xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision 1394f01b4a9e99092957ca5d824d67219565d9b5)
1 /*	$NetBSD: kvm_proc.c,v 1.17 1997/06/20 05:18:22 mikel Exp $	*/
2 
3 /*-
4  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
5  * Copyright (c) 1989, 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software developed by the Computer Systems
9  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10  * BG 91-66 and contributed to Berkeley.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  */
40 
41 #if defined(LIBC_SCCS) && !defined(lint)
42 #if 0
43 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
44 #else
45 static char *rcsid = "$NetBSD: kvm_proc.c,v 1.17 1997/06/20 05:18:22 mikel Exp $";
46 #endif
47 #endif /* LIBC_SCCS and not lint */
48 
49 /*
50  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
51  * users of this code, so we've factored it out into a separate module.
52  * Thus, we keep this grunge out of the other kvm applications (i.e.,
53  * most other applications are interested only in open/close/read/nlist).
54  */
55 
56 #include <sys/param.h>
57 #include <sys/user.h>
58 #include <sys/proc.h>
59 #include <sys/exec.h>
60 #include <sys/stat.h>
61 #include <sys/ioctl.h>
62 #include <sys/tty.h>
63 #include <stdlib.h>
64 #include <string.h>
65 #include <unistd.h>
66 #include <nlist.h>
67 #include <kvm.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/swap_pager.h>
72 
73 #include <sys/sysctl.h>
74 
75 #include <limits.h>
76 #include <db.h>
77 #include <paths.h>
78 
79 #include "kvm_private.h"
80 
81 #define KREAD(kd, addr, obj) \
82 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
83 
84 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
85 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
86 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
87 		    size_t));
88 
89 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
90 		    int));
91 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
92 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
93 		    void (*)(struct ps_strings *, u_long *, int *)));
94 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
95 		    struct kinfo_proc *, int));
96 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
97 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
98 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
99 
100 char *
101 _kvm_uread(kd, p, va, cnt)
102 	kvm_t *kd;
103 	const struct proc *p;
104 	u_long va;
105 	u_long *cnt;
106 {
107 	register u_long addr, head;
108 	register u_long offset;
109 	struct vm_map_entry vme;
110 	struct vm_object vmo;
111 	int rv;
112 
113 	if (kd->swapspc == 0) {
114 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
115 		if (kd->swapspc == 0)
116 			return (0);
117 	}
118 
119 	/*
120 	 * Look through the address map for the memory object
121 	 * that corresponds to the given virtual address.
122 	 * The header just has the entire valid range.
123 	 */
124 	head = (u_long)&p->p_vmspace->vm_map.header;
125 	addr = head;
126 	while (1) {
127 		if (KREAD(kd, addr, &vme))
128 			return (0);
129 
130 		if (va >= vme.start && va < vme.end &&
131 		    vme.object.vm_object != 0)
132 			break;
133 
134 		addr = (u_long)vme.next;
135 		if (addr == head)
136 			return (0);
137 	}
138 
139 	/*
140 	 * We found the right object -- follow shadow links.
141 	 */
142 	offset = va - vme.start + vme.offset;
143 	addr = (u_long)vme.object.vm_object;
144 
145 	while (1) {
146 		/* Try reading the page from core first. */
147 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
148 			break;
149 
150 		if (KREAD(kd, addr, &vmo))
151 			return (0);
152 
153 		/* If there is a pager here, see if it has the page. */
154 		if (vmo.pager != 0 &&
155 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
156 			break;
157 
158 		/* Move down the shadow chain. */
159 		addr = (u_long)vmo.shadow;
160 		if (addr == 0)
161 			return (0);
162 		offset += vmo.shadow_offset;
163 	}
164 
165 	if (rv == -1)
166 		return (0);
167 
168 	/* Found the page. */
169 	offset %= kd->nbpg;
170 	*cnt = kd->nbpg - offset;
171 	return (&kd->swapspc[offset]);
172 }
173 
174 #define	vm_page_hash(kd, object, offset) \
175 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
176 
177 int
178 _kvm_coreinit(kd)
179 	kvm_t *kd;
180 {
181 	struct nlist nlist[3];
182 
183 	nlist[0].n_name = "_vm_page_buckets";
184 	nlist[1].n_name = "_vm_page_hash_mask";
185 	nlist[2].n_name = 0;
186 	if (kvm_nlist(kd, nlist) != 0)
187 		return (-1);
188 
189 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
190 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
191 		return (-1);
192 
193 	return (0);
194 }
195 
196 int
197 _kvm_readfromcore(kd, object, offset)
198 	kvm_t *kd;
199 	u_long object, offset;
200 {
201 	u_long addr;
202 	struct pglist bucket;
203 	struct vm_page mem;
204 	off_t seekpoint;
205 
206 	if (kd->vm_page_buckets == 0 &&
207 	    _kvm_coreinit(kd))
208 		return (-1);
209 
210 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
211 	if (KREAD(kd, addr, &bucket))
212 		return (-1);
213 
214 	addr = (u_long)bucket.tqh_first;
215 	offset &= ~(kd->nbpg -1);
216 	while (1) {
217 		if (addr == 0)
218 			return (0);
219 
220 		if (KREAD(kd, addr, &mem))
221 			return (-1);
222 
223 		if ((u_long)mem.object == object &&
224 		    (u_long)mem.offset == offset)
225 			break;
226 
227 		addr = (u_long)mem.hashq.tqe_next;
228 	}
229 
230 	seekpoint = mem.phys_addr;
231 
232 	if (lseek(kd->pmfd, seekpoint, 0) == -1)
233 		return (-1);
234 	if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
235 		return (-1);
236 
237 	return (1);
238 }
239 
240 int
241 _kvm_readfrompager(kd, vmop, offset)
242 	kvm_t *kd;
243 	struct vm_object *vmop;
244 	u_long offset;
245 {
246 	u_long addr;
247 	struct pager_struct pager;
248 	struct swpager swap;
249 	int ix;
250 	struct swblock swb;
251 	off_t seekpoint;
252 
253 	/* Read in the pager info and make sure it's a swap device. */
254 	addr = (u_long)vmop->pager;
255 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
256 		return (-1);
257 
258 	/* Read in the swap_pager private data. */
259 	addr = (u_long)pager.pg_data;
260 	if (KREAD(kd, addr, &swap))
261 		return (-1);
262 
263 	/*
264 	 * Calculate the paging offset, and make sure it's within the
265 	 * bounds of the pager.
266 	 */
267 	offset += vmop->paging_offset;
268 	ix = offset / dbtob(swap.sw_bsize);
269 #if 0
270 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
271 		return (-1);
272 #else
273 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
274 		int i;
275 		printf("BUG BUG BUG BUG:\n");
276 		printf("object %p offset %lx pgoffset %lx ",
277 		    vmop, offset - vmop->paging_offset,
278 		    (u_long)vmop->paging_offset);
279 		printf("pager %p swpager %p\n",
280 		    vmop->pager, pager.pg_data);
281 		printf("osize %lx bsize %x blocks %p nblocks %x\n",
282 		    (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
283 		    swap.sw_nblocks);
284 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
285 			addr = (u_long)&swap.sw_blocks[ix];
286 			if (KREAD(kd, addr, &swb))
287 				return (0);
288 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
289 			    swb.swb_block, swb.swb_mask);
290 		}
291 		return (-1);
292 	}
293 #endif
294 
295 	/* Read in the swap records. */
296 	addr = (u_long)&swap.sw_blocks[ix];
297 	if (KREAD(kd, addr, &swb))
298 		return (-1);
299 
300 	/* Calculate offset within pager. */
301 	offset %= dbtob(swap.sw_bsize);
302 
303 	/* Check that the page is actually present. */
304 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
305 		return (0);
306 
307 	if (!ISALIVE(kd))
308 		return (-1);
309 
310 	/* Calculate the physical address and read the page. */
311 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
312 
313 	if (lseek(kd->swfd, seekpoint, 0) == -1)
314 		return (-1);
315 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
316 		return (-1);
317 
318 	return (1);
319 }
320 
321 /*
322  * Read proc's from memory file into buffer bp, which has space to hold
323  * at most maxcnt procs.
324  */
325 static int
326 kvm_proclist(kd, what, arg, p, bp, maxcnt)
327 	kvm_t *kd;
328 	int what, arg;
329 	struct proc *p;
330 	struct kinfo_proc *bp;
331 	int maxcnt;
332 {
333 	register int cnt = 0;
334 	struct eproc eproc;
335 	struct pgrp pgrp;
336 	struct session sess;
337 	struct tty tty;
338 	struct proc proc;
339 
340 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
341 		if (KREAD(kd, (u_long)p, &proc)) {
342 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
343 			return (-1);
344 		}
345 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
346 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
347 			      &eproc.e_ucred);
348 
349 		switch(what) {
350 
351 		case KERN_PROC_PID:
352 			if (proc.p_pid != (pid_t)arg)
353 				continue;
354 			break;
355 
356 		case KERN_PROC_UID:
357 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
358 				continue;
359 			break;
360 
361 		case KERN_PROC_RUID:
362 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
363 				continue;
364 			break;
365 		}
366 		/*
367 		 * We're going to add another proc to the set.  If this
368 		 * will overflow the buffer, assume the reason is because
369 		 * nprocs (or the proc list) is corrupt and declare an error.
370 		 */
371 		if (cnt >= maxcnt) {
372 			_kvm_err(kd, kd->program, "nprocs corrupt");
373 			return (-1);
374 		}
375 		/*
376 		 * gather eproc
377 		 */
378 		eproc.e_paddr = p;
379 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
380 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
381 				 proc.p_pgrp);
382 			return (-1);
383 		}
384 		eproc.e_sess = pgrp.pg_session;
385 		eproc.e_pgid = pgrp.pg_id;
386 		eproc.e_jobc = pgrp.pg_jobc;
387 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
388 			_kvm_err(kd, kd->program, "can't read session at %x",
389 				pgrp.pg_session);
390 			return (-1);
391 		}
392 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
393 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
394 				_kvm_err(kd, kd->program,
395 					 "can't read tty at %x", sess.s_ttyp);
396 				return (-1);
397 			}
398 			eproc.e_tdev = tty.t_dev;
399 			eproc.e_tsess = tty.t_session;
400 			if (tty.t_pgrp != NULL) {
401 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
402 					_kvm_err(kd, kd->program,
403 						 "can't read tpgrp at &x",
404 						tty.t_pgrp);
405 					return (-1);
406 				}
407 				eproc.e_tpgid = pgrp.pg_id;
408 			} else
409 				eproc.e_tpgid = -1;
410 		} else
411 			eproc.e_tdev = NODEV;
412 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
413 		if (sess.s_leader == p)
414 			eproc.e_flag |= EPROC_SLEADER;
415 		if (proc.p_wmesg)
416 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
417 			    eproc.e_wmesg, WMESGLEN);
418 
419 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
420 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
421 
422 		eproc.e_xsize = eproc.e_xrssize = 0;
423 		eproc.e_xccount = eproc.e_xswrss = 0;
424 
425 		switch (what) {
426 
427 		case KERN_PROC_PGRP:
428 			if (eproc.e_pgid != (pid_t)arg)
429 				continue;
430 			break;
431 
432 		case KERN_PROC_TTY:
433 			if ((proc.p_flag & P_CONTROLT) == 0 ||
434 			     eproc.e_tdev != (dev_t)arg)
435 				continue;
436 			break;
437 		}
438 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
439 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
440 		++bp;
441 		++cnt;
442 	}
443 	return (cnt);
444 }
445 
446 /*
447  * Build proc info array by reading in proc list from a crash dump.
448  * Return number of procs read.  maxcnt is the max we will read.
449  */
450 static int
451 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
452 	kvm_t *kd;
453 	int what, arg;
454 	u_long a_allproc;
455 	u_long a_zombproc;
456 	int maxcnt;
457 {
458 	register struct kinfo_proc *bp = kd->procbase;
459 	register int acnt, zcnt;
460 	struct proc *p;
461 
462 	if (KREAD(kd, a_allproc, &p)) {
463 		_kvm_err(kd, kd->program, "cannot read allproc");
464 		return (-1);
465 	}
466 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
467 	if (acnt < 0)
468 		return (acnt);
469 
470 	if (KREAD(kd, a_zombproc, &p)) {
471 		_kvm_err(kd, kd->program, "cannot read zombproc");
472 		return (-1);
473 	}
474 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
475 	if (zcnt < 0)
476 		zcnt = 0;
477 
478 	return (acnt + zcnt);
479 }
480 
481 struct kinfo_proc *
482 kvm_getprocs(kd, op, arg, cnt)
483 	kvm_t *kd;
484 	int op, arg;
485 	int *cnt;
486 {
487 	size_t size;
488 	int mib[4], st, nprocs;
489 
490 	if (kd->procbase != 0) {
491 		free((void *)kd->procbase);
492 		/*
493 		 * Clear this pointer in case this call fails.  Otherwise,
494 		 * kvm_close() will free it again.
495 		 */
496 		kd->procbase = 0;
497 	}
498 	if (ISALIVE(kd)) {
499 		size = 0;
500 		mib[0] = CTL_KERN;
501 		mib[1] = KERN_PROC;
502 		mib[2] = op;
503 		mib[3] = arg;
504 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
505 		if (st == -1) {
506 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
507 			return (0);
508 		}
509 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
510 		if (kd->procbase == 0)
511 			return (0);
512 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
513 		if (st == -1) {
514 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
515 			return (0);
516 		}
517 		if (size % sizeof(struct kinfo_proc) != 0) {
518 			_kvm_err(kd, kd->program,
519 				"proc size mismatch (%d total, %d chunks)",
520 				size, sizeof(struct kinfo_proc));
521 			return (0);
522 		}
523 		nprocs = size / sizeof(struct kinfo_proc);
524 	} else {
525 		struct nlist nl[4], *p;
526 
527 		nl[0].n_name = "_nprocs";
528 		nl[1].n_name = "_allproc";
529 		nl[2].n_name = "_zombproc";
530 		nl[3].n_name = 0;
531 
532 		if (kvm_nlist(kd, nl) != 0) {
533 			for (p = nl; p->n_type != 0; ++p)
534 				;
535 			_kvm_err(kd, kd->program,
536 				 "%s: no such symbol", p->n_name);
537 			return (0);
538 		}
539 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
540 			_kvm_err(kd, kd->program, "can't read nprocs");
541 			return (0);
542 		}
543 		size = nprocs * sizeof(struct kinfo_proc);
544 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
545 		if (kd->procbase == 0)
546 			return (0);
547 
548 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
549 				      nl[2].n_value, nprocs);
550 #ifdef notdef
551 		size = nprocs * sizeof(struct kinfo_proc);
552 		(void)realloc(kd->procbase, size);
553 #endif
554 	}
555 	*cnt = nprocs;
556 	return (kd->procbase);
557 }
558 
559 void
560 _kvm_freeprocs(kd)
561 	kvm_t *kd;
562 {
563 	if (kd->procbase) {
564 		free(kd->procbase);
565 		kd->procbase = 0;
566 	}
567 }
568 
569 void *
570 _kvm_realloc(kd, p, n)
571 	kvm_t *kd;
572 	void *p;
573 	size_t n;
574 {
575 	void *np = (void *)realloc(p, n);
576 
577 	if (np == 0)
578 		_kvm_err(kd, kd->program, "out of memory");
579 	return (np);
580 }
581 
582 #ifndef MAX
583 #define MAX(a, b) ((a) > (b) ? (a) : (b))
584 #endif
585 
586 /*
587  * Read in an argument vector from the user address space of process p.
588  * addr if the user-space base address of narg null-terminated contiguous
589  * strings.  This is used to read in both the command arguments and
590  * environment strings.  Read at most maxcnt characters of strings.
591  */
592 static char **
593 kvm_argv(kd, p, addr, narg, maxcnt)
594 	kvm_t *kd;
595 	const struct proc *p;
596 	register u_long addr;
597 	register int narg;
598 	register int maxcnt;
599 {
600 	register char *np, *cp, *ep, *ap;
601 	register u_long oaddr = -1;
602 	register int len, cc;
603 	register char **argv;
604 
605 	/*
606 	 * Check that there aren't an unreasonable number of agruments,
607 	 * and that the address is in user space.
608 	 */
609 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
610 		return (0);
611 
612 	if (kd->argv == 0) {
613 		/*
614 		 * Try to avoid reallocs.
615 		 */
616 		kd->argc = MAX(narg + 1, 32);
617 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
618 						sizeof(*kd->argv));
619 		if (kd->argv == 0)
620 			return (0);
621 	} else if (narg + 1 > kd->argc) {
622 		kd->argc = MAX(2 * kd->argc, narg + 1);
623 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
624 						sizeof(*kd->argv));
625 		if (kd->argv == 0)
626 			return (0);
627 	}
628 	if (kd->argspc == 0) {
629 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
630 		if (kd->argspc == 0)
631 			return (0);
632 		kd->arglen = kd->nbpg;
633 	}
634 	if (kd->argbuf == 0) {
635 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
636 		if (kd->argbuf == 0)
637 			return (0);
638 	}
639 	cc = sizeof(char *) * narg;
640 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
641 		return (0);
642 	ap = np = kd->argspc;
643 	argv = kd->argv;
644 	len = 0;
645 	/*
646 	 * Loop over pages, filling in the argument vector.
647 	 */
648 	while (argv < kd->argv + narg && *argv != 0) {
649 		addr = (u_long)*argv & ~(kd->nbpg - 1);
650 		if (addr != oaddr) {
651 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
652 			    kd->nbpg)
653 				return (0);
654 			oaddr = addr;
655 		}
656 		addr = (u_long)*argv & (kd->nbpg - 1);
657 		cp = kd->argbuf + addr;
658 		cc = kd->nbpg - addr;
659 		if (maxcnt > 0 && cc > maxcnt - len)
660 			cc = maxcnt - len;;
661 		ep = memchr(cp, '\0', cc);
662 		if (ep != 0)
663 			cc = ep - cp + 1;
664 		if (len + cc > kd->arglen) {
665 			register int off;
666 			register char **pp;
667 			register char *op = kd->argspc;
668 
669 			kd->arglen *= 2;
670 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
671 							  kd->arglen);
672 			if (kd->argspc == 0)
673 				return (0);
674 			/*
675 			 * Adjust argv pointers in case realloc moved
676 			 * the string space.
677 			 */
678 			off = kd->argspc - op;
679 			for (pp = kd->argv; pp < argv; pp++)
680 				*pp += off;
681 			ap += off;
682 			np += off;
683 		}
684 		memcpy(np, cp, cc);
685 		np += cc;
686 		len += cc;
687 		if (ep != 0) {
688 			*argv++ = ap;
689 			ap = np;
690 		} else
691 			*argv += cc;
692 		if (maxcnt > 0 && len >= maxcnt) {
693 			/*
694 			 * We're stopping prematurely.  Terminate the
695 			 * current string.
696 			 */
697 			if (ep == 0) {
698 				*np = '\0';
699 				*argv++ = ap;
700 			}
701 			break;
702 		}
703 	}
704 	/* Make sure argv is terminated. */
705 	*argv = 0;
706 	return (kd->argv);
707 }
708 
709 static void
710 ps_str_a(p, addr, n)
711 	struct ps_strings *p;
712 	u_long *addr;
713 	int *n;
714 {
715 	*addr = (u_long)p->ps_argvstr;
716 	*n = p->ps_nargvstr;
717 }
718 
719 static void
720 ps_str_e(p, addr, n)
721 	struct ps_strings *p;
722 	u_long *addr;
723 	int *n;
724 {
725 	*addr = (u_long)p->ps_envstr;
726 	*n = p->ps_nenvstr;
727 }
728 
729 /*
730  * Determine if the proc indicated by p is still active.
731  * This test is not 100% foolproof in theory, but chances of
732  * being wrong are very low.
733  */
734 static int
735 proc_verify(kd, kernp, p)
736 	kvm_t *kd;
737 	u_long kernp;
738 	const struct proc *p;
739 {
740 	struct proc kernproc;
741 
742 	/*
743 	 * Just read in the whole proc.  It's not that big relative
744 	 * to the cost of the read system call.
745 	 */
746 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
747 	    sizeof(kernproc))
748 		return (0);
749 	return (p->p_pid == kernproc.p_pid &&
750 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
751 }
752 
753 static char **
754 kvm_doargv(kd, kp, nchr, info)
755 	kvm_t *kd;
756 	const struct kinfo_proc *kp;
757 	int nchr;
758 	void (*info)(struct ps_strings *, u_long *, int *);
759 {
760 	register const struct proc *p = &kp->kp_proc;
761 	register char **ap;
762 	u_long addr;
763 	int cnt;
764 	struct ps_strings arginfo;
765 
766 	/*
767 	 * Pointers are stored at the top of the user stack.
768 	 */
769 	if (p->p_stat == SZOMB ||
770 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
771 		      sizeof(arginfo)) != sizeof(arginfo))
772 		return (0);
773 
774 	(*info)(&arginfo, &addr, &cnt);
775 	if (cnt == 0)
776 		return (0);
777 	ap = kvm_argv(kd, p, addr, cnt, nchr);
778 	/*
779 	 * For live kernels, make sure this process didn't go away.
780 	 */
781 	if (ap != 0 && ISALIVE(kd) &&
782 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
783 		ap = 0;
784 	return (ap);
785 }
786 
787 /*
788  * Get the command args.  This code is now machine independent.
789  */
790 char **
791 kvm_getargv(kd, kp, nchr)
792 	kvm_t *kd;
793 	const struct kinfo_proc *kp;
794 	int nchr;
795 {
796 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
797 }
798 
799 char **
800 kvm_getenvv(kd, kp, nchr)
801 	kvm_t *kd;
802 	const struct kinfo_proc *kp;
803 	int nchr;
804 {
805 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
806 }
807 
808 /*
809  * Read from user space.  The user context is given by p.
810  */
811 ssize_t
812 kvm_uread(kd, p, uva, buf, len)
813 	kvm_t *kd;
814 	register const struct proc *p;
815 	register u_long uva;
816 	register char *buf;
817 	register size_t len;
818 {
819 	register char *cp;
820 
821 	cp = buf;
822 	while (len > 0) {
823 		register int cc;
824 		register char *dp;
825 		u_long cnt;
826 
827 		dp = _kvm_uread(kd, p, uva, &cnt);
828 		if (dp == 0) {
829 			_kvm_err(kd, 0, "invalid address (%x)", uva);
830 			return (0);
831 		}
832 		cc = MIN(cnt, len);
833 		bcopy(dp, cp, cc);
834 
835 		cp += cc;
836 		uva += cc;
837 		len -= cc;
838 	}
839 	return (ssize_t)(cp - buf);
840 }
841