xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: kvm_proc.c,v 1.36 2000/06/04 23:03:27 tron Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. All advertising materials mentioning features or use of this software
56  *    must display the following acknowledgement:
57  *	This product includes software developed by the University of
58  *	California, Berkeley and its contributors.
59  * 4. Neither the name of the University nor the names of its contributors
60  *    may be used to endorse or promote products derived from this software
61  *    without specific prior written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73  * SUCH DAMAGE.
74  */
75 
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.36 2000/06/04 23:03:27 tron Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84 
85 /*
86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
87  * users of this code, so we've factored it out into a separate module.
88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
89  * most other applications are interested only in open/close/read/nlist).
90  */
91 
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/proc.h>
95 #include <sys/exec.h>
96 #include <sys/stat.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <stdlib.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <nlist.h>
103 #include <kvm.h>
104 
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 
108 #include <uvm/uvm_extern.h>
109 #include <uvm/uvm_amap.h>
110 
111 #include <sys/sysctl.h>
112 
113 #include <limits.h>
114 #include <db.h>
115 #include <paths.h>
116 
117 #include "kvm_private.h"
118 
119 /*
120  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
121  */
122 struct miniproc {
123 	struct	vmspace *p_vmspace;
124 	char	p_stat;
125 	struct	proc *p_paddr;
126 	pid_t	p_pid;
127 };
128 
129 /*
130  * Convert from struct proc and kinfo_proc{,2} to miniproc.
131  */
132 #define PTOMINI(kp, p) \
133 		do { \
134 		(p)->p_stat = (kp)->p_stat; \
135 		(p)->p_pid = (kp)->p_pid; \
136 		(p)->p_paddr = NULL; \
137 		(p)->p_vmspace = (kp)->p_vmspace; \
138 	} while (/*CONSTCOND*/0);
139 
140 #define KPTOMINI(kp, p) \
141 		do { \
142 		(p)->p_stat = (kp)->kp_proc.p_stat; \
143 		(p)->p_pid = (kp)->kp_proc.p_pid; \
144 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
145 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
146 	} while (/*CONSTCOND*/0);
147 
148 #define KP2TOMINI(kp, p) \
149 		do { \
150 		(p)->p_stat = (kp)->p_stat; \
151 		(p)->p_pid = (kp)->p_pid; \
152 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
153 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
154 	} while (/*CONSTCOND*/0);
155 
156 
157 #define	PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(foo))
158 
159 #define KREAD(kd, addr, obj) \
160 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
161 
162 /* XXX: What uses these two functions? */
163 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
164 		    u_long *));
165 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
166 		    size_t));
167 
168 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
169 		    u_long *));
170 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
171 		    char *, size_t));
172 
173 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
174 		    int));
175 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
176 		    int));
177 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
178 		    void (*)(struct ps_strings *, u_long *, int *)));
179 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
180 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
181 		    struct kinfo_proc *, int));
182 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
183 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
184 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
185 
186 
187 static char *
188 _kvm_ureadm(kd, p, va, cnt)
189 	kvm_t *kd;
190 	const struct miniproc *p;
191 	u_long va;
192 	u_long *cnt;
193 {
194 	int true = 1;
195 	u_long addr, head;
196 	u_long offset;
197 	struct vm_map_entry vme;
198 	struct vm_amap amap;
199 	struct vm_anon *anonp, anon;
200 	struct vm_page pg;
201 	u_long slot;
202 
203 	if (kd->swapspc == NULL) {
204 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
205 		if (kd->swapspc == NULL)
206 			return NULL;
207 	}
208 
209 	/*
210 	 * Look through the address map for the memory object
211 	 * that corresponds to the given virtual address.
212 	 * The header just has the entire valid range.
213 	 */
214 	head = (u_long)&p->p_vmspace->vm_map.header;
215 	addr = head;
216 	while (true) {
217 		if (KREAD(kd, addr, &vme))
218 			return NULL;
219 
220 		if (va >= vme.start && va < vme.end &&
221 		    vme.aref.ar_amap != NULL)
222 			break;
223 
224 		addr = (u_long)vme.next;
225 		if (addr == head)
226 			return NULL;
227 
228 	}
229 
230 	/*
231 	 * we found the map entry, now to find the object...
232 	 */
233 	if (vme.aref.ar_amap == NULL)
234 		return NULL;
235 
236 	addr = (u_long)vme.aref.ar_amap;
237 	if (KREAD(kd, addr, &amap))
238 		return NULL;
239 
240 	offset = va - vme.start;
241 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
242 	/* sanity-check slot number */
243 	if (slot  > amap.am_nslot)
244 		return NULL;
245 
246 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
247 	if (KREAD(kd, addr, &anonp))
248 		return NULL;
249 
250 	addr = (u_long)anonp;
251 	if (KREAD(kd, addr, &anon))
252 		return NULL;
253 
254 	addr = (u_long)anon.u.an_page;
255 	if (addr) {
256 		if (KREAD(kd, addr, &pg))
257 			return NULL;
258 
259 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
260 		    (off_t)pg.phys_addr) != kd->nbpg)
261 			return NULL;
262 	}
263 	else {
264 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
265 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
266 			return NULL;
267 	}
268 
269 	/* Found the page. */
270 	offset %= kd->nbpg;
271 	*cnt = kd->nbpg - offset;
272 	return (&kd->swapspc[(size_t)offset]);
273 }
274 
275 char *
276 _kvm_uread(kd, p, va, cnt)
277 	kvm_t *kd;
278 	const struct proc *p;
279 	u_long va;
280 	u_long *cnt;
281 {
282 	struct miniproc mp;
283 
284 	PTOMINI(p, &mp);
285 	return (_kvm_ureadm(kd, &mp, va, cnt));
286 }
287 
288 /*
289  * Read proc's from memory file into buffer bp, which has space to hold
290  * at most maxcnt procs.
291  */
292 static int
293 kvm_proclist(kd, what, arg, p, bp, maxcnt)
294 	kvm_t *kd;
295 	int what, arg;
296 	struct proc *p;
297 	struct kinfo_proc *bp;
298 	int maxcnt;
299 {
300 	int cnt = 0;
301 	struct eproc eproc;
302 	struct pgrp pgrp;
303 	struct session sess;
304 	struct tty tty;
305 	struct proc proc;
306 
307 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
308 		if (KREAD(kd, (u_long)p, &proc)) {
309 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
310 			return (-1);
311 		}
312 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
313 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
314 			    &eproc.e_ucred)) {
315 				_kvm_err(kd, kd->program,
316 				    "can't read proc credentials at %x", p);
317 				return -1;
318 			}
319 
320 		switch(what) {
321 
322 		case KERN_PROC_PID:
323 			if (proc.p_pid != (pid_t)arg)
324 				continue;
325 			break;
326 
327 		case KERN_PROC_UID:
328 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
329 				continue;
330 			break;
331 
332 		case KERN_PROC_RUID:
333 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
334 				continue;
335 			break;
336 		}
337 		/*
338 		 * We're going to add another proc to the set.  If this
339 		 * will overflow the buffer, assume the reason is because
340 		 * nprocs (or the proc list) is corrupt and declare an error.
341 		 */
342 		if (cnt >= maxcnt) {
343 			_kvm_err(kd, kd->program, "nprocs corrupt");
344 			return (-1);
345 		}
346 		/*
347 		 * gather eproc
348 		 */
349 		eproc.e_paddr = p;
350 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
351 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
352 				 proc.p_pgrp);
353 			return (-1);
354 		}
355 		eproc.e_sess = pgrp.pg_session;
356 		eproc.e_pgid = pgrp.pg_id;
357 		eproc.e_jobc = pgrp.pg_jobc;
358 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
359 			_kvm_err(kd, kd->program, "can't read session at %x",
360 				pgrp.pg_session);
361 			return (-1);
362 		}
363 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
364 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
365 				_kvm_err(kd, kd->program,
366 					 "can't read tty at %x", sess.s_ttyp);
367 				return (-1);
368 			}
369 			eproc.e_tdev = tty.t_dev;
370 			eproc.e_tsess = tty.t_session;
371 			if (tty.t_pgrp != NULL) {
372 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
373 					_kvm_err(kd, kd->program,
374 						 "can't read tpgrp at &x",
375 						tty.t_pgrp);
376 					return (-1);
377 				}
378 				eproc.e_tpgid = pgrp.pg_id;
379 			} else
380 				eproc.e_tpgid = -1;
381 		} else
382 			eproc.e_tdev = NODEV;
383 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
384 		eproc.e_sid = sess.s_sid;
385 		if (sess.s_leader == p)
386 			eproc.e_flag |= EPROC_SLEADER;
387 		if (proc.p_wmesg)
388 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
389 			    eproc.e_wmesg, WMESGLEN);
390 
391 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
392 		    sizeof(eproc.e_vm));
393 
394 		eproc.e_xsize = eproc.e_xrssize = 0;
395 		eproc.e_xccount = eproc.e_xswrss = 0;
396 
397 		switch (what) {
398 
399 		case KERN_PROC_PGRP:
400 			if (eproc.e_pgid != (pid_t)arg)
401 				continue;
402 			break;
403 
404 		case KERN_PROC_TTY:
405 			if ((proc.p_flag & P_CONTROLT) == 0 ||
406 			     eproc.e_tdev != (dev_t)arg)
407 				continue;
408 			break;
409 		}
410 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
411 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
412 		++bp;
413 		++cnt;
414 	}
415 	return (cnt);
416 }
417 
418 /*
419  * Build proc info array by reading in proc list from a crash dump.
420  * Return number of procs read.  maxcnt is the max we will read.
421  */
422 static int
423 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
424 	kvm_t *kd;
425 	int what, arg;
426 	u_long a_allproc;
427 	u_long a_deadproc;
428 	u_long a_zombproc;
429 	int maxcnt;
430 {
431 	struct kinfo_proc *bp = kd->procbase;
432 	int acnt, dcnt, zcnt;
433 	struct proc *p;
434 
435 	if (KREAD(kd, a_allproc, &p)) {
436 		_kvm_err(kd, kd->program, "cannot read allproc");
437 		return (-1);
438 	}
439 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
440 	if (acnt < 0)
441 		return (acnt);
442 
443 	if (KREAD(kd, a_deadproc, &p)) {
444 		_kvm_err(kd, kd->program, "cannot read deadproc");
445 		return (-1);
446 	}
447 
448 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
449 	if (dcnt < 0)
450 		dcnt = 0;
451 
452 	if (KREAD(kd, a_zombproc, &p)) {
453 		_kvm_err(kd, kd->program, "cannot read zombproc");
454 		return (-1);
455 	}
456 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
457 	    maxcnt - (acnt + dcnt));
458 	if (zcnt < 0)
459 		zcnt = 0;
460 
461 	return (acnt + zcnt);
462 }
463 
464 struct kinfo_proc2 *
465 kvm_getproc2(kd, op, arg, esize, cnt)
466 	kvm_t *kd;
467 	int op, arg;
468 	size_t esize;
469 	int *cnt;
470 {
471 	size_t size;
472 	int mib[6], st, nprocs;
473 	struct user user;
474 
475 	if (esize < 0)
476 		return NULL;
477 
478 	if (kd->procbase2 != NULL) {
479 		free(kd->procbase2);
480 		/*
481 		 * Clear this pointer in case this call fails.  Otherwise,
482 		 * kvm_close() will free it again.
483 		 */
484 		kd->procbase2 = NULL;
485 	}
486 
487 	if (ISSYSCTL(kd)) {
488 		size = 0;
489 		mib[0] = CTL_KERN;
490 		mib[1] = KERN_PROC2;
491 		mib[2] = op;
492 		mib[3] = arg;
493 		mib[4] = esize;
494 		mib[5] = 0;
495 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
496 		if (st == -1) {
497 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
498 			return NULL;
499 		}
500 
501 		mib[5] = size / esize;
502 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
503 		if (kd->procbase2 == NULL)
504 			return NULL;
505 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
506 		if (st == -1) {
507 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
508 			return NULL;
509 		}
510 		nprocs = size / esize;
511 	} else {
512 		char *kp2c;
513 		struct kinfo_proc *kp;
514 		struct kinfo_proc2 kp2, *kp2p;
515 		int i;
516 
517 		kp = kvm_getprocs(kd, op, arg, &nprocs);
518 		if (kp == NULL)
519 			return NULL;
520 
521 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
522 		kp2c = (char *)kd->procbase2;
523 		kp2p = &kp2;
524 		for (i = 0; i < nprocs; i++, kp++) {
525 			memset(kp2p, 0, sizeof(kp2));
526 			kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw);
527 			kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back);
528 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
529 
530 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
531 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
532 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
533 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
534 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
535 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
536 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
537 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
538 			kp2p->p_tsess = 0;
539 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
540 
541 			kp2p->p_eflag = 0;
542 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
543 			kp2p->p_flag = kp->kp_proc.p_flag;
544 
545 			kp2p->p_pid = kp->kp_proc.p_pid;
546 
547 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
548 			kp2p->p_sid = kp->kp_eproc.e_sid;
549 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
550 
551 			kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
552 
553 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
554 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
555 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
556 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
557 
558 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
559 			    MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
560 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
561 
562 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
563 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
564 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
565 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
566 
567 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
568 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
569 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
570 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
571 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
572 			kp2p->p_swtime = kp->kp_proc.p_swtime;
573 			kp2p->p_slptime = kp->kp_proc.p_slptime;
574 #if 0 /* XXX thorpej */
575 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
576 #else
577 			kp2p->p_schedflags = 0;
578 #endif
579 
580 			kp2p->p_uticks = kp->kp_proc.p_uticks;
581 			kp2p->p_sticks = kp->kp_proc.p_sticks;
582 			kp2p->p_iticks = kp->kp_proc.p_iticks;
583 
584 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
585 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
586 
587 			kp2p->p_holdcnt = kp->kp_proc.p_holdcnt;
588 
589 			memcpy(&kp2p->p_siglist, &kp->kp_proc.p_siglist, sizeof(ki_sigset_t));
590 			memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigmask, sizeof(ki_sigset_t));
591 			memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigignore, sizeof(ki_sigset_t));
592 			memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigcatch, sizeof(ki_sigset_t));
593 
594 			kp2p->p_stat = kp->kp_proc.p_stat;
595 			kp2p->p_priority = kp->kp_proc.p_priority;
596 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
597 			kp2p->p_nice = kp->kp_proc.p_nice;
598 
599 			kp2p->p_xstat = kp->kp_proc.p_xstat;
600 			kp2p->p_acflag = kp->kp_proc.p_acflag;
601 
602 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
603 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
604 
605 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
606 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
607 
608 			strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
609 
610 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
611 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
612 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
613 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
614 
615 			kp2p->p_eflag = kp->kp_eproc.e_flag;
616 
617 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
618 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
619 				kp2p->p_uvalid = 0;
620 			} else {
621 				kp2p->p_uvalid = 1;
622 
623 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
624 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
625 
626 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
627 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
628 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
629 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
630 
631 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
632 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
633 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
634 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
635 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
636 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
637 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
638 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
639 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
640 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
641 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
642 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
643 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
644 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
645 
646 				kp2p->p_uctime_sec = user.u_stats.p_cru.ru_utime.tv_sec +
647 				    user.u_stats.p_cru.ru_stime.tv_sec;
648 				kp2p->p_uctime_usec = user.u_stats.p_cru.ru_utime.tv_usec +
649 				    user.u_stats.p_cru.ru_stime.tv_usec;
650 			}
651 
652 			memcpy(kp2c, &kp2, esize);
653 			kp2c += esize;
654 		}
655 
656 		free(kd->procbase);
657 	}
658 	*cnt = nprocs;
659 	return (kd->procbase2);
660 }
661 
662 struct kinfo_proc *
663 kvm_getprocs(kd, op, arg, cnt)
664 	kvm_t *kd;
665 	int op, arg;
666 	int *cnt;
667 {
668 	size_t size;
669 	int mib[4], st, nprocs;
670 
671 	if (kd->procbase != NULL) {
672 		free(kd->procbase);
673 		/*
674 		 * Clear this pointer in case this call fails.  Otherwise,
675 		 * kvm_close() will free it again.
676 		 */
677 		kd->procbase = NULL;
678 	}
679 	if (ISKMEM(kd)) {
680 		size = 0;
681 		mib[0] = CTL_KERN;
682 		mib[1] = KERN_PROC;
683 		mib[2] = op;
684 		mib[3] = arg;
685 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
686 		if (st == -1) {
687 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
688 			return NULL;
689 		}
690 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
691 		if (kd->procbase == NULL)
692 			return NULL;
693 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
694 		if (st == -1) {
695 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
696 			return NULL;
697 		}
698 		if (size % sizeof(struct kinfo_proc) != 0) {
699 			_kvm_err(kd, kd->program,
700 				"proc size mismatch (%d total, %d chunks)",
701 				size, sizeof(struct kinfo_proc));
702 			return NULL;
703 		}
704 		nprocs = size / sizeof(struct kinfo_proc);
705 	} else if (ISSYSCTL(kd)) {
706 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
707 		    "can't use kvm_getprocs");
708 		return NULL;
709 	} else {
710 		struct nlist nl[5], *p;
711 
712 		nl[0].n_name = "_nprocs";
713 		nl[1].n_name = "_allproc";
714 		nl[2].n_name = "_deadproc";
715 		nl[3].n_name = "_zombproc";
716 		nl[4].n_name = NULL;
717 
718 		if (kvm_nlist(kd, nl) != 0) {
719 			for (p = nl; p->n_type != 0; ++p)
720 				;
721 			_kvm_err(kd, kd->program,
722 				 "%s: no such symbol", p->n_name);
723 			return NULL;
724 		}
725 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
726 			_kvm_err(kd, kd->program, "can't read nprocs");
727 			return NULL;
728 		}
729 		size = nprocs * sizeof(struct kinfo_proc);
730 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
731 		if (kd->procbase == NULL)
732 			return NULL;
733 
734 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
735 		    nl[2].n_value, nl[3].n_value, nprocs);
736 		if (nprocs < 0)
737 			return NULL;
738 #ifdef notdef
739 		size = nprocs * sizeof(struct kinfo_proc);
740 		(void)realloc(kd->procbase, size);
741 #endif
742 	}
743 	*cnt = nprocs;
744 	return (kd->procbase);
745 }
746 
747 void
748 _kvm_freeprocs(kd)
749 	kvm_t *kd;
750 {
751 	if (kd->procbase) {
752 		free(kd->procbase);
753 		kd->procbase = NULL;
754 	}
755 }
756 
757 void *
758 _kvm_realloc(kd, p, n)
759 	kvm_t *kd;
760 	void *p;
761 	size_t n;
762 {
763 	void *np = realloc(p, n);
764 
765 	if (np == NULL)
766 		_kvm_err(kd, kd->program, "out of memory");
767 	return (np);
768 }
769 
770 /*
771  * Read in an argument vector from the user address space of process p.
772  * addr if the user-space base address of narg null-terminated contiguous
773  * strings.  This is used to read in both the command arguments and
774  * environment strings.  Read at most maxcnt characters of strings.
775  */
776 static char **
777 kvm_argv(kd, p, addr, narg, maxcnt)
778 	kvm_t *kd;
779 	const struct miniproc *p;
780 	u_long addr;
781 	int narg;
782 	int maxcnt;
783 {
784 	char *np, *cp, *ep, *ap;
785 	u_long oaddr = (u_long)~0L;
786 	u_long len;
787 	size_t cc;
788 	char **argv;
789 
790 	/*
791 	 * Check that there aren't an unreasonable number of agruments,
792 	 * and that the address is in user space.
793 	 */
794 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
795 		return NULL;
796 
797 	if (kd->argv == NULL) {
798 		/*
799 		 * Try to avoid reallocs.
800 		 */
801 		kd->argc = MAX(narg + 1, 32);
802 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
803 						sizeof(*kd->argv));
804 		if (kd->argv == NULL)
805 			return NULL;
806 	} else if (narg + 1 > kd->argc) {
807 		kd->argc = MAX(2 * kd->argc, narg + 1);
808 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
809 						sizeof(*kd->argv));
810 		if (kd->argv == NULL)
811 			return NULL;
812 	}
813 	if (kd->argspc == NULL) {
814 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
815 		if (kd->argspc == NULL)
816 			return NULL;
817 		kd->arglen = kd->nbpg;
818 	}
819 	if (kd->argbuf == NULL) {
820 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
821 		if (kd->argbuf == NULL)
822 			return NULL;
823 	}
824 	cc = sizeof(char *) * narg;
825 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
826 		return NULL;
827 	ap = np = kd->argspc;
828 	argv = kd->argv;
829 	len = 0;
830 	/*
831 	 * Loop over pages, filling in the argument vector.
832 	 */
833 	while (argv < kd->argv + narg && *argv != NULL) {
834 		addr = (u_long)*argv & ~(kd->nbpg - 1);
835 		if (addr != oaddr) {
836 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
837 			    (size_t)kd->nbpg) != kd->nbpg)
838 				return NULL;
839 			oaddr = addr;
840 		}
841 		addr = (u_long)*argv & (kd->nbpg - 1);
842 		cp = kd->argbuf + (size_t)addr;
843 		cc = kd->nbpg - (size_t)addr;
844 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
845 			cc = (size_t)(maxcnt - len);
846 		ep = memchr(cp, '\0', cc);
847 		if (ep != NULL)
848 			cc = ep - cp + 1;
849 		if (len + cc > kd->arglen) {
850 			int off;
851 			char **pp;
852 			char *op = kd->argspc;
853 
854 			kd->arglen *= 2;
855 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
856 			    (size_t)kd->arglen);
857 			if (kd->argspc == NULL)
858 				return NULL;
859 			/*
860 			 * Adjust argv pointers in case realloc moved
861 			 * the string space.
862 			 */
863 			off = kd->argspc - op;
864 			for (pp = kd->argv; pp < argv; pp++)
865 				*pp += off;
866 			ap += off;
867 			np += off;
868 		}
869 		memcpy(np, cp, cc);
870 		np += cc;
871 		len += cc;
872 		if (ep != NULL) {
873 			*argv++ = ap;
874 			ap = np;
875 		} else
876 			*argv += cc;
877 		if (maxcnt > 0 && len >= maxcnt) {
878 			/*
879 			 * We're stopping prematurely.  Terminate the
880 			 * current string.
881 			 */
882 			if (ep == NULL) {
883 				*np = '\0';
884 				*argv++ = ap;
885 			}
886 			break;
887 		}
888 	}
889 	/* Make sure argv is terminated. */
890 	*argv = NULL;
891 	return (kd->argv);
892 }
893 
894 static void
895 ps_str_a(p, addr, n)
896 	struct ps_strings *p;
897 	u_long *addr;
898 	int *n;
899 {
900 	*addr = (u_long)p->ps_argvstr;
901 	*n = p->ps_nargvstr;
902 }
903 
904 static void
905 ps_str_e(p, addr, n)
906 	struct ps_strings *p;
907 	u_long *addr;
908 	int *n;
909 {
910 	*addr = (u_long)p->ps_envstr;
911 	*n = p->ps_nenvstr;
912 }
913 
914 /*
915  * Determine if the proc indicated by p is still active.
916  * This test is not 100% foolproof in theory, but chances of
917  * being wrong are very low.
918  */
919 static int
920 proc_verify(kd, kernp, p)
921 	kvm_t *kd;
922 	u_long kernp;
923 	const struct miniproc *p;
924 {
925 	struct proc kernproc;
926 
927 	/*
928 	 * Just read in the whole proc.  It's not that big relative
929 	 * to the cost of the read system call.
930 	 */
931 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
932 	    sizeof(kernproc))
933 		return 0;
934 	return (p->p_pid == kernproc.p_pid &&
935 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
936 }
937 
938 static char **
939 kvm_doargv(kd, p, nchr, info)
940 	kvm_t *kd;
941 	const struct miniproc *p;
942 	int nchr;
943 	void (*info)(struct ps_strings *, u_long *, int *);
944 {
945 	char **ap;
946 	u_long addr;
947 	int cnt;
948 	struct ps_strings arginfo;
949 
950 	/*
951 	 * Pointers are stored at the top of the user stack.
952 	 */
953 	if (p->p_stat == SZOMB)
954 		return NULL;
955 	cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
956 	    (void *)&arginfo, sizeof(arginfo));
957 	if (cnt != sizeof(arginfo))
958 		return NULL;
959 
960 	(*info)(&arginfo, &addr, &cnt);
961 	if (cnt == 0)
962 		return NULL;
963 	ap = kvm_argv(kd, p, addr, cnt, nchr);
964 	/*
965 	 * For live kernels, make sure this process didn't go away.
966 	 */
967 	if (ap != NULL && ISALIVE(kd) &&
968 	    !proc_verify(kd, (u_long)p->p_paddr, p))
969 		ap = NULL;
970 	return (ap);
971 }
972 
973 /*
974  * Get the command args.  This code is now machine independent.
975  */
976 char **
977 kvm_getargv(kd, kp, nchr)
978 	kvm_t *kd;
979 	const struct kinfo_proc *kp;
980 	int nchr;
981 {
982 	struct miniproc p;
983 
984 	KPTOMINI(kp, &p);
985 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
986 }
987 
988 char **
989 kvm_getenvv(kd, kp, nchr)
990 	kvm_t *kd;
991 	const struct kinfo_proc *kp;
992 	int nchr;
993 {
994 	struct miniproc p;
995 
996 	KPTOMINI(kp, &p);
997 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
998 }
999 
1000 static char **
1001 kvm_doargv2(kd, pid, type, nchr)
1002 	kvm_t *kd;
1003 	pid_t pid;
1004 	int type;
1005 	int nchr;
1006 {
1007 	size_t bufs;
1008 	int narg, newarglen, mib[4];
1009 	char **ap, *bp, *endp;
1010 
1011 	/*
1012 	 * Check that there aren't an unreasonable number of agruments.
1013 	 */
1014 	if (nchr > ARG_MAX)
1015 		return NULL;
1016 
1017 	if (nchr == 0)
1018 		nchr = ARG_MAX;
1019 
1020 	/* Get number of strings in argv */
1021 	mib[0] = CTL_KERN;
1022 	mib[1] = KERN_PROC_ARGS;
1023 	mib[2] = pid;
1024 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1025 	bufs = sizeof(narg);
1026 	if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
1027 		return NULL;
1028 
1029 	if (kd->argv == NULL) {
1030 		/*
1031 		 * Try to avoid reallocs.
1032 		 */
1033 		kd->argc = MAX(narg + 1, 32);
1034 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1035 						sizeof(*kd->argv));
1036 		if (kd->argv == NULL)
1037 			return NULL;
1038 	} else if (narg + 1 > kd->argc) {
1039 		kd->argc = MAX(2 * kd->argc, narg + 1);
1040 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1041 						sizeof(*kd->argv));
1042 		if (kd->argv == NULL)
1043 			return NULL;
1044 	}
1045 
1046 	newarglen = MIN(nchr, ARG_MAX);
1047 	if (kd->arglen < newarglen) {
1048 		if (kd->arglen == 0)
1049 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1050 		else
1051 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1052 			    newarglen);
1053 		if (kd->argspc == NULL)
1054 			return NULL;
1055 		kd->arglen = newarglen;
1056 	}
1057 	memset(kd->argspc, 0, kd->arglen);	/* XXX necessary? */
1058 
1059 	mib[0] = CTL_KERN;
1060 	mib[1] = KERN_PROC_ARGS;
1061 	mib[2] = pid;
1062 	mib[3] = type;
1063 	bufs = kd->arglen;
1064 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
1065 		return NULL;
1066 
1067 	bp = kd->argspc;
1068 	ap = kd->argv;
1069 	endp = bp + MIN(nchr, bufs);
1070 
1071 	while (bp < endp) {
1072 		*ap++ = bp;
1073 		/* XXX: don't need following anymore, or stick check for max argc in above while loop? */
1074 		if (ap >= kd->argv + kd->argc) {
1075 			kd->argc *= 2;
1076 			kd->argv = _kvm_realloc(kd, kd->argv,
1077 			    kd->argc * sizeof(*kd->argv));
1078 		}
1079 		bp += strlen(bp) + 1;
1080 	}
1081 	*ap = NULL;
1082 
1083 	return (kd->argv);
1084 }
1085 
1086 char **
1087 kvm_getargv2(kd, kp, nchr)
1088 	kvm_t *kd;
1089 	const struct kinfo_proc2 *kp;
1090 	int nchr;
1091 {
1092 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1093 }
1094 
1095 char **
1096 kvm_getenvv2(kd, kp, nchr)
1097 	kvm_t *kd;
1098 	const struct kinfo_proc2 *kp;
1099 	int nchr;
1100 {
1101 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1102 }
1103 
1104 /*
1105  * Read from user space.  The user context is given by p.
1106  */
1107 static ssize_t
1108 kvm_ureadm(kd, p, uva, buf, len)
1109 	kvm_t *kd;
1110 	const struct miniproc *p;
1111 	u_long uva;
1112 	char *buf;
1113 	size_t len;
1114 {
1115 	char *cp;
1116 
1117 	cp = buf;
1118 	while (len > 0) {
1119 		size_t cc;
1120 		char *dp;
1121 		u_long cnt;
1122 
1123 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1124 		if (dp == NULL) {
1125 			_kvm_err(kd, 0, "invalid address (%x)", uva);
1126 			return 0;
1127 		}
1128 		cc = (size_t)MIN(cnt, len);
1129 		memcpy(cp, dp, cc);
1130 		cp += cc;
1131 		uva += cc;
1132 		len -= cc;
1133 	}
1134 	return (ssize_t)(cp - buf);
1135 }
1136 
1137 ssize_t
1138 kvm_uread(kd, p, uva, buf, len)
1139 	kvm_t *kd;
1140 	const struct proc *p;
1141 	u_long uva;
1142 	char *buf;
1143 	size_t len;
1144 {
1145 	struct miniproc mp;
1146 
1147 	PTOMINI(p, &mp);
1148 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1149 }
1150