xref: /netbsd-src/lib/libcrypt/crypt.c (revision d9158b13b5dfe46201430699a3f7a235ecf28df3)
1 /*
2  * Copyright (c) 1989 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Tom Truscott.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 /*static char sccsid[] = "from: @(#)crypt.c	5.11 (Berkeley) 6/25/91";*/
39 static char rcsid[] = "$Id: crypt.c,v 1.2 1993/08/01 18:36:03 mycroft Exp $";
40 #endif /* LIBC_SCCS and not lint */
41 
42 #include <unistd.h>
43 #include <limits.h>
44 #include <pwd.h>
45 
46 /*
47  * UNIX password, and DES, encryption.
48  * By Tom Truscott, trt@rti.rti.org,
49  * from algorithms by Robert W. Baldwin and James Gillogly.
50  *
51  * References:
52  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
53  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
54  *
55  * "Password Security: A Case History," R. Morris and Ken Thompson,
56  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
57  *
58  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
59  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
60  */
61 
62 /* =====  Configuration ==================== */
63 
64 /*
65  * define "MUST_ALIGN" if your compiler cannot load/store
66  * long integers at arbitrary (e.g. odd) memory locations.
67  * (Either that or never pass unaligned addresses to des_cipher!)
68  */
69 #if !defined(vax)
70 #define	MUST_ALIGN
71 #endif
72 
73 #ifdef CHAR_BITS
74 #if CHAR_BITS != 8
75 	#error C_block structure assumes 8 bit characters
76 #endif
77 #endif
78 
79 /*
80  * define "LONG_IS_32_BITS" only if sizeof(long)==4.
81  * This avoids use of bit fields (your compiler may be sloppy with them).
82  */
83 #if !defined(cray)
84 #define	LONG_IS_32_BITS
85 #endif
86 
87 /*
88  * define "B64" to be the declaration for a 64 bit integer.
89  * XXX this feature is currently unused, see "endian" comment below.
90  */
91 #if defined(cray)
92 #define	B64	long
93 #endif
94 #if defined(convex)
95 #define	B64	long long
96 #endif
97 
98 /*
99  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
101  * little effect on crypt().
102  */
103 #if defined(notdef)
104 #define	LARGEDATA
105 #endif
106 
107 /* compile with "-DSTATIC=int" when profiling */
108 #ifndef STATIC
109 #define	STATIC	static
110 #endif
111 STATIC init_des(), init_perm(), permute();
112 #ifdef DEBUG
113 STATIC prtab();
114 #endif
115 
116 /* ==================================== */
117 
118 /*
119  * Cipher-block representation (Bob Baldwin):
120  *
121  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
122  * representation is to store one bit per byte in an array of bytes.  Bit N of
123  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
124  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
125  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
126  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
127  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
128  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
129  * converted to LSB format, and the output 64-bit block is converted back into
130  * MSB format.
131  *
132  * DES operates internally on groups of 32 bits which are expanded to 48 bits
133  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
134  * the computation, the expansion is applied only once, the expanded
135  * representation is maintained during the encryption, and a compression
136  * permutation is applied only at the end.  To speed up the S-box lookups,
137  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
138  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
139  * most significant ones.  The low two bits of each byte are zero.  (Thus,
140  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
141  * first byte in the eight byte representation, bit 2 of the 48 bit value is
142  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
143  * used, in which the output is the 64 bit result of an S-box lookup which
144  * has been permuted by P and expanded by E, and is ready for use in the next
145  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
146  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
147  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
148  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
149  * 8*64*8 = 4K bytes.
150  *
151  * To speed up bit-parallel operations (such as XOR), the 8 byte
152  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
153  * machines which support it, a 64 bit value "b64".  This data structure,
154  * "C_block", has two problems.  First, alignment restrictions must be
155  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
156  * the architecture becomes visible.
157  *
158  * The byte-order problem is unfortunate, since on the one hand it is good
159  * to have a machine-independent C_block representation (bits 1..8 in the
160  * first byte, etc.), and on the other hand it is good for the LSB of the
161  * first byte to be the LSB of i0.  We cannot have both these things, so we
162  * currently use the "little-endian" representation and avoid any multi-byte
163  * operations that depend on byte order.  This largely precludes use of the
164  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
165  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
166  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
167  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
168  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
169  * requires a 128 kilobyte table, so perhaps this is not a big loss.
170  *
171  * Permutation representation (Jim Gillogly):
172  *
173  * A transformation is defined by its effect on each of the 8 bytes of the
174  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
175  * the input distributed appropriately.  The transformation is then the OR
176  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
177  * each transformation.  Unless LARGEDATA is defined, however, a more compact
178  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
179  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
180  * is slower but tolerable, particularly for password encryption in which
181  * the SPE transformation is iterated many times.  The small tables total 9K
182  * bytes, the large tables total 72K bytes.
183  *
184  * The transformations used are:
185  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
186  *	This is done by collecting the 32 even-numbered bits and applying
187  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
188  *	bits and applying the same transformation.  Since there are only
189  *	32 input bits, the IE3264 transformation table is half the size of
190  *	the usual table.
191  * CF6464: Compression, final permutation, and LSB->MSB conversion.
192  *	This is done by two trivial 48->32 bit compressions to obtain
193  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
194  *	followed by a 64->64 bit "cleanup" transformation.  (It would
195  *	be possible to group the bits in the 64-bit block so that 2
196  *	identical 32->32 bit transformations could be used instead,
197  *	saving a factor of 4 in space and possibly 2 in time, but
198  *	byte-ordering and other complications rear their ugly head.
199  *	Similar opportunities/problems arise in the key schedule
200  *	transforms.)
201  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
202  *	This admittedly baroque 64->64 bit transformation is used to
203  *	produce the first code (in 8*(6+2) format) of the key schedule.
204  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
205  *	It would be possible to define 15 more transformations, each
206  *	with a different rotation, to generate the entire key schedule.
207  *	To save space, however, we instead permute each code into the
208  *	next by using a transformation that "undoes" the PC2 permutation,
209  *	rotates the code, and then applies PC2.  Unfortunately, PC2
210  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
211  *	invertible.  We get around that problem by using a modified PC2
212  *	which retains the 8 otherwise-lost bits in the unused low-order
213  *	bits of each byte.  The low-order bits are cleared when the
214  *	codes are stored into the key schedule.
215  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
216  *	This is faster than applying PC2ROT[0] twice,
217  *
218  * The Bell Labs "salt" (Bob Baldwin):
219  *
220  * The salting is a simple permutation applied to the 48-bit result of E.
221  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
222  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
223  * 16777216 possible values.  (The original salt was 12 bits and could not
224  * swap bits 13..24 with 36..48.)
225  *
226  * It is possible, but ugly, to warp the SPE table to account for the salt
227  * permutation.  Fortunately, the conditional bit swapping requires only
228  * about four machine instructions and can be done on-the-fly with about an
229  * 8% performance penalty.
230  */
231 
232 typedef union {
233 	unsigned char b[8];
234 	struct {
235 #if defined(LONG_IS_32_BITS)
236 		/* long is often faster than a 32-bit bit field */
237 		long	i0;
238 		long	i1;
239 #else
240 		long	i0: 32;
241 		long	i1: 32;
242 #endif
243 	} b32;
244 #if defined(B64)
245 	B64	b64;
246 #endif
247 } C_block;
248 
249 /*
250  * Convert twenty-four-bit long in host-order
251  * to six bits (and 2 low-order zeroes) per char little-endian format.
252  */
253 #define	TO_SIX_BIT(rslt, src) {				\
254 		C_block cvt;				\
255 		cvt.b[0] = src; src >>= 6;		\
256 		cvt.b[1] = src; src >>= 6;		\
257 		cvt.b[2] = src; src >>= 6;		\
258 		cvt.b[3] = src;				\
259 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
260 	}
261 
262 /*
263  * These macros may someday permit efficient use of 64-bit integers.
264  */
265 #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
266 #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
267 #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
268 #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
269 #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
270 #define	DCL_BLOCK(d,d0,d1)		long d0, d1
271 
272 #if defined(LARGEDATA)
273 	/* Waste memory like crazy.  Also, do permutations in line */
274 #define	LGCHUNKBITS	3
275 #define	CHUNKBITS	(1<<LGCHUNKBITS)
276 #define	PERM6464(d,d0,d1,cpp,p)				\
277 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
278 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
279 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
280 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
281 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
282 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
283 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
284 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
285 #define	PERM3264(d,d0,d1,cpp,p)				\
286 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
287 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
288 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
289 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
290 #else
291 	/* "small data" */
292 #define	LGCHUNKBITS	2
293 #define	CHUNKBITS	(1<<LGCHUNKBITS)
294 #define	PERM6464(d,d0,d1,cpp,p)				\
295 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
296 #define	PERM3264(d,d0,d1,cpp,p)				\
297 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
298 
299 STATIC
300 permute(cp, out, p, chars_in)
301 	unsigned char *cp;
302 	C_block *out;
303 	register C_block *p;
304 	int chars_in;
305 {
306 	register DCL_BLOCK(D,D0,D1);
307 	register C_block *tp;
308 	register int t;
309 
310 	ZERO(D,D0,D1);
311 	do {
312 		t = *cp++;
313 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
315 	} while (--chars_in > 0);
316 	STORE(D,D0,D1,*out);
317 }
318 #endif /* LARGEDATA */
319 
320 
321 /* =====  (mostly) Standard DES Tables ==================== */
322 
323 static unsigned char IP[] = {		/* initial permutation */
324 	58, 50, 42, 34, 26, 18, 10,  2,
325 	60, 52, 44, 36, 28, 20, 12,  4,
326 	62, 54, 46, 38, 30, 22, 14,  6,
327 	64, 56, 48, 40, 32, 24, 16,  8,
328 	57, 49, 41, 33, 25, 17,  9,  1,
329 	59, 51, 43, 35, 27, 19, 11,  3,
330 	61, 53, 45, 37, 29, 21, 13,  5,
331 	63, 55, 47, 39, 31, 23, 15,  7,
332 };
333 
334 /* The final permutation is the inverse of IP - no table is necessary */
335 
336 static unsigned char ExpandTr[] = {	/* expansion operation */
337 	32,  1,  2,  3,  4,  5,
338 	 4,  5,  6,  7,  8,  9,
339 	 8,  9, 10, 11, 12, 13,
340 	12, 13, 14, 15, 16, 17,
341 	16, 17, 18, 19, 20, 21,
342 	20, 21, 22, 23, 24, 25,
343 	24, 25, 26, 27, 28, 29,
344 	28, 29, 30, 31, 32,  1,
345 };
346 
347 static unsigned char PC1[] = {		/* permuted choice table 1 */
348 	57, 49, 41, 33, 25, 17,  9,
349 	 1, 58, 50, 42, 34, 26, 18,
350 	10,  2, 59, 51, 43, 35, 27,
351 	19, 11,  3, 60, 52, 44, 36,
352 
353 	63, 55, 47, 39, 31, 23, 15,
354 	 7, 62, 54, 46, 38, 30, 22,
355 	14,  6, 61, 53, 45, 37, 29,
356 	21, 13,  5, 28, 20, 12,  4,
357 };
358 
359 static unsigned char Rotates[] = {	/* PC1 rotation schedule */
360 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
361 };
362 
363 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
364 static unsigned char PC2[] = {		/* permuted choice table 2 */
365 	 9, 18,    14, 17, 11, 24,  1,  5,
366 	22, 25,     3, 28, 15,  6, 21, 10,
367 	35, 38,    23, 19, 12,  4, 26,  8,
368 	43, 54,    16,  7, 27, 20, 13,  2,
369 
370 	 0,  0,    41, 52, 31, 37, 47, 55,
371 	 0,  0,    30, 40, 51, 45, 33, 48,
372 	 0,  0,    44, 49, 39, 56, 34, 53,
373 	 0,  0,    46, 42, 50, 36, 29, 32,
374 };
375 
376 static unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
377 					/* S[1]			*/
378 	14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
379 	 0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
380 	 4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
381 	15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13,
382 					/* S[2]			*/
383 	15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
384 	 3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
385 	 0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
386 	13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9,
387 					/* S[3]			*/
388 	10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
389 	13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
390 	13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
391 	 1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12,
392 					/* S[4]			*/
393 	 7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
394 	13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
395 	10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
396 	 3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14,
397 					/* S[5]			*/
398 	 2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
399 	14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
400 	 4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
401 	11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3,
402 					/* S[6]			*/
403 	12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
404 	10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
405 	 9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
406 	 4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13,
407 					/* S[7]			*/
408 	 4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
409 	13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
410 	 1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
411 	 6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12,
412 					/* S[8]			*/
413 	13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
414 	 1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
415 	 7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
416 	 2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11,
417 };
418 
419 static unsigned char P32Tr[] = {	/* 32-bit permutation function */
420 	16,  7, 20, 21,
421 	29, 12, 28, 17,
422 	 1, 15, 23, 26,
423 	 5, 18, 31, 10,
424 	 2,  8, 24, 14,
425 	32, 27,  3,  9,
426 	19, 13, 30,  6,
427 	22, 11,  4, 25,
428 };
429 
430 static unsigned char CIFP[] = {		/* compressed/interleaved permutation */
431 	 1,  2,  3,  4,   17, 18, 19, 20,
432 	 5,  6,  7,  8,   21, 22, 23, 24,
433 	 9, 10, 11, 12,   25, 26, 27, 28,
434 	13, 14, 15, 16,   29, 30, 31, 32,
435 
436 	33, 34, 35, 36,   49, 50, 51, 52,
437 	37, 38, 39, 40,   53, 54, 55, 56,
438 	41, 42, 43, 44,   57, 58, 59, 60,
439 	45, 46, 47, 48,   61, 62, 63, 64,
440 };
441 
442 static unsigned char itoa64[] =		/* 0..63 => ascii-64 */
443 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
444 
445 
446 /* =====  Tables that are initialized at run time  ==================== */
447 
448 
449 static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
450 
451 /* Initial key schedule permutation */
452 static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
453 
454 /* Subsequent key schedule rotation permutations */
455 static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
456 
457 /* Initial permutation/expansion table */
458 static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
459 
460 /* Table that combines the S, P, and E operations.  */
461 static long SPE[2][8][64];
462 
463 /* compressed/interleaved => final permutation table */
464 static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
465 
466 
467 /* ==================================== */
468 
469 
470 static C_block	constdatablock;			/* encryption constant */
471 static char	cryptresult[1+4+4+11+1];	/* encrypted result */
472 
473 /*
474  * Return a pointer to static data consisting of the "setting"
475  * followed by an encryption produced by the "key" and "setting".
476  */
477 char *
478 crypt(key, setting)
479 	register const char *key;
480 	register const char *setting;
481 {
482 	register char *encp;
483 	register long i;
484 	register int t;
485 	long salt;
486 	int num_iter, salt_size;
487 	C_block keyblock, rsltblock;
488 
489 	for (i = 0; i < 8; i++) {
490 		if ((t = 2*(unsigned char)(*key)) != 0)
491 			key++;
492 		keyblock.b[i] = t;
493 	}
494 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
495 		return (NULL);
496 
497 	encp = &cryptresult[0];
498 	switch (*setting) {
499 	case _PASSWORD_EFMT1:
500 		/*
501 		 * Involve the rest of the password 8 characters at a time.
502 		 */
503 		while (*key) {
504 			if (des_cipher((char *)&keyblock,
505 			    (char *)&keyblock, 0L, 1))
506 				return (NULL);
507 			for (i = 0; i < 8; i++) {
508 				if ((t = 2*(unsigned char)(*key)) != 0)
509 					key++;
510 				keyblock.b[i] ^= t;
511 			}
512 			if (des_setkey((char *)keyblock.b))
513 				return (NULL);
514 		}
515 
516 		*encp++ = *setting++;
517 
518 		/* get iteration count */
519 		num_iter = 0;
520 		for (i = 4; --i >= 0; ) {
521 			if ((t = (unsigned char)setting[i]) == '\0')
522 				t = '.';
523 			encp[i] = t;
524 			num_iter = (num_iter<<6) | a64toi[t];
525 		}
526 		setting += 4;
527 		encp += 4;
528 		salt_size = 4;
529 		break;
530 	default:
531 		num_iter = 25;
532 		salt_size = 2;
533 	}
534 
535 	salt = 0;
536 	for (i = salt_size; --i >= 0; ) {
537 		if ((t = (unsigned char)setting[i]) == '\0')
538 			t = '.';
539 		encp[i] = t;
540 		salt = (salt<<6) | a64toi[t];
541 	}
542 	encp += salt_size;
543 	if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
544 	    salt, num_iter))
545 		return (NULL);
546 
547 	/*
548 	 * Encode the 64 cipher bits as 11 ascii characters.
549 	 */
550 	i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
551 	encp[3] = itoa64[i&0x3f];	i >>= 6;
552 	encp[2] = itoa64[i&0x3f];	i >>= 6;
553 	encp[1] = itoa64[i&0x3f];	i >>= 6;
554 	encp[0] = itoa64[i];		encp += 4;
555 	i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
556 	encp[3] = itoa64[i&0x3f];	i >>= 6;
557 	encp[2] = itoa64[i&0x3f];	i >>= 6;
558 	encp[1] = itoa64[i&0x3f];	i >>= 6;
559 	encp[0] = itoa64[i];		encp += 4;
560 	i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
561 	encp[2] = itoa64[i&0x3f];	i >>= 6;
562 	encp[1] = itoa64[i&0x3f];	i >>= 6;
563 	encp[0] = itoa64[i];
564 
565 	encp[3] = 0;
566 
567 	return (cryptresult);
568 }
569 
570 
571 /*
572  * The Key Schedule, filled in by des_setkey() or setkey().
573  */
574 #define	KS_SIZE	16
575 static C_block	KS[KS_SIZE];
576 
577 /*
578  * Set up the key schedule from the key.
579  */
580 des_setkey(key)
581 	register const char *key;
582 {
583 	register DCL_BLOCK(K, K0, K1);
584 	register C_block *ptabp;
585 	register int i;
586 	static int des_ready = 0;
587 
588 	if (!des_ready) {
589 		init_des();
590 		des_ready = 1;
591 	}
592 
593 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
594 	key = (char *)&KS[0];
595 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
596 	for (i = 1; i < 16; i++) {
597 		key += sizeof(C_block);
598 		STORE(K,K0,K1,*(C_block *)key);
599 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
600 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
601 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
602 	}
603 	return (0);
604 }
605 
606 /*
607  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
608  * iterations of DES, using the the given 24-bit salt and the pre-computed key
609  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
610  *
611  * NOTE: the performance of this routine is critically dependent on your
612  * compiler and machine architecture.
613  */
614 des_cipher(in, out, salt, num_iter)
615 	const char *in;
616 	char *out;
617 	long salt;
618 	int num_iter;
619 {
620 	/* variables that we want in registers, most important first */
621 #if defined(pdp11)
622 	register int j;
623 #endif
624 	register long L0, L1, R0, R1, k;
625 	register C_block *kp;
626 	register int ks_inc, loop_count;
627 	C_block B;
628 
629 	L0 = salt;
630 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
631 
632 #if defined(vax) || defined(pdp11)
633 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
634 #define	SALT (~salt)
635 #else
636 #define	SALT salt
637 #endif
638 
639 #if defined(MUST_ALIGN)
640 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
641 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
642 	LOAD(L,L0,L1,B);
643 #else
644 	LOAD(L,L0,L1,*(C_block *)in);
645 #endif
646 	LOADREG(R,R0,R1,L,L0,L1);
647 	L0 &= 0x55555555L;
648 	L1 &= 0x55555555L;
649 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
650 	R0 &= 0xaaaaaaaaL;
651 	R1 = (R1 >> 1) & 0x55555555L;
652 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
653 	STORE(L,L0,L1,B);
654 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
655 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
656 
657 	if (num_iter >= 0)
658 	{		/* encryption */
659 		kp = &KS[0];
660 		ks_inc  = sizeof(*kp);
661 	}
662 	else
663 	{		/* decryption */
664 		num_iter = -num_iter;
665 		kp = &KS[KS_SIZE-1];
666 		ks_inc  = -sizeof(*kp);
667 	}
668 
669 	while (--num_iter >= 0) {
670 		loop_count = 8;
671 		do {
672 
673 #define	SPTAB(t, i)	(*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
674 #if defined(gould)
675 			/* use this if B.b[i] is evaluated just once ... */
676 #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
677 #else
678 #if defined(pdp11)
679 			/* use this if your "long" int indexing is slow */
680 #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
681 #else
682 			/* use this if "k" is allocated to a register ... */
683 #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
684 #endif
685 #endif
686 
687 #define	CRUNCH(p0, p1, q0, q1)	\
688 			k = (q0 ^ q1) & SALT;	\
689 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
690 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
691 			kp = (C_block *)((char *)kp+ks_inc);	\
692 							\
693 			DOXOR(p0, p1, 0);		\
694 			DOXOR(p0, p1, 1);		\
695 			DOXOR(p0, p1, 2);		\
696 			DOXOR(p0, p1, 3);		\
697 			DOXOR(p0, p1, 4);		\
698 			DOXOR(p0, p1, 5);		\
699 			DOXOR(p0, p1, 6);		\
700 			DOXOR(p0, p1, 7);
701 
702 			CRUNCH(L0, L1, R0, R1);
703 			CRUNCH(R0, R1, L0, L1);
704 		} while (--loop_count != 0);
705 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
706 
707 
708 		/* swap L and R */
709 		L0 ^= R0;  L1 ^= R1;
710 		R0 ^= L0;  R1 ^= L1;
711 		L0 ^= R0;  L1 ^= R1;
712 	}
713 
714 	/* store the encrypted (or decrypted) result */
715 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
716 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
717 	STORE(L,L0,L1,B);
718 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
719 #if defined(MUST_ALIGN)
720 	STORE(L,L0,L1,B);
721 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
722 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
723 #else
724 	STORE(L,L0,L1,*(C_block *)out);
725 #endif
726 	return (0);
727 }
728 
729 
730 /*
731  * Initialize various tables.  This need only be done once.  It could even be
732  * done at compile time, if the compiler were capable of that sort of thing.
733  */
734 STATIC
735 init_des()
736 {
737 	register int i, j;
738 	register long k;
739 	register int tableno;
740 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
741 
742 	/*
743 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
744 	 */
745 	for (i = 0; i < 64; i++)
746 		a64toi[itoa64[i]] = i;
747 
748 	/*
749 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
750 	 */
751 	for (i = 0; i < 64; i++)
752 		perm[i] = 0;
753 	for (i = 0; i < 64; i++) {
754 		if ((k = PC2[i]) == 0)
755 			continue;
756 		k += Rotates[0]-1;
757 		if ((k%28) < Rotates[0]) k -= 28;
758 		k = PC1[k];
759 		if (k > 0) {
760 			k--;
761 			k = (k|07) - (k&07);
762 			k++;
763 		}
764 		perm[i] = k;
765 	}
766 #ifdef DEBUG
767 	prtab("pc1tab", perm, 8);
768 #endif
769 	init_perm(PC1ROT, perm, 8, 8);
770 
771 	/*
772 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
773 	 */
774 	for (j = 0; j < 2; j++) {
775 		unsigned char pc2inv[64];
776 		for (i = 0; i < 64; i++)
777 			perm[i] = pc2inv[i] = 0;
778 		for (i = 0; i < 64; i++) {
779 			if ((k = PC2[i]) == 0)
780 				continue;
781 			pc2inv[k-1] = i+1;
782 		}
783 		for (i = 0; i < 64; i++) {
784 			if ((k = PC2[i]) == 0)
785 				continue;
786 			k += j;
787 			if ((k%28) <= j) k -= 28;
788 			perm[i] = pc2inv[k];
789 		}
790 #ifdef DEBUG
791 		prtab("pc2tab", perm, 8);
792 #endif
793 		init_perm(PC2ROT[j], perm, 8, 8);
794 	}
795 
796 	/*
797 	 * Bit reverse, then initial permutation, then expansion.
798 	 */
799 	for (i = 0; i < 8; i++) {
800 		for (j = 0; j < 8; j++) {
801 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
802 			if (k > 32)
803 				k -= 32;
804 			else if (k > 0)
805 				k--;
806 			if (k > 0) {
807 				k--;
808 				k = (k|07) - (k&07);
809 				k++;
810 			}
811 			perm[i*8+j] = k;
812 		}
813 	}
814 #ifdef DEBUG
815 	prtab("ietab", perm, 8);
816 #endif
817 	init_perm(IE3264, perm, 4, 8);
818 
819 	/*
820 	 * Compression, then final permutation, then bit reverse.
821 	 */
822 	for (i = 0; i < 64; i++) {
823 		k = IP[CIFP[i]-1];
824 		if (k > 0) {
825 			k--;
826 			k = (k|07) - (k&07);
827 			k++;
828 		}
829 		perm[k-1] = i+1;
830 	}
831 #ifdef DEBUG
832 	prtab("cftab", perm, 8);
833 #endif
834 	init_perm(CF6464, perm, 8, 8);
835 
836 	/*
837 	 * SPE table
838 	 */
839 	for (i = 0; i < 48; i++)
840 		perm[i] = P32Tr[ExpandTr[i]-1];
841 	for (tableno = 0; tableno < 8; tableno++) {
842 		for (j = 0; j < 64; j++)  {
843 			k = (((j >> 0) &01) << 5)|
844 			    (((j >> 1) &01) << 3)|
845 			    (((j >> 2) &01) << 2)|
846 			    (((j >> 3) &01) << 1)|
847 			    (((j >> 4) &01) << 0)|
848 			    (((j >> 5) &01) << 4);
849 			k = S[tableno][k];
850 			k = (((k >> 3)&01) << 0)|
851 			    (((k >> 2)&01) << 1)|
852 			    (((k >> 1)&01) << 2)|
853 			    (((k >> 0)&01) << 3);
854 			for (i = 0; i < 32; i++)
855 				tmp32[i] = 0;
856 			for (i = 0; i < 4; i++)
857 				tmp32[4 * tableno + i] = (k >> i) & 01;
858 			k = 0;
859 			for (i = 24; --i >= 0; )
860 				k = (k<<1) | tmp32[perm[i]-1];
861 			TO_SIX_BIT(SPE[0][tableno][j], k);
862 			k = 0;
863 			for (i = 24; --i >= 0; )
864 				k = (k<<1) | tmp32[perm[i+24]-1];
865 			TO_SIX_BIT(SPE[1][tableno][j], k);
866 		}
867 	}
868 }
869 
870 /*
871  * Initialize "perm" to represent transformation "p", which rearranges
872  * (perhaps with expansion and/or contraction) one packed array of bits
873  * (of size "chars_in" characters) into another array (of size "chars_out"
874  * characters).
875  *
876  * "perm" must be all-zeroes on entry to this routine.
877  */
878 STATIC
879 init_perm(perm, p, chars_in, chars_out)
880 	C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
881 	unsigned char p[64];
882 	int chars_in, chars_out;
883 {
884 	register int i, j, k, l;
885 
886 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
887 		l = p[k] - 1;		/* where this bit comes from */
888 		if (l < 0)
889 			continue;	/* output bit is always 0 */
890 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
891 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
892 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
893 			if ((j & l) != 0)
894 				perm[i][j].b[k>>3] |= 1<<(k&07);
895 		}
896 	}
897 }
898 
899 /*
900  * "setkey" routine (for backwards compatibility)
901  */
902 setkey(key)
903 	register const char *key;
904 {
905 	register int i, j, k;
906 	C_block keyblock;
907 
908 	for (i = 0; i < 8; i++) {
909 		k = 0;
910 		for (j = 0; j < 8; j++) {
911 			k <<= 1;
912 			k |= (unsigned char)*key++;
913 		}
914 		keyblock.b[i] = k;
915 	}
916 	return (des_setkey((char *)keyblock.b));
917 }
918 
919 /*
920  * "encrypt" routine (for backwards compatibility)
921  */
922 encrypt(block, flag)
923 	register char *block;
924 	int flag;
925 {
926 	register int i, j, k;
927 	C_block cblock;
928 
929 	for (i = 0; i < 8; i++) {
930 		k = 0;
931 		for (j = 0; j < 8; j++) {
932 			k <<= 1;
933 			k |= (unsigned char)*block++;
934 		}
935 		cblock.b[i] = k;
936 	}
937 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
938 		return (1);
939 	for (i = 7; i >= 0; i--) {
940 		k = cblock.b[i];
941 		for (j = 7; j >= 0; j--) {
942 			*--block = k&01;
943 			k >>= 1;
944 		}
945 	}
946 	return (0);
947 }
948 
949 #ifdef DEBUG
950 STATIC
951 prtab(s, t, num_rows)
952 	char *s;
953 	unsigned char *t;
954 	int num_rows;
955 {
956 	register int i, j;
957 
958 	(void)printf("%s:\n", s);
959 	for (i = 0; i < num_rows; i++) {
960 		for (j = 0; j < 8; j++) {
961 			 (void)printf("%3d", t[i*8+j]);
962 		}
963 		(void)printf("\n");
964 	}
965 	(void)printf("\n");
966 }
967 #endif
968