xref: /netbsd-src/lib/libcrypt/crypt.c (revision 811e6386f8c5e4a3521c7003da29ec8673e344fa)
1 /*
2  * Copyright (c) 1989 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Tom Truscott.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)crypt.c	5.11 (Berkeley) 6/25/91";
39 #endif /* LIBC_SCCS and not lint */
40 
41 #include <unistd.h>
42 #include <limits.h>
43 #include <pwd.h>
44 
45 /*
46  * UNIX password, and DES, encryption.
47  * By Tom Truscott, trt@rti.rti.org,
48  * from algorithms by Robert W. Baldwin and James Gillogly.
49  *
50  * References:
51  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
52  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
53  *
54  * "Password Security: A Case History," R. Morris and Ken Thompson,
55  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
56  *
57  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
58  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
59  */
60 
61 /* =====  Configuration ==================== */
62 
63 /*
64  * define "MUST_ALIGN" if your compiler cannot load/store
65  * long integers at arbitrary (e.g. odd) memory locations.
66  * (Either that or never pass unaligned addresses to des_cipher!)
67  */
68 #if !defined(vax)
69 #define	MUST_ALIGN
70 #endif
71 
72 #ifdef CHAR_BITS
73 #if CHAR_BITS != 8
74 	#error C_block structure assumes 8 bit characters
75 #endif
76 #endif
77 
78 /*
79  * define "LONG_IS_32_BITS" only if sizeof(long)==4.
80  * This avoids use of bit fields (your compiler may be sloppy with them).
81  */
82 #if !defined(cray)
83 #define	LONG_IS_32_BITS
84 #endif
85 
86 /*
87  * define "B64" to be the declaration for a 64 bit integer.
88  * XXX this feature is currently unused, see "endian" comment below.
89  */
90 #if defined(cray)
91 #define	B64	long
92 #endif
93 #if defined(convex)
94 #define	B64	long long
95 #endif
96 
97 /*
98  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
99  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
100  * little effect on crypt().
101  */
102 #if defined(notdef)
103 #define	LARGEDATA
104 #endif
105 
106 /* compile with "-DSTATIC=int" when profiling */
107 #ifndef STATIC
108 #define	STATIC	static
109 #endif
110 STATIC init_des(), init_perm(), permute();
111 #ifdef DEBUG
112 STATIC prtab();
113 #endif
114 
115 /* ==================================== */
116 
117 /*
118  * Cipher-block representation (Bob Baldwin):
119  *
120  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
121  * representation is to store one bit per byte in an array of bytes.  Bit N of
122  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
123  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
124  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
125  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
126  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
127  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
128  * converted to LSB format, and the output 64-bit block is converted back into
129  * MSB format.
130  *
131  * DES operates internally on groups of 32 bits which are expanded to 48 bits
132  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
133  * the computation, the expansion is applied only once, the expanded
134  * representation is maintained during the encryption, and a compression
135  * permutation is applied only at the end.  To speed up the S-box lookups,
136  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
137  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
138  * most significant ones.  The low two bits of each byte are zero.  (Thus,
139  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
140  * first byte in the eight byte representation, bit 2 of the 48 bit value is
141  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
142  * used, in which the output is the 64 bit result of an S-box lookup which
143  * has been permuted by P and expanded by E, and is ready for use in the next
144  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
145  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
146  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
147  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
148  * 8*64*8 = 4K bytes.
149  *
150  * To speed up bit-parallel operations (such as XOR), the 8 byte
151  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
152  * machines which support it, a 64 bit value "b64".  This data structure,
153  * "C_block", has two problems.  First, alignment restrictions must be
154  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
155  * the architecture becomes visible.
156  *
157  * The byte-order problem is unfortunate, since on the one hand it is good
158  * to have a machine-independent C_block representation (bits 1..8 in the
159  * first byte, etc.), and on the other hand it is good for the LSB of the
160  * first byte to be the LSB of i0.  We cannot have both these things, so we
161  * currently use the "little-endian" representation and avoid any multi-byte
162  * operations that depend on byte order.  This largely precludes use of the
163  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
164  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
165  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
166  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
167  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
168  * requires a 128 kilobyte table, so perhaps this is not a big loss.
169  *
170  * Permutation representation (Jim Gillogly):
171  *
172  * A transformation is defined by its effect on each of the 8 bytes of the
173  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
174  * the input distributed appropriately.  The transformation is then the OR
175  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
176  * each transformation.  Unless LARGEDATA is defined, however, a more compact
177  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
178  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
179  * is slower but tolerable, particularly for password encryption in which
180  * the SPE transformation is iterated many times.  The small tables total 9K
181  * bytes, the large tables total 72K bytes.
182  *
183  * The transformations used are:
184  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
185  *	This is done by collecting the 32 even-numbered bits and applying
186  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
187  *	bits and applying the same transformation.  Since there are only
188  *	32 input bits, the IE3264 transformation table is half the size of
189  *	the usual table.
190  * CF6464: Compression, final permutation, and LSB->MSB conversion.
191  *	This is done by two trivial 48->32 bit compressions to obtain
192  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
193  *	followed by a 64->64 bit "cleanup" transformation.  (It would
194  *	be possible to group the bits in the 64-bit block so that 2
195  *	identical 32->32 bit transformations could be used instead,
196  *	saving a factor of 4 in space and possibly 2 in time, but
197  *	byte-ordering and other complications rear their ugly head.
198  *	Similar opportunities/problems arise in the key schedule
199  *	transforms.)
200  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
201  *	This admittedly baroque 64->64 bit transformation is used to
202  *	produce the first code (in 8*(6+2) format) of the key schedule.
203  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
204  *	It would be possible to define 15 more transformations, each
205  *	with a different rotation, to generate the entire key schedule.
206  *	To save space, however, we instead permute each code into the
207  *	next by using a transformation that "undoes" the PC2 permutation,
208  *	rotates the code, and then applies PC2.  Unfortunately, PC2
209  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
210  *	invertible.  We get around that problem by using a modified PC2
211  *	which retains the 8 otherwise-lost bits in the unused low-order
212  *	bits of each byte.  The low-order bits are cleared when the
213  *	codes are stored into the key schedule.
214  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
215  *	This is faster than applying PC2ROT[0] twice,
216  *
217  * The Bell Labs "salt" (Bob Baldwin):
218  *
219  * The salting is a simple permutation applied to the 48-bit result of E.
220  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
221  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
222  * 16777216 possible values.  (The original salt was 12 bits and could not
223  * swap bits 13..24 with 36..48.)
224  *
225  * It is possible, but ugly, to warp the SPE table to account for the salt
226  * permutation.  Fortunately, the conditional bit swapping requires only
227  * about four machine instructions and can be done on-the-fly with about an
228  * 8% performance penalty.
229  */
230 
231 typedef union {
232 	unsigned char b[8];
233 	struct {
234 #if defined(LONG_IS_32_BITS)
235 		/* long is often faster than a 32-bit bit field */
236 		long	i0;
237 		long	i1;
238 #else
239 		long	i0: 32;
240 		long	i1: 32;
241 #endif
242 	} b32;
243 #if defined(B64)
244 	B64	b64;
245 #endif
246 } C_block;
247 
248 /*
249  * Convert twenty-four-bit long in host-order
250  * to six bits (and 2 low-order zeroes) per char little-endian format.
251  */
252 #define	TO_SIX_BIT(rslt, src) {				\
253 		C_block cvt;				\
254 		cvt.b[0] = src; src >>= 6;		\
255 		cvt.b[1] = src; src >>= 6;		\
256 		cvt.b[2] = src; src >>= 6;		\
257 		cvt.b[3] = src;				\
258 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
259 	}
260 
261 /*
262  * These macros may someday permit efficient use of 64-bit integers.
263  */
264 #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
265 #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
266 #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
267 #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
268 #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
269 #define	DCL_BLOCK(d,d0,d1)		long d0, d1
270 
271 #if defined(LARGEDATA)
272 	/* Waste memory like crazy.  Also, do permutations in line */
273 #define	LGCHUNKBITS	3
274 #define	CHUNKBITS	(1<<LGCHUNKBITS)
275 #define	PERM6464(d,d0,d1,cpp,p)				\
276 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
277 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
278 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
279 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
280 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
281 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
282 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
283 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
284 #define	PERM3264(d,d0,d1,cpp,p)				\
285 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
286 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
287 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
288 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
289 #else
290 	/* "small data" */
291 #define	LGCHUNKBITS	2
292 #define	CHUNKBITS	(1<<LGCHUNKBITS)
293 #define	PERM6464(d,d0,d1,cpp,p)				\
294 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
295 #define	PERM3264(d,d0,d1,cpp,p)				\
296 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
297 
298 STATIC
299 permute(cp, out, p, chars_in)
300 	unsigned char *cp;
301 	C_block *out;
302 	register C_block *p;
303 	int chars_in;
304 {
305 	register DCL_BLOCK(D,D0,D1);
306 	register C_block *tp;
307 	register int t;
308 
309 	ZERO(D,D0,D1);
310 	do {
311 		t = *cp++;
312 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
313 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 	} while (--chars_in > 0);
315 	STORE(D,D0,D1,*out);
316 }
317 #endif /* LARGEDATA */
318 
319 
320 /* =====  (mostly) Standard DES Tables ==================== */
321 
322 static unsigned char IP[] = {		/* initial permutation */
323 	58, 50, 42, 34, 26, 18, 10,  2,
324 	60, 52, 44, 36, 28, 20, 12,  4,
325 	62, 54, 46, 38, 30, 22, 14,  6,
326 	64, 56, 48, 40, 32, 24, 16,  8,
327 	57, 49, 41, 33, 25, 17,  9,  1,
328 	59, 51, 43, 35, 27, 19, 11,  3,
329 	61, 53, 45, 37, 29, 21, 13,  5,
330 	63, 55, 47, 39, 31, 23, 15,  7,
331 };
332 
333 /* The final permutation is the inverse of IP - no table is necessary */
334 
335 static unsigned char ExpandTr[] = {	/* expansion operation */
336 	32,  1,  2,  3,  4,  5,
337 	 4,  5,  6,  7,  8,  9,
338 	 8,  9, 10, 11, 12, 13,
339 	12, 13, 14, 15, 16, 17,
340 	16, 17, 18, 19, 20, 21,
341 	20, 21, 22, 23, 24, 25,
342 	24, 25, 26, 27, 28, 29,
343 	28, 29, 30, 31, 32,  1,
344 };
345 
346 static unsigned char PC1[] = {		/* permuted choice table 1 */
347 	57, 49, 41, 33, 25, 17,  9,
348 	 1, 58, 50, 42, 34, 26, 18,
349 	10,  2, 59, 51, 43, 35, 27,
350 	19, 11,  3, 60, 52, 44, 36,
351 
352 	63, 55, 47, 39, 31, 23, 15,
353 	 7, 62, 54, 46, 38, 30, 22,
354 	14,  6, 61, 53, 45, 37, 29,
355 	21, 13,  5, 28, 20, 12,  4,
356 };
357 
358 static unsigned char Rotates[] = {	/* PC1 rotation schedule */
359 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
360 };
361 
362 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
363 static unsigned char PC2[] = {		/* permuted choice table 2 */
364 	 9, 18,    14, 17, 11, 24,  1,  5,
365 	22, 25,     3, 28, 15,  6, 21, 10,
366 	35, 38,    23, 19, 12,  4, 26,  8,
367 	43, 54,    16,  7, 27, 20, 13,  2,
368 
369 	 0,  0,    41, 52, 31, 37, 47, 55,
370 	 0,  0,    30, 40, 51, 45, 33, 48,
371 	 0,  0,    44, 49, 39, 56, 34, 53,
372 	 0,  0,    46, 42, 50, 36, 29, 32,
373 };
374 
375 static unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
376 					/* S[1]			*/
377 	14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
378 	 0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
379 	 4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
380 	15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13,
381 					/* S[2]			*/
382 	15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
383 	 3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
384 	 0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
385 	13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9,
386 					/* S[3]			*/
387 	10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
388 	13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
389 	13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
390 	 1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12,
391 					/* S[4]			*/
392 	 7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
393 	13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
394 	10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
395 	 3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14,
396 					/* S[5]			*/
397 	 2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
398 	14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
399 	 4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
400 	11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3,
401 					/* S[6]			*/
402 	12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
403 	10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
404 	 9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
405 	 4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13,
406 					/* S[7]			*/
407 	 4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
408 	13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
409 	 1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
410 	 6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12,
411 					/* S[8]			*/
412 	13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
413 	 1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
414 	 7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
415 	 2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11,
416 };
417 
418 static unsigned char P32Tr[] = {	/* 32-bit permutation function */
419 	16,  7, 20, 21,
420 	29, 12, 28, 17,
421 	 1, 15, 23, 26,
422 	 5, 18, 31, 10,
423 	 2,  8, 24, 14,
424 	32, 27,  3,  9,
425 	19, 13, 30,  6,
426 	22, 11,  4, 25,
427 };
428 
429 static unsigned char CIFP[] = {		/* compressed/interleaved permutation */
430 	 1,  2,  3,  4,   17, 18, 19, 20,
431 	 5,  6,  7,  8,   21, 22, 23, 24,
432 	 9, 10, 11, 12,   25, 26, 27, 28,
433 	13, 14, 15, 16,   29, 30, 31, 32,
434 
435 	33, 34, 35, 36,   49, 50, 51, 52,
436 	37, 38, 39, 40,   53, 54, 55, 56,
437 	41, 42, 43, 44,   57, 58, 59, 60,
438 	45, 46, 47, 48,   61, 62, 63, 64,
439 };
440 
441 static unsigned char itoa64[] =		/* 0..63 => ascii-64 */
442 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
443 
444 
445 /* =====  Tables that are initialized at run time  ==================== */
446 
447 
448 static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
449 
450 /* Initial key schedule permutation */
451 static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
452 
453 /* Subsequent key schedule rotation permutations */
454 static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
455 
456 /* Initial permutation/expansion table */
457 static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
458 
459 /* Table that combines the S, P, and E operations.  */
460 static long SPE[2][8][64];
461 
462 /* compressed/interleaved => final permutation table */
463 static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
464 
465 
466 /* ==================================== */
467 
468 
469 static C_block	constdatablock;			/* encryption constant */
470 static char	cryptresult[1+4+4+11+1];	/* encrypted result */
471 
472 /*
473  * Return a pointer to static data consisting of the "setting"
474  * followed by an encryption produced by the "key" and "setting".
475  */
476 char *
477 crypt(key, setting)
478 	register const char *key;
479 	register const char *setting;
480 {
481 	register char *encp;
482 	register long i;
483 	register int t;
484 	long salt;
485 	int num_iter, salt_size;
486 	C_block keyblock, rsltblock;
487 
488 	for (i = 0; i < 8; i++) {
489 		if ((t = 2*(unsigned char)(*key)) != 0)
490 			key++;
491 		keyblock.b[i] = t;
492 	}
493 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
494 		return (NULL);
495 
496 	encp = &cryptresult[0];
497 	switch (*setting) {
498 	case _PASSWORD_EFMT1:
499 		/*
500 		 * Involve the rest of the password 8 characters at a time.
501 		 */
502 		while (*key) {
503 			if (des_cipher((char *)&keyblock,
504 			    (char *)&keyblock, 0L, 1))
505 				return (NULL);
506 			for (i = 0; i < 8; i++) {
507 				if ((t = 2*(unsigned char)(*key)) != 0)
508 					key++;
509 				keyblock.b[i] ^= t;
510 			}
511 			if (des_setkey((char *)keyblock.b))
512 				return (NULL);
513 		}
514 
515 		*encp++ = *setting++;
516 
517 		/* get iteration count */
518 		num_iter = 0;
519 		for (i = 4; --i >= 0; ) {
520 			if ((t = (unsigned char)setting[i]) == '\0')
521 				t = '.';
522 			encp[i] = t;
523 			num_iter = (num_iter<<6) | a64toi[t];
524 		}
525 		setting += 4;
526 		encp += 4;
527 		salt_size = 4;
528 		break;
529 	default:
530 		num_iter = 25;
531 		salt_size = 2;
532 	}
533 
534 	salt = 0;
535 	for (i = salt_size; --i >= 0; ) {
536 		if ((t = (unsigned char)setting[i]) == '\0')
537 			t = '.';
538 		encp[i] = t;
539 		salt = (salt<<6) | a64toi[t];
540 	}
541 	encp += salt_size;
542 	if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
543 	    salt, num_iter))
544 		return (NULL);
545 
546 	/*
547 	 * Encode the 64 cipher bits as 11 ascii characters.
548 	 */
549 	i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
550 	encp[3] = itoa64[i&0x3f];	i >>= 6;
551 	encp[2] = itoa64[i&0x3f];	i >>= 6;
552 	encp[1] = itoa64[i&0x3f];	i >>= 6;
553 	encp[0] = itoa64[i];		encp += 4;
554 	i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
555 	encp[3] = itoa64[i&0x3f];	i >>= 6;
556 	encp[2] = itoa64[i&0x3f];	i >>= 6;
557 	encp[1] = itoa64[i&0x3f];	i >>= 6;
558 	encp[0] = itoa64[i];		encp += 4;
559 	i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
560 	encp[2] = itoa64[i&0x3f];	i >>= 6;
561 	encp[1] = itoa64[i&0x3f];	i >>= 6;
562 	encp[0] = itoa64[i];
563 
564 	encp[3] = 0;
565 
566 	return (cryptresult);
567 }
568 
569 
570 /*
571  * The Key Schedule, filled in by des_setkey() or setkey().
572  */
573 #define	KS_SIZE	16
574 static C_block	KS[KS_SIZE];
575 
576 /*
577  * Set up the key schedule from the key.
578  */
579 des_setkey(key)
580 	register const char *key;
581 {
582 	register DCL_BLOCK(K, K0, K1);
583 	register C_block *ptabp;
584 	register int i;
585 	static int des_ready = 0;
586 
587 	if (!des_ready) {
588 		init_des();
589 		des_ready = 1;
590 	}
591 
592 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
593 	key = (char *)&KS[0];
594 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
595 	for (i = 1; i < 16; i++) {
596 		key += sizeof(C_block);
597 		STORE(K,K0,K1,*(C_block *)key);
598 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
599 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
600 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
601 	}
602 	return (0);
603 }
604 
605 /*
606  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
607  * iterations of DES, using the the given 24-bit salt and the pre-computed key
608  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
609  *
610  * NOTE: the performance of this routine is critically dependent on your
611  * compiler and machine architecture.
612  */
613 des_cipher(in, out, salt, num_iter)
614 	const char *in;
615 	char *out;
616 	long salt;
617 	int num_iter;
618 {
619 	/* variables that we want in registers, most important first */
620 #if defined(pdp11)
621 	register int j;
622 #endif
623 	register long L0, L1, R0, R1, k;
624 	register C_block *kp;
625 	register int ks_inc, loop_count;
626 	C_block B;
627 
628 	L0 = salt;
629 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
630 
631 #if defined(vax) || defined(pdp11)
632 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
633 #define	SALT (~salt)
634 #else
635 #define	SALT salt
636 #endif
637 
638 #if defined(MUST_ALIGN)
639 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
640 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
641 	LOAD(L,L0,L1,B);
642 #else
643 	LOAD(L,L0,L1,*(C_block *)in);
644 #endif
645 	LOADREG(R,R0,R1,L,L0,L1);
646 	L0 &= 0x55555555L;
647 	L1 &= 0x55555555L;
648 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
649 	R0 &= 0xaaaaaaaaL;
650 	R1 = (R1 >> 1) & 0x55555555L;
651 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
652 	STORE(L,L0,L1,B);
653 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
654 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
655 
656 	if (num_iter >= 0)
657 	{		/* encryption */
658 		kp = &KS[0];
659 		ks_inc  = sizeof(*kp);
660 	}
661 	else
662 	{		/* decryption */
663 		num_iter = -num_iter;
664 		kp = &KS[KS_SIZE-1];
665 		ks_inc  = -sizeof(*kp);
666 	}
667 
668 	while (--num_iter >= 0) {
669 		loop_count = 8;
670 		do {
671 
672 #define	SPTAB(t, i)	(*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
673 #if defined(gould)
674 			/* use this if B.b[i] is evaluated just once ... */
675 #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
676 #else
677 #if defined(pdp11)
678 			/* use this if your "long" int indexing is slow */
679 #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
680 #else
681 			/* use this if "k" is allocated to a register ... */
682 #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
683 #endif
684 #endif
685 
686 #define	CRUNCH(p0, p1, q0, q1)	\
687 			k = (q0 ^ q1) & SALT;	\
688 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
689 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
690 			kp = (C_block *)((char *)kp+ks_inc);	\
691 							\
692 			DOXOR(p0, p1, 0);		\
693 			DOXOR(p0, p1, 1);		\
694 			DOXOR(p0, p1, 2);		\
695 			DOXOR(p0, p1, 3);		\
696 			DOXOR(p0, p1, 4);		\
697 			DOXOR(p0, p1, 5);		\
698 			DOXOR(p0, p1, 6);		\
699 			DOXOR(p0, p1, 7);
700 
701 			CRUNCH(L0, L1, R0, R1);
702 			CRUNCH(R0, R1, L0, L1);
703 		} while (--loop_count != 0);
704 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
705 
706 
707 		/* swap L and R */
708 		L0 ^= R0;  L1 ^= R1;
709 		R0 ^= L0;  R1 ^= L1;
710 		L0 ^= R0;  L1 ^= R1;
711 	}
712 
713 	/* store the encrypted (or decrypted) result */
714 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
715 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
716 	STORE(L,L0,L1,B);
717 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
718 #if defined(MUST_ALIGN)
719 	STORE(L,L0,L1,B);
720 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
721 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
722 #else
723 	STORE(L,L0,L1,*(C_block *)out);
724 #endif
725 	return (0);
726 }
727 
728 
729 /*
730  * Initialize various tables.  This need only be done once.  It could even be
731  * done at compile time, if the compiler were capable of that sort of thing.
732  */
733 STATIC
734 init_des()
735 {
736 	register int i, j;
737 	register long k;
738 	register int tableno;
739 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
740 
741 	/*
742 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
743 	 */
744 	for (i = 0; i < 64; i++)
745 		a64toi[itoa64[i]] = i;
746 
747 	/*
748 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
749 	 */
750 	for (i = 0; i < 64; i++)
751 		perm[i] = 0;
752 	for (i = 0; i < 64; i++) {
753 		if ((k = PC2[i]) == 0)
754 			continue;
755 		k += Rotates[0]-1;
756 		if ((k%28) < Rotates[0]) k -= 28;
757 		k = PC1[k];
758 		if (k > 0) {
759 			k--;
760 			k = (k|07) - (k&07);
761 			k++;
762 		}
763 		perm[i] = k;
764 	}
765 #ifdef DEBUG
766 	prtab("pc1tab", perm, 8);
767 #endif
768 	init_perm(PC1ROT, perm, 8, 8);
769 
770 	/*
771 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
772 	 */
773 	for (j = 0; j < 2; j++) {
774 		unsigned char pc2inv[64];
775 		for (i = 0; i < 64; i++)
776 			perm[i] = pc2inv[i] = 0;
777 		for (i = 0; i < 64; i++) {
778 			if ((k = PC2[i]) == 0)
779 				continue;
780 			pc2inv[k-1] = i+1;
781 		}
782 		for (i = 0; i < 64; i++) {
783 			if ((k = PC2[i]) == 0)
784 				continue;
785 			k += j;
786 			if ((k%28) <= j) k -= 28;
787 			perm[i] = pc2inv[k];
788 		}
789 #ifdef DEBUG
790 		prtab("pc2tab", perm, 8);
791 #endif
792 		init_perm(PC2ROT[j], perm, 8, 8);
793 	}
794 
795 	/*
796 	 * Bit reverse, then initial permutation, then expansion.
797 	 */
798 	for (i = 0; i < 8; i++) {
799 		for (j = 0; j < 8; j++) {
800 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
801 			if (k > 32)
802 				k -= 32;
803 			else if (k > 0)
804 				k--;
805 			if (k > 0) {
806 				k--;
807 				k = (k|07) - (k&07);
808 				k++;
809 			}
810 			perm[i*8+j] = k;
811 		}
812 	}
813 #ifdef DEBUG
814 	prtab("ietab", perm, 8);
815 #endif
816 	init_perm(IE3264, perm, 4, 8);
817 
818 	/*
819 	 * Compression, then final permutation, then bit reverse.
820 	 */
821 	for (i = 0; i < 64; i++) {
822 		k = IP[CIFP[i]-1];
823 		if (k > 0) {
824 			k--;
825 			k = (k|07) - (k&07);
826 			k++;
827 		}
828 		perm[k-1] = i+1;
829 	}
830 #ifdef DEBUG
831 	prtab("cftab", perm, 8);
832 #endif
833 	init_perm(CF6464, perm, 8, 8);
834 
835 	/*
836 	 * SPE table
837 	 */
838 	for (i = 0; i < 48; i++)
839 		perm[i] = P32Tr[ExpandTr[i]-1];
840 	for (tableno = 0; tableno < 8; tableno++) {
841 		for (j = 0; j < 64; j++)  {
842 			k = (((j >> 0) &01) << 5)|
843 			    (((j >> 1) &01) << 3)|
844 			    (((j >> 2) &01) << 2)|
845 			    (((j >> 3) &01) << 1)|
846 			    (((j >> 4) &01) << 0)|
847 			    (((j >> 5) &01) << 4);
848 			k = S[tableno][k];
849 			k = (((k >> 3)&01) << 0)|
850 			    (((k >> 2)&01) << 1)|
851 			    (((k >> 1)&01) << 2)|
852 			    (((k >> 0)&01) << 3);
853 			for (i = 0; i < 32; i++)
854 				tmp32[i] = 0;
855 			for (i = 0; i < 4; i++)
856 				tmp32[4 * tableno + i] = (k >> i) & 01;
857 			k = 0;
858 			for (i = 24; --i >= 0; )
859 				k = (k<<1) | tmp32[perm[i]-1];
860 			TO_SIX_BIT(SPE[0][tableno][j], k);
861 			k = 0;
862 			for (i = 24; --i >= 0; )
863 				k = (k<<1) | tmp32[perm[i+24]-1];
864 			TO_SIX_BIT(SPE[1][tableno][j], k);
865 		}
866 	}
867 }
868 
869 /*
870  * Initialize "perm" to represent transformation "p", which rearranges
871  * (perhaps with expansion and/or contraction) one packed array of bits
872  * (of size "chars_in" characters) into another array (of size "chars_out"
873  * characters).
874  *
875  * "perm" must be all-zeroes on entry to this routine.
876  */
877 STATIC
878 init_perm(perm, p, chars_in, chars_out)
879 	C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
880 	unsigned char p[64];
881 	int chars_in, chars_out;
882 {
883 	register int i, j, k, l;
884 
885 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
886 		l = p[k] - 1;		/* where this bit comes from */
887 		if (l < 0)
888 			continue;	/* output bit is always 0 */
889 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
890 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
891 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
892 			if ((j & l) != 0)
893 				perm[i][j].b[k>>3] |= 1<<(k&07);
894 		}
895 	}
896 }
897 
898 /*
899  * "setkey" routine (for backwards compatibility)
900  */
901 setkey(key)
902 	register const char *key;
903 {
904 	register int i, j, k;
905 	C_block keyblock;
906 
907 	for (i = 0; i < 8; i++) {
908 		k = 0;
909 		for (j = 0; j < 8; j++) {
910 			k <<= 1;
911 			k |= (unsigned char)*key++;
912 		}
913 		keyblock.b[i] = k;
914 	}
915 	return (des_setkey((char *)keyblock.b));
916 }
917 
918 /*
919  * "encrypt" routine (for backwards compatibility)
920  */
921 encrypt(block, flag)
922 	register char *block;
923 	int flag;
924 {
925 	register int i, j, k;
926 	C_block cblock;
927 
928 	for (i = 0; i < 8; i++) {
929 		k = 0;
930 		for (j = 0; j < 8; j++) {
931 			k <<= 1;
932 			k |= (unsigned char)*block++;
933 		}
934 		cblock.b[i] = k;
935 	}
936 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
937 		return (1);
938 	for (i = 7; i >= 0; i--) {
939 		k = cblock.b[i];
940 		for (j = 7; j >= 0; j--) {
941 			*--block = k&01;
942 			k >>= 1;
943 		}
944 	}
945 	return (0);
946 }
947 
948 #ifdef DEBUG
949 STATIC
950 prtab(s, t, num_rows)
951 	char *s;
952 	unsigned char *t;
953 	int num_rows;
954 {
955 	register int i, j;
956 
957 	(void)printf("%s:\n", s);
958 	for (i = 0; i < num_rows; i++) {
959 		for (j = 0; j < 8; j++) {
960 			 (void)printf("%3d", t[i*8+j]);
961 		}
962 		(void)printf("\n");
963 	}
964 	(void)printf("\n");
965 }
966 #endif
967