xref: /netbsd-src/lib/libcrypt/crypt.c (revision 1394f01b4a9e99092957ca5d824d67219565d9b5)
1 /*	$NetBSD: crypt.c,v 1.6 1997/07/02 04:55:41 mikel Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Tom Truscott.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if defined(LIBC_SCCS) && !defined(lint)
40 #if 0
41 static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
42 #endif
43 static char rcsid[] = "$NetBSD: crypt.c,v 1.6 1997/07/02 04:55:41 mikel Exp $";
44 #endif /* LIBC_SCCS and not lint */
45 
46 #include <limits.h>
47 #include <pwd.h>
48 #include <unistd.h>
49 
50 /*
51  * UNIX password, and DES, encryption.
52  * By Tom Truscott, trt@rti.rti.org,
53  * from algorithms by Robert W. Baldwin and James Gillogly.
54  *
55  * References:
56  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
57  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
58  *
59  * "Password Security: A Case History," R. Morris and Ken Thompson,
60  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
61  *
62  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
63  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
64  */
65 
66 /* =====  Configuration ==================== */
67 
68 /*
69  * define "MUST_ALIGN" if your compiler cannot load/store
70  * long integers at arbitrary (e.g. odd) memory locations.
71  * (Either that or never pass unaligned addresses to des_cipher!)
72  */
73 #if !defined(vax)
74 #define	MUST_ALIGN
75 #endif
76 
77 #ifdef CHAR_BITS
78 #if CHAR_BITS != 8
79 	#error C_block structure assumes 8 bit characters
80 #endif
81 #endif
82 
83 /*
84  * define "B64" to be the declaration for a 64 bit integer.
85  * XXX this feature is currently unused, see "endian" comment below.
86  */
87 #if defined(cray)
88 #define	B64	long
89 #endif
90 #if defined(convex)
91 #define	B64	long long
92 #endif
93 
94 /*
95  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
96  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
97  * little effect on crypt().
98  */
99 #if defined(notdef)
100 #define	LARGEDATA
101 #endif
102 
103 /* compile with "-DSTATIC=void" when profiling */
104 #ifndef STATIC
105 #define	STATIC	static void
106 #endif
107 STATIC init_des(), init_perm(), permute();
108 #ifdef DEBUG
109 STATIC prtab();
110 #endif
111 
112 /* ==================================== */
113 
114 /*
115  * Cipher-block representation (Bob Baldwin):
116  *
117  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
118  * representation is to store one bit per byte in an array of bytes.  Bit N of
119  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
122  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
125  * converted to LSB format, and the output 64-bit block is converted back into
126  * MSB format.
127  *
128  * DES operates internally on groups of 32 bits which are expanded to 48 bits
129  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
130  * the computation, the expansion is applied only once, the expanded
131  * representation is maintained during the encryption, and a compression
132  * permutation is applied only at the end.  To speed up the S-box lookups,
133  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
135  * most significant ones.  The low two bits of each byte are zero.  (Thus,
136  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137  * first byte in the eight byte representation, bit 2 of the 48 bit value is
138  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
139  * used, in which the output is the 64 bit result of an S-box lookup which
140  * has been permuted by P and expanded by E, and is ready for use in the next
141  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
143  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
144  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
145  * 8*64*8 = 4K bytes.
146  *
147  * To speed up bit-parallel operations (such as XOR), the 8 byte
148  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149  * machines which support it, a 64 bit value "b64".  This data structure,
150  * "C_block", has two problems.  First, alignment restrictions must be
151  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
152  * the architecture becomes visible.
153  *
154  * The byte-order problem is unfortunate, since on the one hand it is good
155  * to have a machine-independent C_block representation (bits 1..8 in the
156  * first byte, etc.), and on the other hand it is good for the LSB of the
157  * first byte to be the LSB of i0.  We cannot have both these things, so we
158  * currently use the "little-endian" representation and avoid any multi-byte
159  * operations that depend on byte order.  This largely precludes use of the
160  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
161  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
162  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
164  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165  * requires a 128 kilobyte table, so perhaps this is not a big loss.
166  *
167  * Permutation representation (Jim Gillogly):
168  *
169  * A transformation is defined by its effect on each of the 8 bytes of the
170  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
171  * the input distributed appropriately.  The transformation is then the OR
172  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
173  * each transformation.  Unless LARGEDATA is defined, however, a more compact
174  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
176  * is slower but tolerable, particularly for password encryption in which
177  * the SPE transformation is iterated many times.  The small tables total 9K
178  * bytes, the large tables total 72K bytes.
179  *
180  * The transformations used are:
181  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182  *	This is done by collecting the 32 even-numbered bits and applying
183  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
184  *	bits and applying the same transformation.  Since there are only
185  *	32 input bits, the IE3264 transformation table is half the size of
186  *	the usual table.
187  * CF6464: Compression, final permutation, and LSB->MSB conversion.
188  *	This is done by two trivial 48->32 bit compressions to obtain
189  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
190  *	followed by a 64->64 bit "cleanup" transformation.  (It would
191  *	be possible to group the bits in the 64-bit block so that 2
192  *	identical 32->32 bit transformations could be used instead,
193  *	saving a factor of 4 in space and possibly 2 in time, but
194  *	byte-ordering and other complications rear their ugly head.
195  *	Similar opportunities/problems arise in the key schedule
196  *	transforms.)
197  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198  *	This admittedly baroque 64->64 bit transformation is used to
199  *	produce the first code (in 8*(6+2) format) of the key schedule.
200  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201  *	It would be possible to define 15 more transformations, each
202  *	with a different rotation, to generate the entire key schedule.
203  *	To save space, however, we instead permute each code into the
204  *	next by using a transformation that "undoes" the PC2 permutation,
205  *	rotates the code, and then applies PC2.  Unfortunately, PC2
206  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207  *	invertible.  We get around that problem by using a modified PC2
208  *	which retains the 8 otherwise-lost bits in the unused low-order
209  *	bits of each byte.  The low-order bits are cleared when the
210  *	codes are stored into the key schedule.
211  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212  *	This is faster than applying PC2ROT[0] twice,
213  *
214  * The Bell Labs "salt" (Bob Baldwin):
215  *
216  * The salting is a simple permutation applied to the 48-bit result of E.
217  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
219  * 16777216 possible values.  (The original salt was 12 bits and could not
220  * swap bits 13..24 with 36..48.)
221  *
222  * It is possible, but ugly, to warp the SPE table to account for the salt
223  * permutation.  Fortunately, the conditional bit swapping requires only
224  * about four machine instructions and can be done on-the-fly with about an
225  * 8% performance penalty.
226  */
227 
228 typedef union {
229 	unsigned char b[8];
230 	struct {
231 		int32_t	i0;
232 		int32_t	i1;
233 	} b32;
234 #if defined(B64)
235 	B64	b64;
236 #endif
237 } C_block;
238 
239 /*
240  * Convert twenty-four-bit long in host-order
241  * to six bits (and 2 low-order zeroes) per char little-endian format.
242  */
243 #define	TO_SIX_BIT(rslt, src) {				\
244 		C_block cvt;				\
245 		cvt.b[0] = src; src >>= 6;		\
246 		cvt.b[1] = src; src >>= 6;		\
247 		cvt.b[2] = src; src >>= 6;		\
248 		cvt.b[3] = src;				\
249 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
250 	}
251 
252 /*
253  * These macros may someday permit efficient use of 64-bit integers.
254  */
255 #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
256 #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
257 #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
258 #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
259 #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
260 #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
261 
262 #if defined(LARGEDATA)
263 	/* Waste memory like crazy.  Also, do permutations in line */
264 #define	LGCHUNKBITS	3
265 #define	CHUNKBITS	(1<<LGCHUNKBITS)
266 #define	PERM6464(d,d0,d1,cpp,p)				\
267 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
268 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
269 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
270 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
271 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
272 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
273 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
274 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
275 #define	PERM3264(d,d0,d1,cpp,p)				\
276 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
277 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
278 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
279 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
280 #else
281 	/* "small data" */
282 #define	LGCHUNKBITS	2
283 #define	CHUNKBITS	(1<<LGCHUNKBITS)
284 #define	PERM6464(d,d0,d1,cpp,p)				\
285 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
286 #define	PERM3264(d,d0,d1,cpp,p)				\
287 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
288 
289 STATIC
290 permute(cp, out, p, chars_in)
291 	unsigned char *cp;
292 	C_block *out;
293 	register C_block *p;
294 	int chars_in;
295 {
296 	register DCL_BLOCK(D,D0,D1);
297 	register C_block *tp;
298 	register int t;
299 
300 	ZERO(D,D0,D1);
301 	do {
302 		t = *cp++;
303 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
304 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
305 	} while (--chars_in > 0);
306 	STORE(D,D0,D1,*out);
307 }
308 #endif /* LARGEDATA */
309 
310 
311 /* =====  (mostly) Standard DES Tables ==================== */
312 
313 static unsigned char IP[] = {		/* initial permutation */
314 	58, 50, 42, 34, 26, 18, 10,  2,
315 	60, 52, 44, 36, 28, 20, 12,  4,
316 	62, 54, 46, 38, 30, 22, 14,  6,
317 	64, 56, 48, 40, 32, 24, 16,  8,
318 	57, 49, 41, 33, 25, 17,  9,  1,
319 	59, 51, 43, 35, 27, 19, 11,  3,
320 	61, 53, 45, 37, 29, 21, 13,  5,
321 	63, 55, 47, 39, 31, 23, 15,  7,
322 };
323 
324 /* The final permutation is the inverse of IP - no table is necessary */
325 
326 static unsigned char ExpandTr[] = {	/* expansion operation */
327 	32,  1,  2,  3,  4,  5,
328 	 4,  5,  6,  7,  8,  9,
329 	 8,  9, 10, 11, 12, 13,
330 	12, 13, 14, 15, 16, 17,
331 	16, 17, 18, 19, 20, 21,
332 	20, 21, 22, 23, 24, 25,
333 	24, 25, 26, 27, 28, 29,
334 	28, 29, 30, 31, 32,  1,
335 };
336 
337 static unsigned char PC1[] = {		/* permuted choice table 1 */
338 	57, 49, 41, 33, 25, 17,  9,
339 	 1, 58, 50, 42, 34, 26, 18,
340 	10,  2, 59, 51, 43, 35, 27,
341 	19, 11,  3, 60, 52, 44, 36,
342 
343 	63, 55, 47, 39, 31, 23, 15,
344 	 7, 62, 54, 46, 38, 30, 22,
345 	14,  6, 61, 53, 45, 37, 29,
346 	21, 13,  5, 28, 20, 12,  4,
347 };
348 
349 static unsigned char Rotates[] = {	/* PC1 rotation schedule */
350 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
351 };
352 
353 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
354 static unsigned char PC2[] = {		/* permuted choice table 2 */
355 	 9, 18,    14, 17, 11, 24,  1,  5,
356 	22, 25,     3, 28, 15,  6, 21, 10,
357 	35, 38,    23, 19, 12,  4, 26,  8,
358 	43, 54,    16,  7, 27, 20, 13,  2,
359 
360 	 0,  0,    41, 52, 31, 37, 47, 55,
361 	 0,  0,    30, 40, 51, 45, 33, 48,
362 	 0,  0,    44, 49, 39, 56, 34, 53,
363 	 0,  0,    46, 42, 50, 36, 29, 32,
364 };
365 
366 static unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
367 					/* S[1]			*/
368 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
369 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
370 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
371 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
372 					/* S[2]			*/
373 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
374 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
375 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
376 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
377 					/* S[3]			*/
378 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
379 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
380 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
381 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
382 					/* S[4]			*/
383 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
384 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
385 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
386 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
387 					/* S[5]			*/
388 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
389 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
390 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
391 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
392 					/* S[6]			*/
393 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
394 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
395 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
396 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
397 					/* S[7]			*/
398 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
399 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
400 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
401 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
402 					/* S[8]			*/
403 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
404 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
405 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
406 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
407 };
408 
409 static unsigned char P32Tr[] = {	/* 32-bit permutation function */
410 	16,  7, 20, 21,
411 	29, 12, 28, 17,
412 	 1, 15, 23, 26,
413 	 5, 18, 31, 10,
414 	 2,  8, 24, 14,
415 	32, 27,  3,  9,
416 	19, 13, 30,  6,
417 	22, 11,  4, 25,
418 };
419 
420 static unsigned char CIFP[] = {		/* compressed/interleaved permutation */
421 	 1,  2,  3,  4,   17, 18, 19, 20,
422 	 5,  6,  7,  8,   21, 22, 23, 24,
423 	 9, 10, 11, 12,   25, 26, 27, 28,
424 	13, 14, 15, 16,   29, 30, 31, 32,
425 
426 	33, 34, 35, 36,   49, 50, 51, 52,
427 	37, 38, 39, 40,   53, 54, 55, 56,
428 	41, 42, 43, 44,   57, 58, 59, 60,
429 	45, 46, 47, 48,   61, 62, 63, 64,
430 };
431 
432 static unsigned char itoa64[] =		/* 0..63 => ascii-64 */
433 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
434 
435 
436 /* =====  Tables that are initialized at run time  ==================== */
437 
438 
439 static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
440 
441 /* Initial key schedule permutation */
442 static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
443 
444 /* Subsequent key schedule rotation permutations */
445 static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
446 
447 /* Initial permutation/expansion table */
448 static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
449 
450 /* Table that combines the S, P, and E operations.  */
451 static int32_t SPE[2][8][64];
452 
453 /* compressed/interleaved => final permutation table */
454 static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
455 
456 
457 /* ==================================== */
458 
459 
460 static C_block	constdatablock;			/* encryption constant */
461 static char	cryptresult[1+4+4+11+1];	/* encrypted result */
462 
463 /*
464  * Return a pointer to static data consisting of the "setting"
465  * followed by an encryption produced by the "key" and "setting".
466  */
467 char *
468 crypt(key, setting)
469 	register const char *key;
470 	register const char *setting;
471 {
472 	register char *encp;
473 	register int32_t i;
474 	register int t;
475 	int32_t salt;
476 	int num_iter, salt_size;
477 	C_block keyblock, rsltblock;
478 
479 	for (i = 0; i < 8; i++) {
480 		if ((t = 2*(unsigned char)(*key)) != 0)
481 			key++;
482 		keyblock.b[i] = t;
483 	}
484 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
485 		return (NULL);
486 
487 	encp = &cryptresult[0];
488 	switch (*setting) {
489 	case _PASSWORD_EFMT1:
490 		/*
491 		 * Involve the rest of the password 8 characters at a time.
492 		 */
493 		while (*key) {
494 			if (des_cipher((char *)&keyblock,
495 			    (char *)&keyblock, 0L, 1))
496 				return (NULL);
497 			for (i = 0; i < 8; i++) {
498 				if ((t = 2*(unsigned char)(*key)) != 0)
499 					key++;
500 				keyblock.b[i] ^= t;
501 			}
502 			if (des_setkey((char *)keyblock.b))
503 				return (NULL);
504 		}
505 
506 		*encp++ = *setting++;
507 
508 		/* get iteration count */
509 		num_iter = 0;
510 		for (i = 4; --i >= 0; ) {
511 			if ((t = (unsigned char)setting[i]) == '\0')
512 				t = '.';
513 			encp[i] = t;
514 			num_iter = (num_iter<<6) | a64toi[t];
515 		}
516 		setting += 4;
517 		encp += 4;
518 		salt_size = 4;
519 		break;
520 	default:
521 		num_iter = 25;
522 		salt_size = 2;
523 	}
524 
525 	salt = 0;
526 	for (i = salt_size; --i >= 0; ) {
527 		if ((t = (unsigned char)setting[i]) == '\0')
528 			t = '.';
529 		encp[i] = t;
530 		salt = (salt<<6) | a64toi[t];
531 	}
532 	encp += salt_size;
533 	if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
534 	    salt, num_iter))
535 		return (NULL);
536 
537 	/*
538 	 * Encode the 64 cipher bits as 11 ascii characters.
539 	 */
540 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
541 	    rsltblock.b[2];
542 	encp[3] = itoa64[i&0x3f];	i >>= 6;
543 	encp[2] = itoa64[i&0x3f];	i >>= 6;
544 	encp[1] = itoa64[i&0x3f];	i >>= 6;
545 	encp[0] = itoa64[i];		encp += 4;
546 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
547 	    rsltblock.b[5];
548 	encp[3] = itoa64[i&0x3f];	i >>= 6;
549 	encp[2] = itoa64[i&0x3f];	i >>= 6;
550 	encp[1] = itoa64[i&0x3f];	i >>= 6;
551 	encp[0] = itoa64[i];		encp += 4;
552 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
553 	encp[2] = itoa64[i&0x3f];	i >>= 6;
554 	encp[1] = itoa64[i&0x3f];	i >>= 6;
555 	encp[0] = itoa64[i];
556 
557 	encp[3] = 0;
558 
559 	return (cryptresult);
560 }
561 
562 
563 /*
564  * The Key Schedule, filled in by des_setkey() or setkey().
565  */
566 #define	KS_SIZE	16
567 static C_block	KS[KS_SIZE];
568 
569 /*
570  * Set up the key schedule from the key.
571  */
572 int
573 des_setkey(key)
574 	register const char *key;
575 {
576 	register DCL_BLOCK(K, K0, K1);
577 	register C_block *ptabp;
578 	register int i;
579 	static int des_ready = 0;
580 
581 	if (!des_ready) {
582 		init_des();
583 		des_ready = 1;
584 	}
585 
586 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
587 	key = (char *)&KS[0];
588 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
589 	for (i = 1; i < 16; i++) {
590 		key += sizeof(C_block);
591 		STORE(K,K0,K1,*(C_block *)key);
592 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
593 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
594 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
595 	}
596 	return (0);
597 }
598 
599 /*
600  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
601  * iterations of DES, using the the given 24-bit salt and the pre-computed key
602  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
603  *
604  * NOTE: the performance of this routine is critically dependent on your
605  * compiler and machine architecture.
606  */
607 int
608 des_cipher(in, out, salt, num_iter)
609 	const char *in;
610 	char *out;
611 	long salt;
612 	int num_iter;
613 {
614 	/* variables that we want in registers, most important first */
615 #if defined(pdp11)
616 	register int j;
617 #endif
618 	register int32_t L0, L1, R0, R1, k;
619 	register C_block *kp;
620 	register int ks_inc, loop_count;
621 	C_block B;
622 
623 	L0 = salt;
624 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
625 
626 #if defined(vax) || defined(pdp11)
627 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
628 #define	SALT (~salt)
629 #else
630 #define	SALT salt
631 #endif
632 
633 #if defined(MUST_ALIGN)
634 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
635 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
636 	LOAD(L,L0,L1,B);
637 #else
638 	LOAD(L,L0,L1,*(C_block *)in);
639 #endif
640 	LOADREG(R,R0,R1,L,L0,L1);
641 	L0 &= 0x55555555L;
642 	L1 &= 0x55555555L;
643 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
644 	R0 &= 0xaaaaaaaaL;
645 	R1 = (R1 >> 1) & 0x55555555L;
646 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
647 	STORE(L,L0,L1,B);
648 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
649 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
650 
651 	if (num_iter >= 0)
652 	{		/* encryption */
653 		kp = &KS[0];
654 		ks_inc  = sizeof(*kp);
655 	}
656 	else
657 	{		/* decryption */
658 		return (1); /* always fail */
659 	}
660 
661 	while (--num_iter >= 0) {
662 		loop_count = 8;
663 		do {
664 
665 #define	SPTAB(t, i) \
666 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
667 #if defined(gould)
668 			/* use this if B.b[i] is evaluated just once ... */
669 #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
670 #else
671 #if defined(pdp11)
672 			/* use this if your "long" int indexing is slow */
673 #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
674 #else
675 			/* use this if "k" is allocated to a register ... */
676 #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
677 #endif
678 #endif
679 
680 #define	CRUNCH(p0, p1, q0, q1)	\
681 			k = (q0 ^ q1) & SALT;	\
682 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
683 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
684 			kp = (C_block *)((char *)kp+ks_inc);	\
685 							\
686 			DOXOR(p0, p1, 0);		\
687 			DOXOR(p0, p1, 1);		\
688 			DOXOR(p0, p1, 2);		\
689 			DOXOR(p0, p1, 3);		\
690 			DOXOR(p0, p1, 4);		\
691 			DOXOR(p0, p1, 5);		\
692 			DOXOR(p0, p1, 6);		\
693 			DOXOR(p0, p1, 7);
694 
695 			CRUNCH(L0, L1, R0, R1);
696 			CRUNCH(R0, R1, L0, L1);
697 		} while (--loop_count != 0);
698 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
699 
700 
701 		/* swap L and R */
702 		L0 ^= R0;  L1 ^= R1;
703 		R0 ^= L0;  R1 ^= L1;
704 		L0 ^= R0;  L1 ^= R1;
705 	}
706 
707 	/* store the encrypted (or decrypted) result */
708 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
709 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
710 	STORE(L,L0,L1,B);
711 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
712 #if defined(MUST_ALIGN)
713 	STORE(L,L0,L1,B);
714 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
715 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
716 #else
717 	STORE(L,L0,L1,*(C_block *)out);
718 #endif
719 	return (0);
720 }
721 
722 
723 /*
724  * Initialize various tables.  This need only be done once.  It could even be
725  * done at compile time, if the compiler were capable of that sort of thing.
726  */
727 STATIC
728 init_des()
729 {
730 	register int i, j;
731 	register int32_t k;
732 	register int tableno;
733 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
734 
735 	/*
736 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
737 	 */
738 	for (i = 0; i < 64; i++)
739 		a64toi[itoa64[i]] = i;
740 
741 	/*
742 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
743 	 */
744 	for (i = 0; i < 64; i++)
745 		perm[i] = 0;
746 	for (i = 0; i < 64; i++) {
747 		if ((k = PC2[i]) == 0)
748 			continue;
749 		k += Rotates[0]-1;
750 		if ((k%28) < Rotates[0]) k -= 28;
751 		k = PC1[k];
752 		if (k > 0) {
753 			k--;
754 			k = (k|07) - (k&07);
755 			k++;
756 		}
757 		perm[i] = k;
758 	}
759 #ifdef DEBUG
760 	prtab("pc1tab", perm, 8);
761 #endif
762 	init_perm(PC1ROT, perm, 8, 8);
763 
764 	/*
765 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
766 	 */
767 	for (j = 0; j < 2; j++) {
768 		unsigned char pc2inv[64];
769 		for (i = 0; i < 64; i++)
770 			perm[i] = pc2inv[i] = 0;
771 		for (i = 0; i < 64; i++) {
772 			if ((k = PC2[i]) == 0)
773 				continue;
774 			pc2inv[k-1] = i+1;
775 		}
776 		for (i = 0; i < 64; i++) {
777 			if ((k = PC2[i]) == 0)
778 				continue;
779 			k += j;
780 			if ((k%28) <= j) k -= 28;
781 			perm[i] = pc2inv[k];
782 		}
783 #ifdef DEBUG
784 		prtab("pc2tab", perm, 8);
785 #endif
786 		init_perm(PC2ROT[j], perm, 8, 8);
787 	}
788 
789 	/*
790 	 * Bit reverse, then initial permutation, then expansion.
791 	 */
792 	for (i = 0; i < 8; i++) {
793 		for (j = 0; j < 8; j++) {
794 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
795 			if (k > 32)
796 				k -= 32;
797 			else if (k > 0)
798 				k--;
799 			if (k > 0) {
800 				k--;
801 				k = (k|07) - (k&07);
802 				k++;
803 			}
804 			perm[i*8+j] = k;
805 		}
806 	}
807 #ifdef DEBUG
808 	prtab("ietab", perm, 8);
809 #endif
810 	init_perm(IE3264, perm, 4, 8);
811 
812 	/*
813 	 * Compression, then final permutation, then bit reverse.
814 	 */
815 	for (i = 0; i < 64; i++) {
816 		k = IP[CIFP[i]-1];
817 		if (k > 0) {
818 			k--;
819 			k = (k|07) - (k&07);
820 			k++;
821 		}
822 		perm[k-1] = i+1;
823 	}
824 #ifdef DEBUG
825 	prtab("cftab", perm, 8);
826 #endif
827 	init_perm(CF6464, perm, 8, 8);
828 
829 	/*
830 	 * SPE table
831 	 */
832 	for (i = 0; i < 48; i++)
833 		perm[i] = P32Tr[ExpandTr[i]-1];
834 	for (tableno = 0; tableno < 8; tableno++) {
835 		for (j = 0; j < 64; j++)  {
836 			k = (((j >> 0) &01) << 5)|
837 			    (((j >> 1) &01) << 3)|
838 			    (((j >> 2) &01) << 2)|
839 			    (((j >> 3) &01) << 1)|
840 			    (((j >> 4) &01) << 0)|
841 			    (((j >> 5) &01) << 4);
842 			k = S[tableno][k];
843 			k = (((k >> 3)&01) << 0)|
844 			    (((k >> 2)&01) << 1)|
845 			    (((k >> 1)&01) << 2)|
846 			    (((k >> 0)&01) << 3);
847 			for (i = 0; i < 32; i++)
848 				tmp32[i] = 0;
849 			for (i = 0; i < 4; i++)
850 				tmp32[4 * tableno + i] = (k >> i) & 01;
851 			k = 0;
852 			for (i = 24; --i >= 0; )
853 				k = (k<<1) | tmp32[perm[i]-1];
854 			TO_SIX_BIT(SPE[0][tableno][j], k);
855 			k = 0;
856 			for (i = 24; --i >= 0; )
857 				k = (k<<1) | tmp32[perm[i+24]-1];
858 			TO_SIX_BIT(SPE[1][tableno][j], k);
859 		}
860 	}
861 }
862 
863 /*
864  * Initialize "perm" to represent transformation "p", which rearranges
865  * (perhaps with expansion and/or contraction) one packed array of bits
866  * (of size "chars_in" characters) into another array (of size "chars_out"
867  * characters).
868  *
869  * "perm" must be all-zeroes on entry to this routine.
870  */
871 STATIC
872 init_perm(perm, p, chars_in, chars_out)
873 	C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
874 	unsigned char p[64];
875 	int chars_in, chars_out;
876 {
877 	register int i, j, k, l;
878 
879 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
880 		l = p[k] - 1;		/* where this bit comes from */
881 		if (l < 0)
882 			continue;	/* output bit is always 0 */
883 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
884 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
885 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
886 			if ((j & l) != 0)
887 				perm[i][j].b[k>>3] |= 1<<(k&07);
888 		}
889 	}
890 }
891 
892 /*
893  * "setkey" routine (for backwards compatibility)
894  */
895 int
896 setkey(key)
897 	register const char *key;
898 {
899 	register int i, j, k;
900 	C_block keyblock;
901 
902 	for (i = 0; i < 8; i++) {
903 		k = 0;
904 		for (j = 0; j < 8; j++) {
905 			k <<= 1;
906 			k |= (unsigned char)*key++;
907 		}
908 		keyblock.b[i] = k;
909 	}
910 	return (des_setkey((char *)keyblock.b));
911 }
912 
913 /*
914  * "encrypt" routine (for backwards compatibility)
915  */
916 int
917 encrypt(block, flag)
918 	register char *block;
919 	int flag;
920 {
921 	register int i, j, k;
922 	C_block cblock;
923 
924 	for (i = 0; i < 8; i++) {
925 		k = 0;
926 		for (j = 0; j < 8; j++) {
927 			k <<= 1;
928 			k |= (unsigned char)*block++;
929 		}
930 		cblock.b[i] = k;
931 	}
932 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
933 		return (1);
934 	for (i = 7; i >= 0; i--) {
935 		k = cblock.b[i];
936 		for (j = 7; j >= 0; j--) {
937 			*--block = k&01;
938 			k >>= 1;
939 		}
940 	}
941 	return (0);
942 }
943 
944 #ifdef DEBUG
945 STATIC
946 prtab(s, t, num_rows)
947 	char *s;
948 	unsigned char *t;
949 	int num_rows;
950 {
951 	register int i, j;
952 
953 	(void)printf("%s:\n", s);
954 	for (i = 0; i < num_rows; i++) {
955 		for (j = 0; j < 8; j++) {
956 			 (void)printf("%3d", t[i*8+j]);
957 		}
958 		(void)printf("\n");
959 	}
960 	(void)printf("\n");
961 }
962 #endif
963