kd->argc) {
1223 			kd->argc *= 2;
1224 			kd->argv = _kvm_realloc(kd, kd->argv,
1225 			    kd->argc * sizeof(*kd->argv));
1226 			ap = kd->argv;
1227 		}
1228 		bp += strlen(bp) + 1;
1229 	}
1230 	*ap = NULL;
1231 
1232 	return (kd->argv);
1233 }
1234 
1235 char **
1236 kvm_getargv2(kd, kp, nchr)
1237 	kvm_t *kd;
1238 	const struct kinfo_proc2 *kp;
1239 	int nchr;
1240 {
1241 
1242 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1243 }
1244 
1245 char **
1246 kvm_getenvv2(kd, kp, nchr)
1247 	kvm_t *kd;
1248 	const struct kinfo_proc2 *kp;
1249 	int nchr;
1250 {
1251 
1252 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1253 }
1254 
1255 /*
1256  * Read from user space.  The user context is given by p.
1257  */
1258 static ssize_t
1259 kvm_ureadm(kd, p, uva, buf, len)
1260 	kvm_t *kd;
1261 	const struct miniproc *p;
1262 	u_long uva;
1263 	char *buf;
1264 	size_t len;
1265 {
1266 	char *cp;
1267 
1268 	cp = buf;
1269 	while (len > 0) {
1270 		size_t cc;
1271 		char *dp;
1272 		u_long cnt;
1273 
1274 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1275 		if (dp == NULL) {
1276 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1277 			return (0);
1278 		}
1279 		cc = (size_t)MIN(cnt, len);
1280 		memcpy(cp, dp, cc);
1281 		cp += cc;
1282 		uva += cc;
1283 		len -= cc;
1284 	}
1285 	return (ssize_t)(cp - buf);
1286 }
1287 
1288 ssize_t
1289 kvm_uread(kd, p, uva, buf, len)
1290 	kvm_t *kd;
1291 	const struct proc *p;
1292 	u_long uva;
1293 	char *buf;
1294 	size_t len;
1295 {
1296 	struct miniproc mp;
1297 
1298 	PTOMINI(p, &mp);
1299 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1300 }
1301