1 /* $NetBSD: kvm_proc.c,v 1.38 2000/06/29 06:34:25 mrg Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. All advertising materials mentioning features or use of this software 56 * must display the following acknowledgement: 57 * This product includes software developed by the University of 58 * California, Berkeley and its contributors. 59 * 4. Neither the name of the University nor the names of its contributors 60 * may be used to endorse or promote products derived from this software 61 * without specific prior written permission. 62 * 63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 73 * SUCH DAMAGE. 74 */ 75 76 #include <sys/cdefs.h> 77 #if defined(LIBC_SCCS) && !defined(lint) 78 #if 0 79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 80 #else 81 __RCSID("$NetBSD: kvm_proc.c,v 1.38 2000/06/29 06:34:25 mrg Exp $"); 82 #endif 83 #endif /* LIBC_SCCS and not lint */ 84 85 /* 86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 87 * users of this code, so we've factored it out into a separate module. 88 * Thus, we keep this grunge out of the other kvm applications (i.e., 89 * most other applications are interested only in open/close/read/nlist). 90 */ 91 92 #include <sys/param.h> 93 #include <sys/user.h> 94 #include <sys/proc.h> 95 #include <sys/exec.h> 96 #include <sys/stat.h> 97 #include <sys/ioctl.h> 98 #include <sys/tty.h> 99 #include <stdlib.h> 100 #include <string.h> 101 #include <unistd.h> 102 #include <nlist.h> 103 #include <kvm.h> 104 105 #include <uvm/uvm_extern.h> 106 #include <uvm/uvm_amap.h> 107 108 #include <sys/sysctl.h> 109 110 #include <limits.h> 111 #include <db.h> 112 #include <paths.h> 113 114 #include "kvm_private.h" 115 116 /* 117 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 118 */ 119 struct miniproc { 120 struct vmspace *p_vmspace; 121 char p_stat; 122 struct proc *p_paddr; 123 pid_t p_pid; 124 }; 125 126 /* 127 * Convert from struct proc and kinfo_proc{,2} to miniproc. 128 */ 129 #define PTOMINI(kp, p) \ 130 do { \ 131 (p)->p_stat = (kp)->p_stat; \ 132 (p)->p_pid = (kp)->p_pid; \ 133 (p)->p_paddr = NULL; \ 134 (p)->p_vmspace = (kp)->p_vmspace; \ 135 } while (/*CONSTCOND*/0); 136 137 #define KPTOMINI(kp, p) \ 138 do { \ 139 (p)->p_stat = (kp)->kp_proc.p_stat; \ 140 (p)->p_pid = (kp)->kp_proc.p_pid; \ 141 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 142 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 143 } while (/*CONSTCOND*/0); 144 145 #define KP2TOMINI(kp, p) \ 146 do { \ 147 (p)->p_stat = (kp)->p_stat; \ 148 (p)->p_pid = (kp)->p_pid; \ 149 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 150 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 151 } while (/*CONSTCOND*/0); 152 153 154 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo)) 155 156 #define KREAD(kd, addr, obj) \ 157 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 158 159 /* XXX: What uses these two functions? */ 160 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 161 u_long *)); 162 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 163 size_t)); 164 165 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 166 u_long *)); 167 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 168 char *, size_t)); 169 170 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 171 int)); 172 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long, 173 int)); 174 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 175 void (*)(struct ps_strings *, u_long *, int *))); 176 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 177 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 178 struct kinfo_proc *, int)); 179 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 180 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 181 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 182 183 184 static char * 185 _kvm_ureadm(kd, p, va, cnt) 186 kvm_t *kd; 187 const struct miniproc *p; 188 u_long va; 189 u_long *cnt; 190 { 191 int true = 1; 192 u_long addr, head; 193 u_long offset; 194 struct vm_map_entry vme; 195 struct vm_amap amap; 196 struct vm_anon *anonp, anon; 197 struct vm_page pg; 198 u_long slot; 199 200 if (kd->swapspc == NULL) { 201 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 202 if (kd->swapspc == NULL) 203 return NULL; 204 } 205 206 /* 207 * Look through the address map for the memory object 208 * that corresponds to the given virtual address. 209 * The header just has the entire valid range. 210 */ 211 head = (u_long)&p->p_vmspace->vm_map.header; 212 addr = head; 213 while (true) { 214 if (KREAD(kd, addr, &vme)) 215 return NULL; 216 217 if (va >= vme.start && va < vme.end && 218 vme.aref.ar_amap != NULL) 219 break; 220 221 addr = (u_long)vme.next; 222 if (addr == head) 223 return NULL; 224 225 } 226 227 /* 228 * we found the map entry, now to find the object... 229 */ 230 if (vme.aref.ar_amap == NULL) 231 return NULL; 232 233 addr = (u_long)vme.aref.ar_amap; 234 if (KREAD(kd, addr, &amap)) 235 return NULL; 236 237 offset = va - vme.start; 238 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 239 /* sanity-check slot number */ 240 if (slot > amap.am_nslot) 241 return NULL; 242 243 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 244 if (KREAD(kd, addr, &anonp)) 245 return NULL; 246 247 addr = (u_long)anonp; 248 if (KREAD(kd, addr, &anon)) 249 return NULL; 250 251 addr = (u_long)anon.u.an_page; 252 if (addr) { 253 if (KREAD(kd, addr, &pg)) 254 return NULL; 255 256 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 257 (off_t)pg.phys_addr) != kd->nbpg) 258 return NULL; 259 } 260 else { 261 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg, 262 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 263 return NULL; 264 } 265 266 /* Found the page. */ 267 offset %= kd->nbpg; 268 *cnt = kd->nbpg - offset; 269 return (&kd->swapspc[(size_t)offset]); 270 } 271 272 char * 273 _kvm_uread(kd, p, va, cnt) 274 kvm_t *kd; 275 const struct proc *p; 276 u_long va; 277 u_long *cnt; 278 { 279 struct miniproc mp; 280 281 PTOMINI(p, &mp); 282 return (_kvm_ureadm(kd, &mp, va, cnt)); 283 } 284 285 /* 286 * Read proc's from memory file into buffer bp, which has space to hold 287 * at most maxcnt procs. 288 */ 289 static int 290 kvm_proclist(kd, what, arg, p, bp, maxcnt) 291 kvm_t *kd; 292 int what, arg; 293 struct proc *p; 294 struct kinfo_proc *bp; 295 int maxcnt; 296 { 297 int cnt = 0; 298 struct eproc eproc; 299 struct pgrp pgrp; 300 struct session sess; 301 struct tty tty; 302 struct proc proc; 303 304 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 305 if (KREAD(kd, (u_long)p, &proc)) { 306 _kvm_err(kd, kd->program, "can't read proc at %x", p); 307 return (-1); 308 } 309 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 310 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 311 &eproc.e_ucred)) { 312 _kvm_err(kd, kd->program, 313 "can't read proc credentials at %x", p); 314 return -1; 315 } 316 317 switch(what) { 318 319 case KERN_PROC_PID: 320 if (proc.p_pid != (pid_t)arg) 321 continue; 322 break; 323 324 case KERN_PROC_UID: 325 if (eproc.e_ucred.cr_uid != (uid_t)arg) 326 continue; 327 break; 328 329 case KERN_PROC_RUID: 330 if (eproc.e_pcred.p_ruid != (uid_t)arg) 331 continue; 332 break; 333 } 334 /* 335 * We're going to add another proc to the set. If this 336 * will overflow the buffer, assume the reason is because 337 * nprocs (or the proc list) is corrupt and declare an error. 338 */ 339 if (cnt >= maxcnt) { 340 _kvm_err(kd, kd->program, "nprocs corrupt"); 341 return (-1); 342 } 343 /* 344 * gather eproc 345 */ 346 eproc.e_paddr = p; 347 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 348 _kvm_err(kd, kd->program, "can't read pgrp at %x", 349 proc.p_pgrp); 350 return (-1); 351 } 352 eproc.e_sess = pgrp.pg_session; 353 eproc.e_pgid = pgrp.pg_id; 354 eproc.e_jobc = pgrp.pg_jobc; 355 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 356 _kvm_err(kd, kd->program, "can't read session at %x", 357 pgrp.pg_session); 358 return (-1); 359 } 360 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 361 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 362 _kvm_err(kd, kd->program, 363 "can't read tty at %x", sess.s_ttyp); 364 return (-1); 365 } 366 eproc.e_tdev = tty.t_dev; 367 eproc.e_tsess = tty.t_session; 368 if (tty.t_pgrp != NULL) { 369 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 370 _kvm_err(kd, kd->program, 371 "can't read tpgrp at &x", 372 tty.t_pgrp); 373 return (-1); 374 } 375 eproc.e_tpgid = pgrp.pg_id; 376 } else 377 eproc.e_tpgid = -1; 378 } else 379 eproc.e_tdev = NODEV; 380 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 381 eproc.e_sid = sess.s_sid; 382 if (sess.s_leader == p) 383 eproc.e_flag |= EPROC_SLEADER; 384 if (proc.p_wmesg) 385 (void)kvm_read(kd, (u_long)proc.p_wmesg, 386 eproc.e_wmesg, WMESGLEN); 387 388 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 389 sizeof(eproc.e_vm)); 390 391 eproc.e_xsize = eproc.e_xrssize = 0; 392 eproc.e_xccount = eproc.e_xswrss = 0; 393 394 switch (what) { 395 396 case KERN_PROC_PGRP: 397 if (eproc.e_pgid != (pid_t)arg) 398 continue; 399 break; 400 401 case KERN_PROC_TTY: 402 if ((proc.p_flag & P_CONTROLT) == 0 || 403 eproc.e_tdev != (dev_t)arg) 404 continue; 405 break; 406 } 407 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 408 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 409 ++bp; 410 ++cnt; 411 } 412 return (cnt); 413 } 414 415 /* 416 * Build proc info array by reading in proc list from a crash dump. 417 * Return number of procs read. maxcnt is the max we will read. 418 */ 419 static int 420 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt) 421 kvm_t *kd; 422 int what, arg; 423 u_long a_allproc; 424 u_long a_deadproc; 425 u_long a_zombproc; 426 int maxcnt; 427 { 428 struct kinfo_proc *bp = kd->procbase; 429 int acnt, dcnt, zcnt; 430 struct proc *p; 431 432 if (KREAD(kd, a_allproc, &p)) { 433 _kvm_err(kd, kd->program, "cannot read allproc"); 434 return (-1); 435 } 436 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 437 if (acnt < 0) 438 return (acnt); 439 440 if (KREAD(kd, a_deadproc, &p)) { 441 _kvm_err(kd, kd->program, "cannot read deadproc"); 442 return (-1); 443 } 444 445 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt); 446 if (dcnt < 0) 447 dcnt = 0; 448 449 if (KREAD(kd, a_zombproc, &p)) { 450 _kvm_err(kd, kd->program, "cannot read zombproc"); 451 return (-1); 452 } 453 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 454 maxcnt - (acnt + dcnt)); 455 if (zcnt < 0) 456 zcnt = 0; 457 458 return (acnt + zcnt); 459 } 460 461 struct kinfo_proc2 * 462 kvm_getproc2(kd, op, arg, esize, cnt) 463 kvm_t *kd; 464 int op, arg; 465 size_t esize; 466 int *cnt; 467 { 468 size_t size; 469 int mib[6], st, nprocs; 470 struct user user; 471 472 if (esize < 0) 473 return NULL; 474 475 if (kd->procbase2 != NULL) { 476 free(kd->procbase2); 477 /* 478 * Clear this pointer in case this call fails. Otherwise, 479 * kvm_close() will free it again. 480 */ 481 kd->procbase2 = NULL; 482 } 483 484 if (ISSYSCTL(kd)) { 485 size = 0; 486 mib[0] = CTL_KERN; 487 mib[1] = KERN_PROC2; 488 mib[2] = op; 489 mib[3] = arg; 490 mib[4] = esize; 491 mib[5] = 0; 492 st = sysctl(mib, 6, NULL, &size, NULL, 0); 493 if (st == -1) { 494 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 495 return NULL; 496 } 497 498 mib[5] = size / esize; 499 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size); 500 if (kd->procbase2 == NULL) 501 return NULL; 502 st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0); 503 if (st == -1) { 504 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 505 return NULL; 506 } 507 nprocs = size / esize; 508 } else { 509 char *kp2c; 510 struct kinfo_proc *kp; 511 struct kinfo_proc2 kp2, *kp2p; 512 int i; 513 514 kp = kvm_getprocs(kd, op, arg, &nprocs); 515 if (kp == NULL) 516 return NULL; 517 518 kd->procbase2 = _kvm_malloc(kd, nprocs * esize); 519 kp2c = (char *)kd->procbase2; 520 kp2p = &kp2; 521 for (i = 0; i < nprocs; i++, kp++) { 522 memset(kp2p, 0, sizeof(kp2)); 523 kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw); 524 kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back); 525 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr); 526 527 kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr); 528 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd); 529 kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi); 530 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats); 531 kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit); 532 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace); 533 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts); 534 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess); 535 kp2p->p_tsess = 0; 536 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru); 537 538 kp2p->p_eflag = 0; 539 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 540 kp2p->p_flag = kp->kp_proc.p_flag; 541 542 kp2p->p_pid = kp->kp_proc.p_pid; 543 544 kp2p->p_ppid = kp->kp_eproc.e_ppid; 545 kp2p->p_sid = kp->kp_eproc.e_sid; 546 kp2p->p__pgid = kp->kp_eproc.e_pgid; 547 548 kp2p->p_tpgid = 30001 /* XXX NO_PID! */; 549 550 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 551 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 552 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 553 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 554 555 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 556 MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups))); 557 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 558 559 kp2p->p_jobc = kp->kp_eproc.e_jobc; 560 kp2p->p_tdev = kp->kp_eproc.e_tdev; 561 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 562 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess); 563 564 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 565 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu; 566 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu; 567 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 568 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 569 kp2p->p_swtime = kp->kp_proc.p_swtime; 570 kp2p->p_slptime = kp->kp_proc.p_slptime; 571 #if 0 /* XXX thorpej */ 572 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 573 #else 574 kp2p->p_schedflags = 0; 575 #endif 576 577 kp2p->p_uticks = kp->kp_proc.p_uticks; 578 kp2p->p_sticks = kp->kp_proc.p_sticks; 579 kp2p->p_iticks = kp->kp_proc.p_iticks; 580 581 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep); 582 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 583 584 kp2p->p_holdcnt = kp->kp_proc.p_holdcnt; 585 586 memcpy(&kp2p->p_siglist, &kp->kp_proc.p_siglist, sizeof(ki_sigset_t)); 587 memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigmask, sizeof(ki_sigset_t)); 588 memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigignore, sizeof(ki_sigset_t)); 589 memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigcatch, sizeof(ki_sigset_t)); 590 591 kp2p->p_stat = kp->kp_proc.p_stat; 592 kp2p->p_priority = kp->kp_proc.p_priority; 593 kp2p->p_usrpri = kp->kp_proc.p_usrpri; 594 kp2p->p_nice = kp->kp_proc.p_nice; 595 596 kp2p->p_xstat = kp->kp_proc.p_xstat; 597 kp2p->p_acflag = kp->kp_proc.p_acflag; 598 599 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 600 MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm))); 601 602 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg)); 603 kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan); 604 605 strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login)); 606 607 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 608 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 609 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 610 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 611 612 kp2p->p_eflag = kp->kp_eproc.e_flag; 613 614 if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL || 615 KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) { 616 kp2p->p_uvalid = 0; 617 } else { 618 kp2p->p_uvalid = 1; 619 620 kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec; 621 kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec; 622 623 kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec; 624 kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec; 625 kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec; 626 kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec; 627 628 kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss; 629 kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss; 630 kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss; 631 kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss; 632 kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt; 633 kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt; 634 kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap; 635 kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock; 636 kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock; 637 kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd; 638 kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv; 639 kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals; 640 kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw; 641 kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw; 642 643 kp2p->p_uctime_sec = user.u_stats.p_cru.ru_utime.tv_sec + 644 user.u_stats.p_cru.ru_stime.tv_sec; 645 kp2p->p_uctime_usec = user.u_stats.p_cru.ru_utime.tv_usec + 646 user.u_stats.p_cru.ru_stime.tv_usec; 647 } 648 649 memcpy(kp2c, &kp2, esize); 650 kp2c += esize; 651 } 652 653 free(kd->procbase); 654 } 655 *cnt = nprocs; 656 return (kd->procbase2); 657 } 658 659 struct kinfo_proc * 660 kvm_getprocs(kd, op, arg, cnt) 661 kvm_t *kd; 662 int op, arg; 663 int *cnt; 664 { 665 size_t size; 666 int mib[4], st, nprocs; 667 668 if (kd->procbase != NULL) { 669 free(kd->procbase); 670 /* 671 * Clear this pointer in case this call fails. Otherwise, 672 * kvm_close() will free it again. 673 */ 674 kd->procbase = NULL; 675 } 676 if (ISKMEM(kd)) { 677 size = 0; 678 mib[0] = CTL_KERN; 679 mib[1] = KERN_PROC; 680 mib[2] = op; 681 mib[3] = arg; 682 st = sysctl(mib, 4, NULL, &size, NULL, 0); 683 if (st == -1) { 684 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 685 return NULL; 686 } 687 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 688 if (kd->procbase == NULL) 689 return NULL; 690 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 691 if (st == -1) { 692 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 693 return NULL; 694 } 695 if (size % sizeof(struct kinfo_proc) != 0) { 696 _kvm_err(kd, kd->program, 697 "proc size mismatch (%d total, %d chunks)", 698 size, sizeof(struct kinfo_proc)); 699 return NULL; 700 } 701 nprocs = size / sizeof(struct kinfo_proc); 702 } else if (ISSYSCTL(kd)) { 703 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 704 "can't use kvm_getprocs"); 705 return NULL; 706 } else { 707 struct nlist nl[5], *p; 708 709 nl[0].n_name = "_nprocs"; 710 nl[1].n_name = "_allproc"; 711 nl[2].n_name = "_deadproc"; 712 nl[3].n_name = "_zombproc"; 713 nl[4].n_name = NULL; 714 715 if (kvm_nlist(kd, nl) != 0) { 716 for (p = nl; p->n_type != 0; ++p) 717 ; 718 _kvm_err(kd, kd->program, 719 "%s: no such symbol", p->n_name); 720 return NULL; 721 } 722 if (KREAD(kd, nl[0].n_value, &nprocs)) { 723 _kvm_err(kd, kd->program, "can't read nprocs"); 724 return NULL; 725 } 726 size = nprocs * sizeof(struct kinfo_proc); 727 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 728 if (kd->procbase == NULL) 729 return NULL; 730 731 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 732 nl[2].n_value, nl[3].n_value, nprocs); 733 if (nprocs < 0) 734 return NULL; 735 #ifdef notdef 736 size = nprocs * sizeof(struct kinfo_proc); 737 (void)realloc(kd->procbase, size); 738 #endif 739 } 740 *cnt = nprocs; 741 return (kd->procbase); 742 } 743 744 void 745 _kvm_freeprocs(kd) 746 kvm_t *kd; 747 { 748 if (kd->procbase) { 749 free(kd->procbase); 750 kd->procbase = NULL; 751 } 752 } 753 754 void * 755 _kvm_realloc(kd, p, n) 756 kvm_t *kd; 757 void *p; 758 size_t n; 759 { 760 void *np = realloc(p, n); 761 762 if (np == NULL) 763 _kvm_err(kd, kd->program, "out of memory"); 764 return (np); 765 } 766 767 /* 768 * Read in an argument vector from the user address space of process p. 769 * addr if the user-space base address of narg null-terminated contiguous 770 * strings. This is used to read in both the command arguments and 771 * environment strings. Read at most maxcnt characters of strings. 772 */ 773 static char ** 774 kvm_argv(kd, p, addr, narg, maxcnt) 775 kvm_t *kd; 776 const struct miniproc *p; 777 u_long addr; 778 int narg; 779 int maxcnt; 780 { 781 char *np, *cp, *ep, *ap; 782 u_long oaddr = (u_long)~0L; 783 u_long len; 784 size_t cc; 785 char **argv; 786 787 /* 788 * Check that there aren't an unreasonable number of agruments, 789 * and that the address is in user space. 790 */ 791 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 792 return NULL; 793 794 if (kd->argv == NULL) { 795 /* 796 * Try to avoid reallocs. 797 */ 798 kd->argc = MAX(narg + 1, 32); 799 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 800 sizeof(*kd->argv)); 801 if (kd->argv == NULL) 802 return NULL; 803 } else if (narg + 1 > kd->argc) { 804 kd->argc = MAX(2 * kd->argc, narg + 1); 805 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 806 sizeof(*kd->argv)); 807 if (kd->argv == NULL) 808 return NULL; 809 } 810 if (kd->argspc == NULL) { 811 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 812 if (kd->argspc == NULL) 813 return NULL; 814 kd->arglen = kd->nbpg; 815 } 816 if (kd->argbuf == NULL) { 817 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 818 if (kd->argbuf == NULL) 819 return NULL; 820 } 821 cc = sizeof(char *) * narg; 822 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 823 return NULL; 824 ap = np = kd->argspc; 825 argv = kd->argv; 826 len = 0; 827 /* 828 * Loop over pages, filling in the argument vector. 829 */ 830 while (argv < kd->argv + narg && *argv != NULL) { 831 addr = (u_long)*argv & ~(kd->nbpg - 1); 832 if (addr != oaddr) { 833 if (kvm_ureadm(kd, p, addr, kd->argbuf, 834 (size_t)kd->nbpg) != kd->nbpg) 835 return NULL; 836 oaddr = addr; 837 } 838 addr = (u_long)*argv & (kd->nbpg - 1); 839 cp = kd->argbuf + (size_t)addr; 840 cc = kd->nbpg - (size_t)addr; 841 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 842 cc = (size_t)(maxcnt - len); 843 ep = memchr(cp, '\0', cc); 844 if (ep != NULL) 845 cc = ep - cp + 1; 846 if (len + cc > kd->arglen) { 847 int off; 848 char **pp; 849 char *op = kd->argspc; 850 851 kd->arglen *= 2; 852 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 853 (size_t)kd->arglen); 854 if (kd->argspc == NULL) 855 return NULL; 856 /* 857 * Adjust argv pointers in case realloc moved 858 * the string space. 859 */ 860 off = kd->argspc - op; 861 for (pp = kd->argv; pp < argv; pp++) 862 *pp += off; 863 ap += off; 864 np += off; 865 } 866 memcpy(np, cp, cc); 867 np += cc; 868 len += cc; 869 if (ep != NULL) { 870 *argv++ = ap; 871 ap = np; 872 } else 873 *argv += cc; 874 if (maxcnt > 0 && len >= maxcnt) { 875 /* 876 * We're stopping prematurely. Terminate the 877 * current string. 878 */ 879 if (ep == NULL) { 880 *np = '\0'; 881 *argv++ = ap; 882 } 883 break; 884 } 885 } 886 /* Make sure argv is terminated. */ 887 *argv = NULL; 888 return (kd->argv); 889 } 890 891 static void 892 ps_str_a(p, addr, n) 893 struct ps_strings *p; 894 u_long *addr; 895 int *n; 896 { 897 *addr = (u_long)p->ps_argvstr; 898 *n = p->ps_nargvstr; 899 } 900 901 static void 902 ps_str_e(p, addr, n) 903 struct ps_strings *p; 904 u_long *addr; 905 int *n; 906 { 907 *addr = (u_long)p->ps_envstr; 908 *n = p->ps_nenvstr; 909 } 910 911 /* 912 * Determine if the proc indicated by p is still active. 913 * This test is not 100% foolproof in theory, but chances of 914 * being wrong are very low. 915 */ 916 static int 917 proc_verify(kd, kernp, p) 918 kvm_t *kd; 919 u_long kernp; 920 const struct miniproc *p; 921 { 922 struct proc kernproc; 923 924 /* 925 * Just read in the whole proc. It's not that big relative 926 * to the cost of the read system call. 927 */ 928 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 929 sizeof(kernproc)) 930 return 0; 931 return (p->p_pid == kernproc.p_pid && 932 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 933 } 934 935 static char ** 936 kvm_doargv(kd, p, nchr, info) 937 kvm_t *kd; 938 const struct miniproc *p; 939 int nchr; 940 void (*info)(struct ps_strings *, u_long *, int *); 941 { 942 char **ap; 943 u_long addr; 944 int cnt; 945 struct ps_strings arginfo; 946 947 /* 948 * Pointers are stored at the top of the user stack. 949 */ 950 if (p->p_stat == SZOMB) 951 return NULL; 952 cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 953 (void *)&arginfo, sizeof(arginfo)); 954 if (cnt != sizeof(arginfo)) 955 return NULL; 956 957 (*info)(&arginfo, &addr, &cnt); 958 if (cnt == 0) 959 return NULL; 960 ap = kvm_argv(kd, p, addr, cnt, nchr); 961 /* 962 * For live kernels, make sure this process didn't go away. 963 */ 964 if (ap != NULL && ISALIVE(kd) && 965 !proc_verify(kd, (u_long)p->p_paddr, p)) 966 ap = NULL; 967 return (ap); 968 } 969 970 /* 971 * Get the command args. This code is now machine independent. 972 */ 973 char ** 974 kvm_getargv(kd, kp, nchr) 975 kvm_t *kd; 976 const struct kinfo_proc *kp; 977 int nchr; 978 { 979 struct miniproc p; 980 981 KPTOMINI(kp, &p); 982 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 983 } 984 985 char ** 986 kvm_getenvv(kd, kp, nchr) 987 kvm_t *kd; 988 const struct kinfo_proc *kp; 989 int nchr; 990 { 991 struct miniproc p; 992 993 KPTOMINI(kp, &p); 994 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 995 } 996 997 static char ** 998 kvm_doargv2(kd, pid, type, nchr) 999 kvm_t *kd; 1000 pid_t pid; 1001 int type; 1002 int nchr; 1003 { 1004 size_t bufs; 1005 int narg, newarglen, mib[4]; 1006 char **ap, *bp, *endp; 1007 1008 /* 1009 * Check that there aren't an unreasonable number of agruments. 1010 */ 1011 if (nchr > ARG_MAX) 1012 return NULL; 1013 1014 if (nchr == 0) 1015 nchr = ARG_MAX; 1016 1017 /* Get number of strings in argv */ 1018 mib[0] = CTL_KERN; 1019 mib[1] = KERN_PROC_ARGS; 1020 mib[2] = pid; 1021 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1022 bufs = sizeof(narg); 1023 if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1) 1024 return NULL; 1025 1026 if (kd->argv == NULL) { 1027 /* 1028 * Try to avoid reallocs. 1029 */ 1030 kd->argc = MAX(narg + 1, 32); 1031 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 1032 sizeof(*kd->argv)); 1033 if (kd->argv == NULL) 1034 return NULL; 1035 } else if (narg + 1 > kd->argc) { 1036 kd->argc = MAX(2 * kd->argc, narg + 1); 1037 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 1038 sizeof(*kd->argv)); 1039 if (kd->argv == NULL) 1040 return NULL; 1041 } 1042 1043 newarglen = MIN(nchr, ARG_MAX); 1044 if (kd->arglen < newarglen) { 1045 if (kd->arglen == 0) 1046 kd->argspc = (char *)_kvm_malloc(kd, newarglen); 1047 else 1048 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 1049 newarglen); 1050 if (kd->argspc == NULL) 1051 return NULL; 1052 kd->arglen = newarglen; 1053 } 1054 memset(kd->argspc, 0, kd->arglen); /* XXX necessary? */ 1055 1056 mib[0] = CTL_KERN; 1057 mib[1] = KERN_PROC_ARGS; 1058 mib[2] = pid; 1059 mib[3] = type; 1060 bufs = kd->arglen; 1061 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1) 1062 return NULL; 1063 1064 bp = kd->argspc; 1065 ap = kd->argv; 1066 endp = bp + MIN(nchr, bufs); 1067 1068 while (bp < endp) { 1069 *ap++ = bp; 1070 /* XXX: don't need following anymore, or stick check for max argc in above while loop? */ 1071 if (ap >= kd->argv + kd->argc) { 1072 kd->argc *= 2; 1073 kd->argv = _kvm_realloc(kd, kd->argv, 1074 kd->argc * sizeof(*kd->argv)); 1075 } 1076 bp += strlen(bp) + 1; 1077 } 1078 *ap = NULL; 1079 1080 return (kd->argv); 1081 } 1082 1083 char ** 1084 kvm_getargv2(kd, kp, nchr) 1085 kvm_t *kd; 1086 const struct kinfo_proc2 *kp; 1087 int nchr; 1088 { 1089 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1090 } 1091 1092 char ** 1093 kvm_getenvv2(kd, kp, nchr) 1094 kvm_t *kd; 1095 const struct kinfo_proc2 *kp; 1096 int nchr; 1097 { 1098 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1099 } 1100 1101 /* 1102 * Read from user space. The user context is given by p. 1103 */ 1104 static ssize_t 1105 kvm_ureadm(kd, p, uva, buf, len) 1106 kvm_t *kd; 1107 const struct miniproc *p; 1108 u_long uva; 1109 char *buf; 1110 size_t len; 1111 { 1112 char *cp; 1113 1114 cp = buf; 1115 while (len > 0) { 1116 size_t cc; 1117 char *dp; 1118 u_long cnt; 1119 1120 dp = _kvm_ureadm(kd, p, uva, &cnt); 1121 if (dp == NULL) { 1122 _kvm_err(kd, 0, "invalid address (%x)", uva); 1123 return 0; 1124 } 1125 cc = (size_t)MIN(cnt, len); 1126 memcpy(cp, dp, cc); 1127 cp += cc; 1128 uva += cc; 1129 len -= cc; 1130 } 1131 return (ssize_t)(cp - buf); 1132 } 1133 1134 ssize_t 1135 kvm_uread(kd, p, uva, buf, len) 1136 kvm_t *kd; 1137 const struct proc *p; 1138 u_long uva; 1139 char *buf; 1140 size_t len; 1141 { 1142 struct miniproc mp; 1143 1144 PTOMINI(p, &mp); 1145 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1146 } 1147