1 /* $NetBSD: kvm_proc.c,v 1.36 2000/06/04 23:03:27 tron Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. All advertising materials mentioning features or use of this software 56 * must display the following acknowledgement: 57 * This product includes software developed by the University of 58 * California, Berkeley and its contributors. 59 * 4. Neither the name of the University nor the names of its contributors 60 * may be used to endorse or promote products derived from this software 61 * without specific prior written permission. 62 * 63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 73 * SUCH DAMAGE. 74 */ 75 76 #include <sys/cdefs.h> 77 #if defined(LIBC_SCCS) && !defined(lint) 78 #if 0 79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 80 #else 81 __RCSID("$NetBSD: kvm_proc.c,v 1.36 2000/06/04 23:03:27 tron Exp $"); 82 #endif 83 #endif /* LIBC_SCCS and not lint */ 84 85 /* 86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 87 * users of this code, so we've factored it out into a separate module. 88 * Thus, we keep this grunge out of the other kvm applications (i.e., 89 * most other applications are interested only in open/close/read/nlist). 90 */ 91 92 #include <sys/param.h> 93 #include <sys/user.h> 94 #include <sys/proc.h> 95 #include <sys/exec.h> 96 #include <sys/stat.h> 97 #include <sys/ioctl.h> 98 #include <sys/tty.h> 99 #include <stdlib.h> 100 #include <string.h> 101 #include <unistd.h> 102 #include <nlist.h> 103 #include <kvm.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 108 #include <uvm/uvm_extern.h> 109 #include <uvm/uvm_amap.h> 110 111 #include <sys/sysctl.h> 112 113 #include <limits.h> 114 #include <db.h> 115 #include <paths.h> 116 117 #include "kvm_private.h" 118 119 /* 120 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 121 */ 122 struct miniproc { 123 struct vmspace *p_vmspace; 124 char p_stat; 125 struct proc *p_paddr; 126 pid_t p_pid; 127 }; 128 129 /* 130 * Convert from struct proc and kinfo_proc{,2} to miniproc. 131 */ 132 #define PTOMINI(kp, p) \ 133 do { \ 134 (p)->p_stat = (kp)->p_stat; \ 135 (p)->p_pid = (kp)->p_pid; \ 136 (p)->p_paddr = NULL; \ 137 (p)->p_vmspace = (kp)->p_vmspace; \ 138 } while (/*CONSTCOND*/0); 139 140 #define KPTOMINI(kp, p) \ 141 do { \ 142 (p)->p_stat = (kp)->kp_proc.p_stat; \ 143 (p)->p_pid = (kp)->kp_proc.p_pid; \ 144 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 145 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 146 } while (/*CONSTCOND*/0); 147 148 #define KP2TOMINI(kp, p) \ 149 do { \ 150 (p)->p_stat = (kp)->p_stat; \ 151 (p)->p_pid = (kp)->p_pid; \ 152 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 153 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 154 } while (/*CONSTCOND*/0); 155 156 157 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo)) 158 159 #define KREAD(kd, addr, obj) \ 160 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 161 162 /* XXX: What uses these two functions? */ 163 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 164 u_long *)); 165 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 166 size_t)); 167 168 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 169 u_long *)); 170 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 171 char *, size_t)); 172 173 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 174 int)); 175 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long, 176 int)); 177 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 178 void (*)(struct ps_strings *, u_long *, int *))); 179 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 180 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 181 struct kinfo_proc *, int)); 182 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 183 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 184 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 185 186 187 static char * 188 _kvm_ureadm(kd, p, va, cnt) 189 kvm_t *kd; 190 const struct miniproc *p; 191 u_long va; 192 u_long *cnt; 193 { 194 int true = 1; 195 u_long addr, head; 196 u_long offset; 197 struct vm_map_entry vme; 198 struct vm_amap amap; 199 struct vm_anon *anonp, anon; 200 struct vm_page pg; 201 u_long slot; 202 203 if (kd->swapspc == NULL) { 204 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 205 if (kd->swapspc == NULL) 206 return NULL; 207 } 208 209 /* 210 * Look through the address map for the memory object 211 * that corresponds to the given virtual address. 212 * The header just has the entire valid range. 213 */ 214 head = (u_long)&p->p_vmspace->vm_map.header; 215 addr = head; 216 while (true) { 217 if (KREAD(kd, addr, &vme)) 218 return NULL; 219 220 if (va >= vme.start && va < vme.end && 221 vme.aref.ar_amap != NULL) 222 break; 223 224 addr = (u_long)vme.next; 225 if (addr == head) 226 return NULL; 227 228 } 229 230 /* 231 * we found the map entry, now to find the object... 232 */ 233 if (vme.aref.ar_amap == NULL) 234 return NULL; 235 236 addr = (u_long)vme.aref.ar_amap; 237 if (KREAD(kd, addr, &amap)) 238 return NULL; 239 240 offset = va - vme.start; 241 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 242 /* sanity-check slot number */ 243 if (slot > amap.am_nslot) 244 return NULL; 245 246 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 247 if (KREAD(kd, addr, &anonp)) 248 return NULL; 249 250 addr = (u_long)anonp; 251 if (KREAD(kd, addr, &anon)) 252 return NULL; 253 254 addr = (u_long)anon.u.an_page; 255 if (addr) { 256 if (KREAD(kd, addr, &pg)) 257 return NULL; 258 259 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 260 (off_t)pg.phys_addr) != kd->nbpg) 261 return NULL; 262 } 263 else { 264 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg, 265 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 266 return NULL; 267 } 268 269 /* Found the page. */ 270 offset %= kd->nbpg; 271 *cnt = kd->nbpg - offset; 272 return (&kd->swapspc[(size_t)offset]); 273 } 274 275 char * 276 _kvm_uread(kd, p, va, cnt) 277 kvm_t *kd; 278 const struct proc *p; 279 u_long va; 280 u_long *cnt; 281 { 282 struct miniproc mp; 283 284 PTOMINI(p, &mp); 285 return (_kvm_ureadm(kd, &mp, va, cnt)); 286 } 287 288 /* 289 * Read proc's from memory file into buffer bp, which has space to hold 290 * at most maxcnt procs. 291 */ 292 static int 293 kvm_proclist(kd, what, arg, p, bp, maxcnt) 294 kvm_t *kd; 295 int what, arg; 296 struct proc *p; 297 struct kinfo_proc *bp; 298 int maxcnt; 299 { 300 int cnt = 0; 301 struct eproc eproc; 302 struct pgrp pgrp; 303 struct session sess; 304 struct tty tty; 305 struct proc proc; 306 307 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 308 if (KREAD(kd, (u_long)p, &proc)) { 309 _kvm_err(kd, kd->program, "can't read proc at %x", p); 310 return (-1); 311 } 312 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 313 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 314 &eproc.e_ucred)) { 315 _kvm_err(kd, kd->program, 316 "can't read proc credentials at %x", p); 317 return -1; 318 } 319 320 switch(what) { 321 322 case KERN_PROC_PID: 323 if (proc.p_pid != (pid_t)arg) 324 continue; 325 break; 326 327 case KERN_PROC_UID: 328 if (eproc.e_ucred.cr_uid != (uid_t)arg) 329 continue; 330 break; 331 332 case KERN_PROC_RUID: 333 if (eproc.e_pcred.p_ruid != (uid_t)arg) 334 continue; 335 break; 336 } 337 /* 338 * We're going to add another proc to the set. If this 339 * will overflow the buffer, assume the reason is because 340 * nprocs (or the proc list) is corrupt and declare an error. 341 */ 342 if (cnt >= maxcnt) { 343 _kvm_err(kd, kd->program, "nprocs corrupt"); 344 return (-1); 345 } 346 /* 347 * gather eproc 348 */ 349 eproc.e_paddr = p; 350 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 351 _kvm_err(kd, kd->program, "can't read pgrp at %x", 352 proc.p_pgrp); 353 return (-1); 354 } 355 eproc.e_sess = pgrp.pg_session; 356 eproc.e_pgid = pgrp.pg_id; 357 eproc.e_jobc = pgrp.pg_jobc; 358 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 359 _kvm_err(kd, kd->program, "can't read session at %x", 360 pgrp.pg_session); 361 return (-1); 362 } 363 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 364 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 365 _kvm_err(kd, kd->program, 366 "can't read tty at %x", sess.s_ttyp); 367 return (-1); 368 } 369 eproc.e_tdev = tty.t_dev; 370 eproc.e_tsess = tty.t_session; 371 if (tty.t_pgrp != NULL) { 372 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 373 _kvm_err(kd, kd->program, 374 "can't read tpgrp at &x", 375 tty.t_pgrp); 376 return (-1); 377 } 378 eproc.e_tpgid = pgrp.pg_id; 379 } else 380 eproc.e_tpgid = -1; 381 } else 382 eproc.e_tdev = NODEV; 383 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 384 eproc.e_sid = sess.s_sid; 385 if (sess.s_leader == p) 386 eproc.e_flag |= EPROC_SLEADER; 387 if (proc.p_wmesg) 388 (void)kvm_read(kd, (u_long)proc.p_wmesg, 389 eproc.e_wmesg, WMESGLEN); 390 391 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 392 sizeof(eproc.e_vm)); 393 394 eproc.e_xsize = eproc.e_xrssize = 0; 395 eproc.e_xccount = eproc.e_xswrss = 0; 396 397 switch (what) { 398 399 case KERN_PROC_PGRP: 400 if (eproc.e_pgid != (pid_t)arg) 401 continue; 402 break; 403 404 case KERN_PROC_TTY: 405 if ((proc.p_flag & P_CONTROLT) == 0 || 406 eproc.e_tdev != (dev_t)arg) 407 continue; 408 break; 409 } 410 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 411 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 412 ++bp; 413 ++cnt; 414 } 415 return (cnt); 416 } 417 418 /* 419 * Build proc info array by reading in proc list from a crash dump. 420 * Return number of procs read. maxcnt is the max we will read. 421 */ 422 static int 423 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt) 424 kvm_t *kd; 425 int what, arg; 426 u_long a_allproc; 427 u_long a_deadproc; 428 u_long a_zombproc; 429 int maxcnt; 430 { 431 struct kinfo_proc *bp = kd->procbase; 432 int acnt, dcnt, zcnt; 433 struct proc *p; 434 435 if (KREAD(kd, a_allproc, &p)) { 436 _kvm_err(kd, kd->program, "cannot read allproc"); 437 return (-1); 438 } 439 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 440 if (acnt < 0) 441 return (acnt); 442 443 if (KREAD(kd, a_deadproc, &p)) { 444 _kvm_err(kd, kd->program, "cannot read deadproc"); 445 return (-1); 446 } 447 448 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt); 449 if (dcnt < 0) 450 dcnt = 0; 451 452 if (KREAD(kd, a_zombproc, &p)) { 453 _kvm_err(kd, kd->program, "cannot read zombproc"); 454 return (-1); 455 } 456 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 457 maxcnt - (acnt + dcnt)); 458 if (zcnt < 0) 459 zcnt = 0; 460 461 return (acnt + zcnt); 462 } 463 464 struct kinfo_proc2 * 465 kvm_getproc2(kd, op, arg, esize, cnt) 466 kvm_t *kd; 467 int op, arg; 468 size_t esize; 469 int *cnt; 470 { 471 size_t size; 472 int mib[6], st, nprocs; 473 struct user user; 474 475 if (esize < 0) 476 return NULL; 477 478 if (kd->procbase2 != NULL) { 479 free(kd->procbase2); 480 /* 481 * Clear this pointer in case this call fails. Otherwise, 482 * kvm_close() will free it again. 483 */ 484 kd->procbase2 = NULL; 485 } 486 487 if (ISSYSCTL(kd)) { 488 size = 0; 489 mib[0] = CTL_KERN; 490 mib[1] = KERN_PROC2; 491 mib[2] = op; 492 mib[3] = arg; 493 mib[4] = esize; 494 mib[5] = 0; 495 st = sysctl(mib, 6, NULL, &size, NULL, 0); 496 if (st == -1) { 497 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 498 return NULL; 499 } 500 501 mib[5] = size / esize; 502 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size); 503 if (kd->procbase2 == NULL) 504 return NULL; 505 st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0); 506 if (st == -1) { 507 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 508 return NULL; 509 } 510 nprocs = size / esize; 511 } else { 512 char *kp2c; 513 struct kinfo_proc *kp; 514 struct kinfo_proc2 kp2, *kp2p; 515 int i; 516 517 kp = kvm_getprocs(kd, op, arg, &nprocs); 518 if (kp == NULL) 519 return NULL; 520 521 kd->procbase2 = _kvm_malloc(kd, nprocs * esize); 522 kp2c = (char *)kd->procbase2; 523 kp2p = &kp2; 524 for (i = 0; i < nprocs; i++, kp++) { 525 memset(kp2p, 0, sizeof(kp2)); 526 kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw); 527 kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back); 528 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr); 529 530 kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr); 531 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd); 532 kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi); 533 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats); 534 kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit); 535 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace); 536 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts); 537 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess); 538 kp2p->p_tsess = 0; 539 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru); 540 541 kp2p->p_eflag = 0; 542 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 543 kp2p->p_flag = kp->kp_proc.p_flag; 544 545 kp2p->p_pid = kp->kp_proc.p_pid; 546 547 kp2p->p_ppid = kp->kp_eproc.e_ppid; 548 kp2p->p_sid = kp->kp_eproc.e_sid; 549 kp2p->p__pgid = kp->kp_eproc.e_pgid; 550 551 kp2p->p_tpgid = 30001 /* XXX NO_PID! */; 552 553 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 554 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 555 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 556 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 557 558 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 559 MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups))); 560 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 561 562 kp2p->p_jobc = kp->kp_eproc.e_jobc; 563 kp2p->p_tdev = kp->kp_eproc.e_tdev; 564 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 565 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess); 566 567 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 568 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu; 569 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu; 570 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 571 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 572 kp2p->p_swtime = kp->kp_proc.p_swtime; 573 kp2p->p_slptime = kp->kp_proc.p_slptime; 574 #if 0 /* XXX thorpej */ 575 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 576 #else 577 kp2p->p_schedflags = 0; 578 #endif 579 580 kp2p->p_uticks = kp->kp_proc.p_uticks; 581 kp2p->p_sticks = kp->kp_proc.p_sticks; 582 kp2p->p_iticks = kp->kp_proc.p_iticks; 583 584 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep); 585 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 586 587 kp2p->p_holdcnt = kp->kp_proc.p_holdcnt; 588 589 memcpy(&kp2p->p_siglist, &kp->kp_proc.p_siglist, sizeof(ki_sigset_t)); 590 memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigmask, sizeof(ki_sigset_t)); 591 memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigignore, sizeof(ki_sigset_t)); 592 memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigcatch, sizeof(ki_sigset_t)); 593 594 kp2p->p_stat = kp->kp_proc.p_stat; 595 kp2p->p_priority = kp->kp_proc.p_priority; 596 kp2p->p_usrpri = kp->kp_proc.p_usrpri; 597 kp2p->p_nice = kp->kp_proc.p_nice; 598 599 kp2p->p_xstat = kp->kp_proc.p_xstat; 600 kp2p->p_acflag = kp->kp_proc.p_acflag; 601 602 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 603 MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm))); 604 605 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg)); 606 kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan); 607 608 strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login)); 609 610 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 611 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 612 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 613 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 614 615 kp2p->p_eflag = kp->kp_eproc.e_flag; 616 617 if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL || 618 KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) { 619 kp2p->p_uvalid = 0; 620 } else { 621 kp2p->p_uvalid = 1; 622 623 kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec; 624 kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec; 625 626 kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec; 627 kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec; 628 kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec; 629 kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec; 630 631 kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss; 632 kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss; 633 kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss; 634 kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss; 635 kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt; 636 kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt; 637 kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap; 638 kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock; 639 kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock; 640 kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd; 641 kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv; 642 kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals; 643 kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw; 644 kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw; 645 646 kp2p->p_uctime_sec = user.u_stats.p_cru.ru_utime.tv_sec + 647 user.u_stats.p_cru.ru_stime.tv_sec; 648 kp2p->p_uctime_usec = user.u_stats.p_cru.ru_utime.tv_usec + 649 user.u_stats.p_cru.ru_stime.tv_usec; 650 } 651 652 memcpy(kp2c, &kp2, esize); 653 kp2c += esize; 654 } 655 656 free(kd->procbase); 657 } 658 *cnt = nprocs; 659 return (kd->procbase2); 660 } 661 662 struct kinfo_proc * 663 kvm_getprocs(kd, op, arg, cnt) 664 kvm_t *kd; 665 int op, arg; 666 int *cnt; 667 { 668 size_t size; 669 int mib[4], st, nprocs; 670 671 if (kd->procbase != NULL) { 672 free(kd->procbase); 673 /* 674 * Clear this pointer in case this call fails. Otherwise, 675 * kvm_close() will free it again. 676 */ 677 kd->procbase = NULL; 678 } 679 if (ISKMEM(kd)) { 680 size = 0; 681 mib[0] = CTL_KERN; 682 mib[1] = KERN_PROC; 683 mib[2] = op; 684 mib[3] = arg; 685 st = sysctl(mib, 4, NULL, &size, NULL, 0); 686 if (st == -1) { 687 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 688 return NULL; 689 } 690 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 691 if (kd->procbase == NULL) 692 return NULL; 693 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 694 if (st == -1) { 695 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 696 return NULL; 697 } 698 if (size % sizeof(struct kinfo_proc) != 0) { 699 _kvm_err(kd, kd->program, 700 "proc size mismatch (%d total, %d chunks)", 701 size, sizeof(struct kinfo_proc)); 702 return NULL; 703 } 704 nprocs = size / sizeof(struct kinfo_proc); 705 } else if (ISSYSCTL(kd)) { 706 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 707 "can't use kvm_getprocs"); 708 return NULL; 709 } else { 710 struct nlist nl[5], *p; 711 712 nl[0].n_name = "_nprocs"; 713 nl[1].n_name = "_allproc"; 714 nl[2].n_name = "_deadproc"; 715 nl[3].n_name = "_zombproc"; 716 nl[4].n_name = NULL; 717 718 if (kvm_nlist(kd, nl) != 0) { 719 for (p = nl; p->n_type != 0; ++p) 720 ; 721 _kvm_err(kd, kd->program, 722 "%s: no such symbol", p->n_name); 723 return NULL; 724 } 725 if (KREAD(kd, nl[0].n_value, &nprocs)) { 726 _kvm_err(kd, kd->program, "can't read nprocs"); 727 return NULL; 728 } 729 size = nprocs * sizeof(struct kinfo_proc); 730 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 731 if (kd->procbase == NULL) 732 return NULL; 733 734 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 735 nl[2].n_value, nl[3].n_value, nprocs); 736 if (nprocs < 0) 737 return NULL; 738 #ifdef notdef 739 size = nprocs * sizeof(struct kinfo_proc); 740 (void)realloc(kd->procbase, size); 741 #endif 742 } 743 *cnt = nprocs; 744 return (kd->procbase); 745 } 746 747 void 748 _kvm_freeprocs(kd) 749 kvm_t *kd; 750 { 751 if (kd->procbase) { 752 free(kd->procbase); 753 kd->procbase = NULL; 754 } 755 } 756 757 void * 758 _kvm_realloc(kd, p, n) 759 kvm_t *kd; 760 void *p; 761 size_t n; 762 { 763 void *np = realloc(p, n); 764 765 if (np == NULL) 766 _kvm_err(kd, kd->program, "out of memory"); 767 return (np); 768 } 769 770 /* 771 * Read in an argument vector from the user address space of process p. 772 * addr if the user-space base address of narg null-terminated contiguous 773 * strings. This is used to read in both the command arguments and 774 * environment strings. Read at most maxcnt characters of strings. 775 */ 776 static char ** 777 kvm_argv(kd, p, addr, narg, maxcnt) 778 kvm_t *kd; 779 const struct miniproc *p; 780 u_long addr; 781 int narg; 782 int maxcnt; 783 { 784 char *np, *cp, *ep, *ap; 785 u_long oaddr = (u_long)~0L; 786 u_long len; 787 size_t cc; 788 char **argv; 789 790 /* 791 * Check that there aren't an unreasonable number of agruments, 792 * and that the address is in user space. 793 */ 794 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 795 return NULL; 796 797 if (kd->argv == NULL) { 798 /* 799 * Try to avoid reallocs. 800 */ 801 kd->argc = MAX(narg + 1, 32); 802 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 803 sizeof(*kd->argv)); 804 if (kd->argv == NULL) 805 return NULL; 806 } else if (narg + 1 > kd->argc) { 807 kd->argc = MAX(2 * kd->argc, narg + 1); 808 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 809 sizeof(*kd->argv)); 810 if (kd->argv == NULL) 811 return NULL; 812 } 813 if (kd->argspc == NULL) { 814 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 815 if (kd->argspc == NULL) 816 return NULL; 817 kd->arglen = kd->nbpg; 818 } 819 if (kd->argbuf == NULL) { 820 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 821 if (kd->argbuf == NULL) 822 return NULL; 823 } 824 cc = sizeof(char *) * narg; 825 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 826 return NULL; 827 ap = np = kd->argspc; 828 argv = kd->argv; 829 len = 0; 830 /* 831 * Loop over pages, filling in the argument vector. 832 */ 833 while (argv < kd->argv + narg && *argv != NULL) { 834 addr = (u_long)*argv & ~(kd->nbpg - 1); 835 if (addr != oaddr) { 836 if (kvm_ureadm(kd, p, addr, kd->argbuf, 837 (size_t)kd->nbpg) != kd->nbpg) 838 return NULL; 839 oaddr = addr; 840 } 841 addr = (u_long)*argv & (kd->nbpg - 1); 842 cp = kd->argbuf + (size_t)addr; 843 cc = kd->nbpg - (size_t)addr; 844 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 845 cc = (size_t)(maxcnt - len); 846 ep = memchr(cp, '\0', cc); 847 if (ep != NULL) 848 cc = ep - cp + 1; 849 if (len + cc > kd->arglen) { 850 int off; 851 char **pp; 852 char *op = kd->argspc; 853 854 kd->arglen *= 2; 855 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 856 (size_t)kd->arglen); 857 if (kd->argspc == NULL) 858 return NULL; 859 /* 860 * Adjust argv pointers in case realloc moved 861 * the string space. 862 */ 863 off = kd->argspc - op; 864 for (pp = kd->argv; pp < argv; pp++) 865 *pp += off; 866 ap += off; 867 np += off; 868 } 869 memcpy(np, cp, cc); 870 np += cc; 871 len += cc; 872 if (ep != NULL) { 873 *argv++ = ap; 874 ap = np; 875 } else 876 *argv += cc; 877 if (maxcnt > 0 && len >= maxcnt) { 878 /* 879 * We're stopping prematurely. Terminate the 880 * current string. 881 */ 882 if (ep == NULL) { 883 *np = '\0'; 884 *argv++ = ap; 885 } 886 break; 887 } 888 } 889 /* Make sure argv is terminated. */ 890 *argv = NULL; 891 return (kd->argv); 892 } 893 894 static void 895 ps_str_a(p, addr, n) 896 struct ps_strings *p; 897 u_long *addr; 898 int *n; 899 { 900 *addr = (u_long)p->ps_argvstr; 901 *n = p->ps_nargvstr; 902 } 903 904 static void 905 ps_str_e(p, addr, n) 906 struct ps_strings *p; 907 u_long *addr; 908 int *n; 909 { 910 *addr = (u_long)p->ps_envstr; 911 *n = p->ps_nenvstr; 912 } 913 914 /* 915 * Determine if the proc indicated by p is still active. 916 * This test is not 100% foolproof in theory, but chances of 917 * being wrong are very low. 918 */ 919 static int 920 proc_verify(kd, kernp, p) 921 kvm_t *kd; 922 u_long kernp; 923 const struct miniproc *p; 924 { 925 struct proc kernproc; 926 927 /* 928 * Just read in the whole proc. It's not that big relative 929 * to the cost of the read system call. 930 */ 931 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 932 sizeof(kernproc)) 933 return 0; 934 return (p->p_pid == kernproc.p_pid && 935 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 936 } 937 938 static char ** 939 kvm_doargv(kd, p, nchr, info) 940 kvm_t *kd; 941 const struct miniproc *p; 942 int nchr; 943 void (*info)(struct ps_strings *, u_long *, int *); 944 { 945 char **ap; 946 u_long addr; 947 int cnt; 948 struct ps_strings arginfo; 949 950 /* 951 * Pointers are stored at the top of the user stack. 952 */ 953 if (p->p_stat == SZOMB) 954 return NULL; 955 cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 956 (void *)&arginfo, sizeof(arginfo)); 957 if (cnt != sizeof(arginfo)) 958 return NULL; 959 960 (*info)(&arginfo, &addr, &cnt); 961 if (cnt == 0) 962 return NULL; 963 ap = kvm_argv(kd, p, addr, cnt, nchr); 964 /* 965 * For live kernels, make sure this process didn't go away. 966 */ 967 if (ap != NULL && ISALIVE(kd) && 968 !proc_verify(kd, (u_long)p->p_paddr, p)) 969 ap = NULL; 970 return (ap); 971 } 972 973 /* 974 * Get the command args. This code is now machine independent. 975 */ 976 char ** 977 kvm_getargv(kd, kp, nchr) 978 kvm_t *kd; 979 const struct kinfo_proc *kp; 980 int nchr; 981 { 982 struct miniproc p; 983 984 KPTOMINI(kp, &p); 985 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 986 } 987 988 char ** 989 kvm_getenvv(kd, kp, nchr) 990 kvm_t *kd; 991 const struct kinfo_proc *kp; 992 int nchr; 993 { 994 struct miniproc p; 995 996 KPTOMINI(kp, &p); 997 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 998 } 999 1000 static char ** 1001 kvm_doargv2(kd, pid, type, nchr) 1002 kvm_t *kd; 1003 pid_t pid; 1004 int type; 1005 int nchr; 1006 { 1007 size_t bufs; 1008 int narg, newarglen, mib[4]; 1009 char **ap, *bp, *endp; 1010 1011 /* 1012 * Check that there aren't an unreasonable number of agruments. 1013 */ 1014 if (nchr > ARG_MAX) 1015 return NULL; 1016 1017 if (nchr == 0) 1018 nchr = ARG_MAX; 1019 1020 /* Get number of strings in argv */ 1021 mib[0] = CTL_KERN; 1022 mib[1] = KERN_PROC_ARGS; 1023 mib[2] = pid; 1024 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1025 bufs = sizeof(narg); 1026 if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1) 1027 return NULL; 1028 1029 if (kd->argv == NULL) { 1030 /* 1031 * Try to avoid reallocs. 1032 */ 1033 kd->argc = MAX(narg + 1, 32); 1034 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 1035 sizeof(*kd->argv)); 1036 if (kd->argv == NULL) 1037 return NULL; 1038 } else if (narg + 1 > kd->argc) { 1039 kd->argc = MAX(2 * kd->argc, narg + 1); 1040 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 1041 sizeof(*kd->argv)); 1042 if (kd->argv == NULL) 1043 return NULL; 1044 } 1045 1046 newarglen = MIN(nchr, ARG_MAX); 1047 if (kd->arglen < newarglen) { 1048 if (kd->arglen == 0) 1049 kd->argspc = (char *)_kvm_malloc(kd, newarglen); 1050 else 1051 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 1052 newarglen); 1053 if (kd->argspc == NULL) 1054 return NULL; 1055 kd->arglen = newarglen; 1056 } 1057 memset(kd->argspc, 0, kd->arglen); /* XXX necessary? */ 1058 1059 mib[0] = CTL_KERN; 1060 mib[1] = KERN_PROC_ARGS; 1061 mib[2] = pid; 1062 mib[3] = type; 1063 bufs = kd->arglen; 1064 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1) 1065 return NULL; 1066 1067 bp = kd->argspc; 1068 ap = kd->argv; 1069 endp = bp + MIN(nchr, bufs); 1070 1071 while (bp < endp) { 1072 *ap++ = bp; 1073 /* XXX: don't need following anymore, or stick check for max argc in above while loop? */ 1074 if (ap >= kd->argv + kd->argc) { 1075 kd->argc *= 2; 1076 kd->argv = _kvm_realloc(kd, kd->argv, 1077 kd->argc * sizeof(*kd->argv)); 1078 } 1079 bp += strlen(bp) + 1; 1080 } 1081 *ap = NULL; 1082 1083 return (kd->argv); 1084 } 1085 1086 char ** 1087 kvm_getargv2(kd, kp, nchr) 1088 kvm_t *kd; 1089 const struct kinfo_proc2 *kp; 1090 int nchr; 1091 { 1092 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1093 } 1094 1095 char ** 1096 kvm_getenvv2(kd, kp, nchr) 1097 kvm_t *kd; 1098 const struct kinfo_proc2 *kp; 1099 int nchr; 1100 { 1101 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1102 } 1103 1104 /* 1105 * Read from user space. The user context is given by p. 1106 */ 1107 static ssize_t 1108 kvm_ureadm(kd, p, uva, buf, len) 1109 kvm_t *kd; 1110 const struct miniproc *p; 1111 u_long uva; 1112 char *buf; 1113 size_t len; 1114 { 1115 char *cp; 1116 1117 cp = buf; 1118 while (len > 0) { 1119 size_t cc; 1120 char *dp; 1121 u_long cnt; 1122 1123 dp = _kvm_ureadm(kd, p, uva, &cnt); 1124 if (dp == NULL) { 1125 _kvm_err(kd, 0, "invalid address (%x)", uva); 1126 return 0; 1127 } 1128 cc = (size_t)MIN(cnt, len); 1129 memcpy(cp, dp, cc); 1130 cp += cc; 1131 uva += cc; 1132 len -= cc; 1133 } 1134 return (ssize_t)(cp - buf); 1135 } 1136 1137 ssize_t 1138 kvm_uread(kd, p, uva, buf, len) 1139 kvm_t *kd; 1140 const struct proc *p; 1141 u_long uva; 1142 char *buf; 1143 size_t len; 1144 { 1145 struct miniproc mp; 1146 1147 PTOMINI(p, &mp); 1148 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1149 } 1150