1 /* $NetBSD: kvm_proc.c,v 1.78 2008/04/28 20:23:01 martin Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1989, 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software developed by the Computer Systems 37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 38 * BG 91-66 and contributed to Berkeley. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 */ 64 65 #include <sys/cdefs.h> 66 #if defined(LIBC_SCCS) && !defined(lint) 67 #if 0 68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 69 #else 70 __RCSID("$NetBSD: kvm_proc.c,v 1.78 2008/04/28 20:23:01 martin Exp $"); 71 #endif 72 #endif /* LIBC_SCCS and not lint */ 73 74 /* 75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 76 * users of this code, so we've factored it out into a separate module. 77 * Thus, we keep this grunge out of the other kvm applications (i.e., 78 * most other applications are interested only in open/close/read/nlist). 79 */ 80 81 #include <sys/param.h> 82 #include <sys/user.h> 83 #include <sys/lwp.h> 84 #include <sys/proc.h> 85 #include <sys/exec.h> 86 #include <sys/stat.h> 87 #include <sys/ioctl.h> 88 #include <sys/tty.h> 89 #include <sys/resourcevar.h> 90 #include <sys/mutex.h> 91 #include <sys/specificdata.h> 92 93 #include <errno.h> 94 #include <stdlib.h> 95 #include <stddef.h> 96 #include <string.h> 97 #include <unistd.h> 98 #include <nlist.h> 99 #include <kvm.h> 100 101 #include <uvm/uvm_extern.h> 102 #include <uvm/uvm_amap.h> 103 104 #include <sys/sysctl.h> 105 106 #include <limits.h> 107 #include <db.h> 108 #include <paths.h> 109 110 #include "kvm_private.h" 111 112 /* 113 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 114 */ 115 struct miniproc { 116 struct vmspace *p_vmspace; 117 char p_stat; 118 struct proc *p_paddr; 119 pid_t p_pid; 120 }; 121 122 /* 123 * Convert from struct proc and kinfo_proc{,2} to miniproc. 124 */ 125 #define PTOMINI(kp, p) \ 126 do { \ 127 (p)->p_stat = (kp)->p_stat; \ 128 (p)->p_pid = (kp)->p_pid; \ 129 (p)->p_paddr = NULL; \ 130 (p)->p_vmspace = (kp)->p_vmspace; \ 131 } while (/*CONSTCOND*/0); 132 133 #define KPTOMINI(kp, p) \ 134 do { \ 135 (p)->p_stat = (kp)->kp_proc.p_stat; \ 136 (p)->p_pid = (kp)->kp_proc.p_pid; \ 137 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 138 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 139 } while (/*CONSTCOND*/0); 140 141 #define KP2TOMINI(kp, p) \ 142 do { \ 143 (p)->p_stat = (kp)->p_stat; \ 144 (p)->p_pid = (kp)->p_pid; \ 145 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 146 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 147 } while (/*CONSTCOND*/0); 148 149 /* 150 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, 151 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to 152 * kvm(3) so dumps can be read properly. 153 * 154 * Whenever NetBSD starts exporting credentials to userland consistently (using 155 * 'struct uucred', or something) this will have to be updated again. 156 */ 157 struct kvm_kauth_cred { 158 u_int cr_refcnt; /* reference count */ 159 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)]; 160 uid_t cr_uid; /* user id */ 161 uid_t cr_euid; /* effective user id */ 162 uid_t cr_svuid; /* saved effective user id */ 163 gid_t cr_gid; /* group id */ 164 gid_t cr_egid; /* effective group id */ 165 gid_t cr_svgid; /* saved effective group id */ 166 u_int cr_ngroups; /* number of groups */ 167 gid_t cr_groups[NGROUPS]; /* group memberships */ 168 specificdata_reference cr_sd; /* specific data */ 169 }; 170 171 #define KREAD(kd, addr, obj) \ 172 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 173 174 /* XXX: What uses these two functions? */ 175 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 176 u_long *)); 177 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 178 size_t)); 179 180 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 181 u_long *)); 182 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 183 char *, size_t)); 184 185 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 186 int)); 187 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 188 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 189 void (*)(struct ps_strings *, u_long *, int *))); 190 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 191 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 192 struct kinfo_proc *, int)); 193 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 194 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 195 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 196 197 198 static char * 199 _kvm_ureadm(kd, p, va, cnt) 200 kvm_t *kd; 201 const struct miniproc *p; 202 u_long va; 203 u_long *cnt; 204 { 205 u_long addr, head; 206 u_long offset; 207 struct vm_map_entry vme; 208 struct vm_amap amap; 209 struct vm_anon *anonp, anon; 210 struct vm_page pg; 211 u_long slot; 212 213 if (kd->swapspc == NULL) { 214 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 215 if (kd->swapspc == NULL) 216 return (NULL); 217 } 218 219 /* 220 * Look through the address map for the memory object 221 * that corresponds to the given virtual address. 222 * The header just has the entire valid range. 223 */ 224 head = (u_long)&p->p_vmspace->vm_map.header; 225 addr = head; 226 for (;;) { 227 if (KREAD(kd, addr, &vme)) 228 return (NULL); 229 230 if (va >= vme.start && va < vme.end && 231 vme.aref.ar_amap != NULL) 232 break; 233 234 addr = (u_long)vme.next; 235 if (addr == head) 236 return (NULL); 237 } 238 239 /* 240 * we found the map entry, now to find the object... 241 */ 242 if (vme.aref.ar_amap == NULL) 243 return (NULL); 244 245 addr = (u_long)vme.aref.ar_amap; 246 if (KREAD(kd, addr, &amap)) 247 return (NULL); 248 249 offset = va - vme.start; 250 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 251 /* sanity-check slot number */ 252 if (slot > amap.am_nslot) 253 return (NULL); 254 255 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 256 if (KREAD(kd, addr, &anonp)) 257 return (NULL); 258 259 addr = (u_long)anonp; 260 if (KREAD(kd, addr, &anon)) 261 return (NULL); 262 263 addr = (u_long)anon.an_page; 264 if (addr) { 265 if (KREAD(kd, addr, &pg)) 266 return (NULL); 267 268 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 269 (off_t)pg.phys_addr) != kd->nbpg) 270 return (NULL); 271 } else { 272 if (kd->swfd < 0 || 273 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg, 274 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 275 return (NULL); 276 } 277 278 /* Found the page. */ 279 offset %= kd->nbpg; 280 *cnt = kd->nbpg - offset; 281 return (&kd->swapspc[(size_t)offset]); 282 } 283 284 char * 285 _kvm_uread(kd, p, va, cnt) 286 kvm_t *kd; 287 const struct proc *p; 288 u_long va; 289 u_long *cnt; 290 { 291 struct miniproc mp; 292 293 PTOMINI(p, &mp); 294 return (_kvm_ureadm(kd, &mp, va, cnt)); 295 } 296 297 /* 298 * Convert credentials located in kernel space address 'cred' and store 299 * them in the appropriate members of 'eproc'. 300 */ 301 static int 302 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) 303 { 304 struct kvm_kauth_cred kauthcred; 305 struct ki_pcred *pc = &eproc->e_pcred; 306 struct ki_ucred *uc = &eproc->e_ucred; 307 308 if (KREAD(kd, cred, &kauthcred) != 0) 309 return (-1); 310 311 /* inlined version of kauth_cred_to_pcred, see kauth(9). */ 312 pc->p_ruid = kauthcred.cr_uid; 313 pc->p_svuid = kauthcred.cr_svuid; 314 pc->p_rgid = kauthcred.cr_gid; 315 pc->p_svgid = kauthcred.cr_svgid; 316 pc->p_refcnt = kauthcred.cr_refcnt; 317 pc->p_pad = NULL; 318 319 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ 320 uc->cr_ref = kauthcred.cr_refcnt; 321 uc->cr_uid = kauthcred.cr_euid; 322 uc->cr_gid = kauthcred.cr_egid; 323 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups, 324 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); 325 memcpy(uc->cr_groups, kauthcred.cr_groups, 326 uc->cr_ngroups * sizeof(uc->cr_groups[0])); 327 328 return (0); 329 } 330 331 /* 332 * Read proc's from memory file into buffer bp, which has space to hold 333 * at most maxcnt procs. 334 */ 335 static int 336 kvm_proclist(kd, what, arg, p, bp, maxcnt) 337 kvm_t *kd; 338 int what, arg; 339 struct proc *p; 340 struct kinfo_proc *bp; 341 int maxcnt; 342 { 343 int cnt = 0; 344 int nlwps; 345 struct kinfo_lwp *kl; 346 struct eproc eproc; 347 struct pgrp pgrp; 348 struct session sess; 349 struct tty tty; 350 struct proc proc; 351 352 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 353 if (KREAD(kd, (u_long)p, &proc)) { 354 _kvm_err(kd, kd->program, "can't read proc at %p", p); 355 return (-1); 356 } 357 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { 358 _kvm_err(kd, kd->program, 359 "can't read proc credentials at %p", p); 360 return (-1); 361 } 362 363 switch (what) { 364 365 case KERN_PROC_PID: 366 if (proc.p_pid != (pid_t)arg) 367 continue; 368 break; 369 370 case KERN_PROC_UID: 371 if (eproc.e_ucred.cr_uid != (uid_t)arg) 372 continue; 373 break; 374 375 case KERN_PROC_RUID: 376 if (eproc.e_pcred.p_ruid != (uid_t)arg) 377 continue; 378 break; 379 } 380 /* 381 * We're going to add another proc to the set. If this 382 * will overflow the buffer, assume the reason is because 383 * nprocs (or the proc list) is corrupt and declare an error. 384 */ 385 if (cnt >= maxcnt) { 386 _kvm_err(kd, kd->program, "nprocs corrupt"); 387 return (-1); 388 } 389 /* 390 * gather eproc 391 */ 392 eproc.e_paddr = p; 393 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 394 _kvm_err(kd, kd->program, "can't read pgrp at %p", 395 proc.p_pgrp); 396 return (-1); 397 } 398 eproc.e_sess = pgrp.pg_session; 399 eproc.e_pgid = pgrp.pg_id; 400 eproc.e_jobc = pgrp.pg_jobc; 401 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 402 _kvm_err(kd, kd->program, "can't read session at %p", 403 pgrp.pg_session); 404 return (-1); 405 } 406 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { 407 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 408 _kvm_err(kd, kd->program, 409 "can't read tty at %p", sess.s_ttyp); 410 return (-1); 411 } 412 eproc.e_tdev = tty.t_dev; 413 eproc.e_tsess = tty.t_session; 414 if (tty.t_pgrp != NULL) { 415 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 416 _kvm_err(kd, kd->program, 417 "can't read tpgrp at %p", 418 tty.t_pgrp); 419 return (-1); 420 } 421 eproc.e_tpgid = pgrp.pg_id; 422 } else 423 eproc.e_tpgid = -1; 424 } else 425 eproc.e_tdev = NODEV; 426 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 427 eproc.e_sid = sess.s_sid; 428 if (sess.s_leader == p) 429 eproc.e_flag |= EPROC_SLEADER; 430 /* 431 * Fill in the old-style proc.p_wmesg by copying the wmesg 432 * from the first available LWP. 433 */ 434 kl = kvm_getlwps(kd, proc.p_pid, 435 (u_long)PTRTOUINT64(eproc.e_paddr), 436 sizeof(struct kinfo_lwp), &nlwps); 437 if (kl) { 438 if (nlwps > 0) { 439 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 440 } 441 } 442 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 443 sizeof(eproc.e_vm)); 444 445 eproc.e_xsize = eproc.e_xrssize = 0; 446 eproc.e_xccount = eproc.e_xswrss = 0; 447 448 switch (what) { 449 450 case KERN_PROC_PGRP: 451 if (eproc.e_pgid != (pid_t)arg) 452 continue; 453 break; 454 455 case KERN_PROC_TTY: 456 if ((proc.p_lflag & PL_CONTROLT) == 0 || 457 eproc.e_tdev != (dev_t)arg) 458 continue; 459 break; 460 } 461 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 462 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 463 ++bp; 464 ++cnt; 465 } 466 return (cnt); 467 } 468 469 /* 470 * Build proc info array by reading in proc list from a crash dump. 471 * Return number of procs read. maxcnt is the max we will read. 472 */ 473 static int 474 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 475 kvm_t *kd; 476 int what, arg; 477 u_long a_allproc; 478 u_long a_zombproc; 479 int maxcnt; 480 { 481 struct kinfo_proc *bp = kd->procbase; 482 int acnt, zcnt; 483 struct proc *p; 484 485 if (KREAD(kd, a_allproc, &p)) { 486 _kvm_err(kd, kd->program, "cannot read allproc"); 487 return (-1); 488 } 489 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 490 if (acnt < 0) 491 return (acnt); 492 493 if (KREAD(kd, a_zombproc, &p)) { 494 _kvm_err(kd, kd->program, "cannot read zombproc"); 495 return (-1); 496 } 497 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 498 maxcnt - acnt); 499 if (zcnt < 0) 500 zcnt = 0; 501 502 return (acnt + zcnt); 503 } 504 505 struct kinfo_proc2 * 506 kvm_getproc2(kd, op, arg, esize, cnt) 507 kvm_t *kd; 508 int op, arg; 509 size_t esize; 510 int *cnt; 511 { 512 size_t size; 513 int mib[6], st, nprocs; 514 struct pstats pstats; 515 516 if (ISSYSCTL(kd)) { 517 size = 0; 518 mib[0] = CTL_KERN; 519 mib[1] = KERN_PROC2; 520 mib[2] = op; 521 mib[3] = arg; 522 mib[4] = (int)esize; 523 again: 524 mib[5] = 0; 525 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 526 if (st == -1) { 527 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 528 return (NULL); 529 } 530 531 mib[5] = (int) (size / esize); 532 KVM_ALLOC(kd, procbase2, size); 533 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 534 if (st == -1) { 535 if (errno == ENOMEM) { 536 goto again; 537 } 538 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 539 return (NULL); 540 } 541 nprocs = (int) (size / esize); 542 } else { 543 char *kp2c; 544 struct kinfo_proc *kp; 545 struct kinfo_proc2 kp2, *kp2p; 546 struct kinfo_lwp *kl; 547 int i, nlwps; 548 549 kp = kvm_getprocs(kd, op, arg, &nprocs); 550 if (kp == NULL) 551 return (NULL); 552 553 size = nprocs * esize; 554 KVM_ALLOC(kd, procbase2, size); 555 kp2c = (char *)(void *)kd->procbase2; 556 kp2p = &kp2; 557 for (i = 0; i < nprocs; i++, kp++) { 558 struct timeval tv; 559 560 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 561 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 562 sizeof(struct kinfo_lwp), &nlwps); 563 564 /* We use kl[0] as the "representative" LWP */ 565 memset(kp2p, 0, sizeof(kp2)); 566 kp2p->p_forw = kl[0].l_forw; 567 kp2p->p_back = kl[0].l_back; 568 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 569 kp2p->p_addr = kl[0].l_addr; 570 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 571 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 572 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 573 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 574 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 575 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 576 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 577 kp2p->p_tsess = 0; 578 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */ 579 kp2p->p_ru = 0; 580 #else 581 kp2p->p_ru = PTRTOUINT64(pstats.p_ru); 582 #endif 583 584 kp2p->p_eflag = 0; 585 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 586 kp2p->p_flag = kp->kp_proc.p_flag; 587 588 kp2p->p_pid = kp->kp_proc.p_pid; 589 590 kp2p->p_ppid = kp->kp_eproc.e_ppid; 591 kp2p->p_sid = kp->kp_eproc.e_sid; 592 kp2p->p__pgid = kp->kp_eproc.e_pgid; 593 594 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 595 596 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 597 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 598 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 599 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 600 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 601 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 602 603 /*CONSTCOND*/ 604 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 605 MIN(sizeof(kp2p->p_groups), 606 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 607 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 608 609 kp2p->p_jobc = kp->kp_eproc.e_jobc; 610 kp2p->p_tdev = kp->kp_eproc.e_tdev; 611 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 612 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 613 614 kp2p->p_estcpu = 0; 615 bintime2timeval(&kp->kp_proc.p_rtime, &tv); 616 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec; 617 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec; 618 kp2p->p_cpticks = kl[0].l_cpticks; 619 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 620 kp2p->p_swtime = kl[0].l_swtime; 621 kp2p->p_slptime = kl[0].l_slptime; 622 #if 0 /* XXX thorpej */ 623 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 624 #else 625 kp2p->p_schedflags = 0; 626 #endif 627 628 kp2p->p_uticks = kp->kp_proc.p_uticks; 629 kp2p->p_sticks = kp->kp_proc.p_sticks; 630 kp2p->p_iticks = kp->kp_proc.p_iticks; 631 632 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 633 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 634 635 kp2p->p_holdcnt = kl[0].l_holdcnt; 636 637 memcpy(&kp2p->p_siglist, 638 &kp->kp_proc.p_sigpend.sp_set, 639 sizeof(ki_sigset_t)); 640 memset(&kp2p->p_sigmask, 0, 641 sizeof(ki_sigset_t)); 642 memcpy(&kp2p->p_sigignore, 643 &kp->kp_proc.p_sigctx.ps_sigignore, 644 sizeof(ki_sigset_t)); 645 memcpy(&kp2p->p_sigcatch, 646 &kp->kp_proc.p_sigctx.ps_sigcatch, 647 sizeof(ki_sigset_t)); 648 649 kp2p->p_stat = kl[0].l_stat; 650 kp2p->p_priority = kl[0].l_priority; 651 kp2p->p_usrpri = kl[0].l_priority; 652 kp2p->p_nice = kp->kp_proc.p_nice; 653 654 kp2p->p_xstat = kp->kp_proc.p_xstat; 655 kp2p->p_acflag = kp->kp_proc.p_acflag; 656 657 /*CONSTCOND*/ 658 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 659 MIN(sizeof(kp2p->p_comm), 660 sizeof(kp->kp_proc.p_comm))); 661 662 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 663 sizeof(kp2p->p_wmesg)); 664 kp2p->p_wchan = kl[0].l_wchan; 665 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 666 sizeof(kp2p->p_login)); 667 668 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 669 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 670 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 671 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 672 673 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 674 675 kp2p->p_realflag = kp->kp_proc.p_flag; 676 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 677 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 678 kp2p->p_realstat = kp->kp_proc.p_stat; 679 680 if (P_ZOMBIE(&kp->kp_proc) || 681 kp->kp_proc.p_stats == NULL || 682 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 683 kp2p->p_uvalid = 0; 684 } else { 685 kp2p->p_uvalid = 1; 686 687 kp2p->p_ustart_sec = (u_int32_t) 688 pstats.p_start.tv_sec; 689 kp2p->p_ustart_usec = (u_int32_t) 690 pstats.p_start.tv_usec; 691 692 kp2p->p_uutime_sec = (u_int32_t) 693 pstats.p_ru.ru_utime.tv_sec; 694 kp2p->p_uutime_usec = (u_int32_t) 695 pstats.p_ru.ru_utime.tv_usec; 696 kp2p->p_ustime_sec = (u_int32_t) 697 pstats.p_ru.ru_stime.tv_sec; 698 kp2p->p_ustime_usec = (u_int32_t) 699 pstats.p_ru.ru_stime.tv_usec; 700 701 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 702 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 703 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 704 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 705 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 706 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 707 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 708 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 709 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 710 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 711 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 712 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 713 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 714 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 715 716 kp2p->p_uctime_sec = (u_int32_t) 717 (pstats.p_cru.ru_utime.tv_sec + 718 pstats.p_cru.ru_stime.tv_sec); 719 kp2p->p_uctime_usec = (u_int32_t) 720 (pstats.p_cru.ru_utime.tv_usec + 721 pstats.p_cru.ru_stime.tv_usec); 722 } 723 724 memcpy(kp2c, &kp2, esize); 725 kp2c += esize; 726 } 727 } 728 *cnt = nprocs; 729 return (kd->procbase2); 730 } 731 732 struct kinfo_lwp * 733 kvm_getlwps(kd, pid, paddr, esize, cnt) 734 kvm_t *kd; 735 int pid; 736 u_long paddr; 737 size_t esize; 738 int *cnt; 739 { 740 size_t size; 741 int mib[5], nlwps; 742 ssize_t st; 743 struct kinfo_lwp *kl; 744 745 if (ISSYSCTL(kd)) { 746 size = 0; 747 mib[0] = CTL_KERN; 748 mib[1] = KERN_LWP; 749 mib[2] = pid; 750 mib[3] = (int)esize; 751 mib[4] = 0; 752 again: 753 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 754 if (st == -1) { 755 switch (errno) { 756 case ESRCH: /* Treat this as a soft error; see kvm.c */ 757 _kvm_syserr(kd, NULL, "kvm_getlwps"); 758 return NULL; 759 default: 760 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 761 return NULL; 762 } 763 } 764 mib[4] = (int) (size / esize); 765 KVM_ALLOC(kd, lwpbase, size); 766 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 767 if (st == -1) { 768 switch (errno) { 769 case ESRCH: /* Treat this as a soft error; see kvm.c */ 770 _kvm_syserr(kd, NULL, "kvm_getlwps"); 771 return NULL; 772 case ENOMEM: 773 goto again; 774 default: 775 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 776 return NULL; 777 } 778 } 779 nlwps = (int) (size / esize); 780 } else { 781 /* grovel through the memory image */ 782 struct proc p; 783 struct lwp l; 784 u_long laddr; 785 void *back; 786 int i; 787 788 st = kvm_read(kd, paddr, &p, sizeof(p)); 789 if (st == -1) { 790 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 791 return (NULL); 792 } 793 794 nlwps = p.p_nlwps; 795 size = nlwps * sizeof(*kd->lwpbase); 796 KVM_ALLOC(kd, lwpbase, size); 797 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 798 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 799 st = kvm_read(kd, laddr, &l, sizeof(l)); 800 if (st == -1) { 801 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 802 return (NULL); 803 } 804 kl = &kd->lwpbase[i]; 805 kl->l_laddr = laddr; 806 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next); 807 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev); 808 st = kvm_read(kd, laddr, &back, sizeof(back)); 809 if (st == -1) { 810 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 811 return (NULL); 812 } 813 kl->l_back = PTRTOUINT64(back); 814 kl->l_addr = PTRTOUINT64(l.l_addr); 815 kl->l_lid = l.l_lid; 816 kl->l_flag = l.l_flag; 817 kl->l_swtime = l.l_swtime; 818 kl->l_slptime = l.l_slptime; 819 kl->l_schedflags = 0; /* XXX */ 820 kl->l_holdcnt = l.l_holdcnt; 821 kl->l_priority = l.l_priority; 822 kl->l_usrpri = l.l_priority; 823 kl->l_stat = l.l_stat; 824 kl->l_wchan = PTRTOUINT64(l.l_wchan); 825 if (l.l_wmesg) 826 (void)kvm_read(kd, (u_long)l.l_wmesg, 827 kl->l_wmesg, (size_t)WMESGLEN); 828 kl->l_cpuid = KI_NOCPU; 829 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 830 } 831 } 832 833 *cnt = nlwps; 834 return (kd->lwpbase); 835 } 836 837 struct kinfo_proc * 838 kvm_getprocs(kd, op, arg, cnt) 839 kvm_t *kd; 840 int op, arg; 841 int *cnt; 842 { 843 size_t size; 844 int mib[4], st, nprocs; 845 846 if (ISKMEM(kd)) { 847 size = 0; 848 mib[0] = CTL_KERN; 849 mib[1] = KERN_PROC; 850 mib[2] = op; 851 mib[3] = arg; 852 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 853 if (st == -1) { 854 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 855 return (NULL); 856 } 857 KVM_ALLOC(kd, procbase, size); 858 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 859 if (st == -1) { 860 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 861 return (NULL); 862 } 863 if (size % sizeof(struct kinfo_proc) != 0) { 864 _kvm_err(kd, kd->program, 865 "proc size mismatch (%lu total, %lu chunks)", 866 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 867 return (NULL); 868 } 869 nprocs = (int) (size / sizeof(struct kinfo_proc)); 870 } else if (ISSYSCTL(kd)) { 871 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 872 "can't use kvm_getprocs"); 873 return (NULL); 874 } else { 875 struct nlist nl[4], *p; 876 877 (void)memset(nl, 0, sizeof(nl)); 878 nl[0].n_name = "_nprocs"; 879 nl[1].n_name = "_allproc"; 880 nl[2].n_name = "_zombproc"; 881 nl[3].n_name = NULL; 882 883 if (kvm_nlist(kd, nl) != 0) { 884 for (p = nl; p->n_type != 0; ++p) 885 continue; 886 _kvm_err(kd, kd->program, 887 "%s: no such symbol", p->n_name); 888 return (NULL); 889 } 890 if (KREAD(kd, nl[0].n_value, &nprocs)) { 891 _kvm_err(kd, kd->program, "can't read nprocs"); 892 return (NULL); 893 } 894 size = nprocs * sizeof(*kd->procbase); 895 KVM_ALLOC(kd, procbase, size); 896 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 897 nl[2].n_value, nprocs); 898 if (nprocs < 0) 899 return (NULL); 900 #ifdef notdef 901 size = nprocs * sizeof(struct kinfo_proc); 902 (void)realloc(kd->procbase, size); 903 #endif 904 } 905 *cnt = nprocs; 906 return (kd->procbase); 907 } 908 909 void * 910 _kvm_realloc(kd, p, n) 911 kvm_t *kd; 912 void *p; 913 size_t n; 914 { 915 void *np = realloc(p, n); 916 917 if (np == NULL) 918 _kvm_err(kd, kd->program, "out of memory"); 919 return (np); 920 } 921 922 /* 923 * Read in an argument vector from the user address space of process p. 924 * addr if the user-space base address of narg null-terminated contiguous 925 * strings. This is used to read in both the command arguments and 926 * environment strings. Read at most maxcnt characters of strings. 927 */ 928 static char ** 929 kvm_argv(kd, p, addr, narg, maxcnt) 930 kvm_t *kd; 931 const struct miniproc *p; 932 u_long addr; 933 int narg; 934 int maxcnt; 935 { 936 char *np, *cp, *ep, *ap; 937 u_long oaddr = (u_long)~0L; 938 u_long len; 939 size_t cc; 940 char **argv; 941 942 /* 943 * Check that there aren't an unreasonable number of arguments, 944 * and that the address is in user space. 945 */ 946 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 947 return (NULL); 948 949 if (kd->argv == NULL) { 950 /* 951 * Try to avoid reallocs. 952 */ 953 kd->argc = MAX(narg + 1, 32); 954 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 955 if (kd->argv == NULL) 956 return (NULL); 957 } else if (narg + 1 > kd->argc) { 958 kd->argc = MAX(2 * kd->argc, narg + 1); 959 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 960 sizeof(*kd->argv)); 961 if (kd->argv == NULL) 962 return (NULL); 963 } 964 if (kd->argspc == NULL) { 965 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 966 if (kd->argspc == NULL) 967 return (NULL); 968 kd->argspc_len = kd->nbpg; 969 } 970 if (kd->argbuf == NULL) { 971 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 972 if (kd->argbuf == NULL) 973 return (NULL); 974 } 975 cc = sizeof(char *) * narg; 976 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 977 return (NULL); 978 ap = np = kd->argspc; 979 argv = kd->argv; 980 len = 0; 981 /* 982 * Loop over pages, filling in the argument vector. 983 */ 984 while (argv < kd->argv + narg && *argv != NULL) { 985 addr = (u_long)*argv & ~(kd->nbpg - 1); 986 if (addr != oaddr) { 987 if (kvm_ureadm(kd, p, addr, kd->argbuf, 988 (size_t)kd->nbpg) != kd->nbpg) 989 return (NULL); 990 oaddr = addr; 991 } 992 addr = (u_long)*argv & (kd->nbpg - 1); 993 cp = kd->argbuf + (size_t)addr; 994 cc = kd->nbpg - (size_t)addr; 995 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 996 cc = (size_t)(maxcnt - len); 997 ep = memchr(cp, '\0', cc); 998 if (ep != NULL) 999 cc = ep - cp + 1; 1000 if (len + cc > kd->argspc_len) { 1001 ptrdiff_t off; 1002 char **pp; 1003 char *op = kd->argspc; 1004 1005 kd->argspc_len *= 2; 1006 kd->argspc = _kvm_realloc(kd, kd->argspc, 1007 kd->argspc_len); 1008 if (kd->argspc == NULL) 1009 return (NULL); 1010 /* 1011 * Adjust argv pointers in case realloc moved 1012 * the string space. 1013 */ 1014 off = kd->argspc - op; 1015 for (pp = kd->argv; pp < argv; pp++) 1016 *pp += off; 1017 ap += off; 1018 np += off; 1019 } 1020 memcpy(np, cp, cc); 1021 np += cc; 1022 len += cc; 1023 if (ep != NULL) { 1024 *argv++ = ap; 1025 ap = np; 1026 } else 1027 *argv += cc; 1028 if (maxcnt > 0 && len >= maxcnt) { 1029 /* 1030 * We're stopping prematurely. Terminate the 1031 * current string. 1032 */ 1033 if (ep == NULL) { 1034 *np = '\0'; 1035 *argv++ = ap; 1036 } 1037 break; 1038 } 1039 } 1040 /* Make sure argv is terminated. */ 1041 *argv = NULL; 1042 return (kd->argv); 1043 } 1044 1045 static void 1046 ps_str_a(p, addr, n) 1047 struct ps_strings *p; 1048 u_long *addr; 1049 int *n; 1050 { 1051 1052 *addr = (u_long)p->ps_argvstr; 1053 *n = p->ps_nargvstr; 1054 } 1055 1056 static void 1057 ps_str_e(p, addr, n) 1058 struct ps_strings *p; 1059 u_long *addr; 1060 int *n; 1061 { 1062 1063 *addr = (u_long)p->ps_envstr; 1064 *n = p->ps_nenvstr; 1065 } 1066 1067 /* 1068 * Determine if the proc indicated by p is still active. 1069 * This test is not 100% foolproof in theory, but chances of 1070 * being wrong are very low. 1071 */ 1072 static int 1073 proc_verify(kd, kernp, p) 1074 kvm_t *kd; 1075 u_long kernp; 1076 const struct miniproc *p; 1077 { 1078 struct proc kernproc; 1079 1080 /* 1081 * Just read in the whole proc. It's not that big relative 1082 * to the cost of the read system call. 1083 */ 1084 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1085 sizeof(kernproc)) 1086 return (0); 1087 return (p->p_pid == kernproc.p_pid && 1088 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1089 } 1090 1091 static char ** 1092 kvm_doargv(kd, p, nchr, info) 1093 kvm_t *kd; 1094 const struct miniproc *p; 1095 int nchr; 1096 void (*info)(struct ps_strings *, u_long *, int *); 1097 { 1098 char **ap; 1099 u_long addr; 1100 int cnt; 1101 struct ps_strings arginfo; 1102 1103 /* 1104 * Pointers are stored at the top of the user stack. 1105 */ 1106 if (p->p_stat == SZOMB) 1107 return (NULL); 1108 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1109 (void *)&arginfo, sizeof(arginfo)); 1110 if (cnt != sizeof(arginfo)) 1111 return (NULL); 1112 1113 (*info)(&arginfo, &addr, &cnt); 1114 if (cnt == 0) 1115 return (NULL); 1116 ap = kvm_argv(kd, p, addr, cnt, nchr); 1117 /* 1118 * For live kernels, make sure this process didn't go away. 1119 */ 1120 if (ap != NULL && ISALIVE(kd) && 1121 !proc_verify(kd, (u_long)p->p_paddr, p)) 1122 ap = NULL; 1123 return (ap); 1124 } 1125 1126 /* 1127 * Get the command args. This code is now machine independent. 1128 */ 1129 char ** 1130 kvm_getargv(kd, kp, nchr) 1131 kvm_t *kd; 1132 const struct kinfo_proc *kp; 1133 int nchr; 1134 { 1135 struct miniproc p; 1136 1137 KPTOMINI(kp, &p); 1138 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1139 } 1140 1141 char ** 1142 kvm_getenvv(kd, kp, nchr) 1143 kvm_t *kd; 1144 const struct kinfo_proc *kp; 1145 int nchr; 1146 { 1147 struct miniproc p; 1148 1149 KPTOMINI(kp, &p); 1150 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1151 } 1152 1153 static char ** 1154 kvm_doargv2(kd, pid, type, nchr) 1155 kvm_t *kd; 1156 pid_t pid; 1157 int type; 1158 int nchr; 1159 { 1160 size_t bufs; 1161 int narg, mib[4]; 1162 size_t newargspc_len; 1163 char **ap, *bp, *endp; 1164 1165 /* 1166 * Check that there aren't an unreasonable number of arguments. 1167 */ 1168 if (nchr > ARG_MAX) 1169 return (NULL); 1170 1171 if (nchr == 0) 1172 nchr = ARG_MAX; 1173 1174 /* Get number of strings in argv */ 1175 mib[0] = CTL_KERN; 1176 mib[1] = KERN_PROC_ARGS; 1177 mib[2] = pid; 1178 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1179 bufs = sizeof(narg); 1180 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1181 return (NULL); 1182 1183 if (kd->argv == NULL) { 1184 /* 1185 * Try to avoid reallocs. 1186 */ 1187 kd->argc = MAX(narg + 1, 32); 1188 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1189 if (kd->argv == NULL) 1190 return (NULL); 1191 } else if (narg + 1 > kd->argc) { 1192 kd->argc = MAX(2 * kd->argc, narg + 1); 1193 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1194 sizeof(*kd->argv)); 1195 if (kd->argv == NULL) 1196 return (NULL); 1197 } 1198 1199 newargspc_len = MIN(nchr, ARG_MAX); 1200 KVM_ALLOC(kd, argspc, newargspc_len); 1201 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1202 1203 mib[0] = CTL_KERN; 1204 mib[1] = KERN_PROC_ARGS; 1205 mib[2] = pid; 1206 mib[3] = type; 1207 bufs = kd->argspc_len; 1208 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1209 return (NULL); 1210 1211 bp = kd->argspc; 1212 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1213 ap = kd->argv; 1214 endp = bp + MIN(nchr, bufs); 1215 1216 while (bp < endp) { 1217 *ap++ = bp; 1218 /* 1219 * XXX: don't need following anymore, or stick check 1220 * for max argc in above while loop? 1221 */ 1222 if (ap >= kd->argv + kd->argc) { 1223 kd->argc *= 2; 1224 kd->argv = _kvm_realloc(kd, kd->argv, 1225 kd->argc * sizeof(*kd->argv)); 1226 ap = kd->argv; 1227 } 1228 bp += strlen(bp) + 1; 1229 } 1230 *ap = NULL; 1231 1232 return (kd->argv); 1233 } 1234 1235 char ** 1236 kvm_getargv2(kd, kp, nchr) 1237 kvm_t *kd; 1238 const struct kinfo_proc2 *kp; 1239 int nchr; 1240 { 1241 1242 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1243 } 1244 1245 char ** 1246 kvm_getenvv2(kd, kp, nchr) 1247 kvm_t *kd; 1248 const struct kinfo_proc2 *kp; 1249 int nchr; 1250 { 1251 1252 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1253 } 1254 1255 /* 1256 * Read from user space. The user context is given by p. 1257 */ 1258 static ssize_t 1259 kvm_ureadm(kd, p, uva, buf, len) 1260 kvm_t *kd; 1261 const struct miniproc *p; 1262 u_long uva; 1263 char *buf; 1264 size_t len; 1265 { 1266 char *cp; 1267 1268 cp = buf; 1269 while (len > 0) { 1270 size_t cc; 1271 char *dp; 1272 u_long cnt; 1273 1274 dp = _kvm_ureadm(kd, p, uva, &cnt); 1275 if (dp == NULL) { 1276 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1277 return (0); 1278 } 1279 cc = (size_t)MIN(cnt, len); 1280 memcpy(cp, dp, cc); 1281 cp += cc; 1282 uva += cc; 1283 len -= cc; 1284 } 1285 return (ssize_t)(cp - buf); 1286 } 1287 1288 ssize_t 1289 kvm_uread(kd, p, uva, buf, len) 1290 kvm_t *kd; 1291 const struct proc *p; 1292 u_long uva; 1293 char *buf; 1294 size_t len; 1295 { 1296 struct miniproc mp; 1297 1298 PTOMINI(p, &mp); 1299 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1300 } 1301