1 /* $NetBSD: localtime.c,v 1.10 1997/06/18 01:12:45 jtc Exp $ */ 2 3 /* 4 ** This file is in the public domain, so clarified as of 5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson@nih.gov). 6 */ 7 8 #ifndef lint 9 #ifndef NOID 10 static char elsieid[] = "@(#)localtime.c 7.61"; 11 #endif /* !defined NOID */ 12 #endif /* !defined lint */ 13 14 /* 15 ** Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu). 16 ** POSIX-style TZ environment variable handling from Guy Harris 17 ** (guy@auspex.com). 18 */ 19 20 /*LINTLIBRARY*/ 21 22 #include "private.h" 23 #include "tzfile.h" 24 #include "fcntl.h" 25 26 /* 27 ** SunOS 4.1.1 headers lack O_BINARY. 28 */ 29 30 #ifdef O_BINARY 31 #define OPEN_MODE (O_RDONLY | O_BINARY) 32 #endif /* defined O_BINARY */ 33 #ifndef O_BINARY 34 #define OPEN_MODE O_RDONLY 35 #endif /* !defined O_BINARY */ 36 37 #ifndef WILDABBR 38 /* 39 ** Someone might make incorrect use of a time zone abbreviation: 40 ** 1. They might reference tzname[0] before calling tzset (explicitly 41 ** or implicitly). 42 ** 2. They might reference tzname[1] before calling tzset (explicitly 43 ** or implicitly). 44 ** 3. They might reference tzname[1] after setting to a time zone 45 ** in which Daylight Saving Time is never observed. 46 ** 4. They might reference tzname[0] after setting to a time zone 47 ** in which Standard Time is never observed. 48 ** 5. They might reference tm.TM_ZONE after calling offtime. 49 ** What's best to do in the above cases is open to debate; 50 ** for now, we just set things up so that in any of the five cases 51 ** WILDABBR is used. Another possibility: initialize tzname[0] to the 52 ** string "tzname[0] used before set", and similarly for the other cases. 53 ** And another: initialize tzname[0] to "ERA", with an explanation in the 54 ** manual page of what this "time zone abbreviation" means (doing this so 55 ** that tzname[0] has the "normal" length of three characters). 56 */ 57 #define WILDABBR " " 58 #endif /* !defined WILDABBR */ 59 60 static char wildabbr[] = "WILDABBR"; 61 62 static const char gmt[] = "GMT"; 63 64 struct ttinfo { /* time type information */ 65 long tt_gmtoff; /* GMT offset in seconds */ 66 int tt_isdst; /* used to set tm_isdst */ 67 int tt_abbrind; /* abbreviation list index */ 68 int tt_ttisstd; /* TRUE if transition is std time */ 69 int tt_ttisgmt; /* TRUE if transition is GMT */ 70 }; 71 72 struct lsinfo { /* leap second information */ 73 time_t ls_trans; /* transition time */ 74 long ls_corr; /* correction to apply */ 75 }; 76 77 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) 78 79 #ifdef TZNAME_MAX 80 #define MY_TZNAME_MAX TZNAME_MAX 81 #endif /* defined TZNAME_MAX */ 82 #ifndef TZNAME_MAX 83 #define MY_TZNAME_MAX 255 84 #endif /* !defined TZNAME_MAX */ 85 86 struct state { 87 int leapcnt; 88 int timecnt; 89 int typecnt; 90 int charcnt; 91 time_t ats[TZ_MAX_TIMES]; 92 unsigned char types[TZ_MAX_TIMES]; 93 struct ttinfo ttis[TZ_MAX_TYPES]; 94 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), 95 (2 * (MY_TZNAME_MAX + 1)))]; 96 struct lsinfo lsis[TZ_MAX_LEAPS]; 97 }; 98 99 struct rule { 100 int r_type; /* type of rule--see below */ 101 int r_day; /* day number of rule */ 102 int r_week; /* week number of rule */ 103 int r_mon; /* month number of rule */ 104 long r_time; /* transition time of rule */ 105 }; 106 107 #define JULIAN_DAY 0 /* Jn - Julian day */ 108 #define DAY_OF_YEAR 1 /* n - day of year */ 109 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ 110 111 /* 112 ** Prototypes for static functions. 113 */ 114 115 static long detzcode P((const char * codep)); 116 static const char * getzname P((const char * strp)); 117 static const char * getnum P((const char * strp, int * nump, int min, 118 int max)); 119 static const char * getsecs P((const char * strp, long * secsp)); 120 static const char * getoffset P((const char * strp, long * offsetp)); 121 static const char * getrule P((const char * strp, struct rule * rulep)); 122 static void gmtload P((struct state * sp)); 123 static void gmtsub P((const time_t * timep, long offset, 124 struct tm * tmp)); 125 static void localsub P((const time_t * timep, long offset, 126 struct tm * tmp)); 127 static int increment_overflow P((int * number, int delta)); 128 static int normalize_overflow P((int * tensptr, int * unitsptr, 129 int base)); 130 static void settzname P((void)); 131 static time_t time1 P((struct tm * tmp, 132 void(*funcp) P((const time_t *, 133 long, struct tm *)), 134 long offset)); 135 static time_t time2 P((struct tm *tmp, 136 void(*funcp) P((const time_t *, 137 long, struct tm*)), 138 long offset, int * okayp)); 139 static void timesub P((const time_t * timep, long offset, 140 const struct state * sp, struct tm * tmp)); 141 static int tmcomp P((const struct tm * atmp, 142 const struct tm * btmp)); 143 static time_t transtime P((time_t janfirst, int year, 144 const struct rule * rulep, long offset)); 145 static int tzload P((const char * name, struct state * sp)); 146 static int tzparse P((const char * name, struct state * sp, 147 int lastditch)); 148 149 #ifdef ALL_STATE 150 static struct state * lclptr; 151 static struct state * gmtptr; 152 #endif /* defined ALL_STATE */ 153 154 #ifndef ALL_STATE 155 static struct state lclmem; 156 static struct state gmtmem; 157 #define lclptr (&lclmem) 158 #define gmtptr (&gmtmem) 159 #endif /* State Farm */ 160 161 #ifndef TZ_STRLEN_MAX 162 #define TZ_STRLEN_MAX 255 163 #endif /* !defined TZ_STRLEN_MAX */ 164 165 static char lcl_TZname[TZ_STRLEN_MAX + 1]; 166 static int lcl_is_set; 167 static int gmt_is_set; 168 169 char * tzname[2] = { 170 wildabbr, 171 wildabbr 172 }; 173 174 /* 175 ** Section 4.12.3 of X3.159-1989 requires that 176 ** Except for the strftime function, these functions [asctime, 177 ** ctime, gmtime, localtime] return values in one of two static 178 ** objects: a broken-down time structure and an array of char. 179 ** Thanks to Paul Eggert (eggert@twinsun.com) for noting this. 180 */ 181 182 static struct tm tm; 183 184 #ifdef USG_COMPAT 185 time_t timezone = 0; 186 int daylight = 0; 187 #endif /* defined USG_COMPAT */ 188 189 #ifdef ALTZONE 190 time_t altzone = 0; 191 #endif /* defined ALTZONE */ 192 193 static long 194 detzcode(codep) 195 const char * const codep; 196 { 197 register long result; 198 199 /* 200 ** The first character must be sign extended on systems with >32bit 201 ** longs. This was solved differently in the master tzcode sources 202 ** (the fix first appeared in tzcode95c.tar.gz). But I believe 203 ** that this implementation is superior. 204 */ 205 206 #ifdef __STDC__ 207 #define SIGN_EXTEND_CHAR(x) ((signed char) x) 208 #else 209 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x) 210 #endif 211 212 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \ 213 | (codep[1] & 0xff) << 16 \ 214 | (codep[2] & 0xff) << 8 215 | (codep[3] & 0xff); 216 return result; 217 } 218 219 static void 220 settzname P((void)) 221 { 222 register struct state * const sp = lclptr; 223 register int i; 224 225 tzname[0] = wildabbr; 226 tzname[1] = wildabbr; 227 #ifdef USG_COMPAT 228 daylight = 0; 229 timezone = 0; 230 #endif /* defined USG_COMPAT */ 231 #ifdef ALTZONE 232 altzone = 0; 233 #endif /* defined ALTZONE */ 234 #ifdef ALL_STATE 235 if (sp == NULL) { 236 tzname[0] = tzname[1] = gmt; 237 return; 238 } 239 #endif /* defined ALL_STATE */ 240 for (i = 0; i < sp->typecnt; ++i) { 241 register const struct ttinfo * const ttisp = &sp->ttis[i]; 242 243 tzname[ttisp->tt_isdst] = 244 &sp->chars[ttisp->tt_abbrind]; 245 #ifdef USG_COMPAT 246 if (ttisp->tt_isdst) 247 daylight = 1; 248 if (i == 0 || !ttisp->tt_isdst) 249 timezone = -(ttisp->tt_gmtoff); 250 #endif /* defined USG_COMPAT */ 251 #ifdef ALTZONE 252 if (i == 0 || ttisp->tt_isdst) 253 altzone = -(ttisp->tt_gmtoff); 254 #endif /* defined ALTZONE */ 255 } 256 /* 257 ** And to get the latest zone names into tzname. . . 258 */ 259 for (i = 0; i < sp->timecnt; ++i) { 260 register const struct ttinfo * const ttisp = 261 &sp->ttis[ 262 sp->types[i]]; 263 264 tzname[ttisp->tt_isdst] = 265 &sp->chars[ttisp->tt_abbrind]; 266 } 267 } 268 269 static int 270 tzload(name, sp) 271 register const char * name; 272 register struct state * const sp; 273 { 274 register const char * p; 275 register int i; 276 register int fid; 277 278 if (name == NULL && (name = TZDEFAULT) == NULL) 279 return -1; 280 281 { 282 register int doaccess; 283 /* 284 ** Section 4.9.1 of the C standard says that 285 ** "FILENAME_MAX expands to an integral constant expression 286 ** that is the size needed for an array of char large enough 287 ** to hold the longest file name string that the implementation 288 ** guarantees can be opened." 289 */ 290 char fullname[FILENAME_MAX + 1]; 291 292 if (name[0] == ':') 293 ++name; 294 doaccess = name[0] == '/'; 295 if (!doaccess) { 296 if ((p = TZDIR) == NULL) 297 return -1; 298 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) 299 return -1; 300 (void) strcpy(fullname, p); /* XXX strcpy is safe */ 301 (void) strcat(fullname, "/"); /* XXX strcat is safe */ 302 (void) strcat(fullname, name); /* XXX strcat is safe */ 303 /* 304 ** Set doaccess if '.' (as in "../") shows up in name. 305 */ 306 if (strchr(name, '.') != NULL) 307 doaccess = TRUE; 308 name = fullname; 309 } 310 if (doaccess && access(name, R_OK) != 0) 311 return -1; 312 /* 313 * XXX potential security problem here if user of a set-id 314 * program has set TZ (which is passed in as name) here, 315 * and uses a race condition trick to defeat the access(2) 316 * above. 317 */ 318 if ((fid = open(name, OPEN_MODE)) == -1) 319 return -1; 320 } 321 { 322 struct tzhead * tzhp; 323 char buf[sizeof *sp + sizeof *tzhp]; 324 int ttisstdcnt; 325 int ttisgmtcnt; 326 327 i = read(fid, buf, sizeof buf); 328 if (close(fid) != 0) 329 return -1; 330 p = buf; 331 p += sizeof tzhp->tzh_reserved; 332 ttisstdcnt = (int) detzcode(p); 333 p += 4; 334 ttisgmtcnt = (int) detzcode(p); 335 p += 4; 336 sp->leapcnt = (int) detzcode(p); 337 p += 4; 338 sp->timecnt = (int) detzcode(p); 339 p += 4; 340 sp->typecnt = (int) detzcode(p); 341 p += 4; 342 sp->charcnt = (int) detzcode(p); 343 p += 4; 344 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || 345 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || 346 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || 347 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || 348 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || 349 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) 350 return -1; 351 if (i - (p - buf) < sp->timecnt * 4 + /* ats */ 352 sp->timecnt + /* types */ 353 sp->typecnt * (4 + 2) + /* ttinfos */ 354 sp->charcnt + /* chars */ 355 sp->leapcnt * (4 + 4) + /* lsinfos */ 356 ttisstdcnt + /* ttisstds */ 357 ttisgmtcnt) /* ttisgmts */ 358 return -1; 359 for (i = 0; i < sp->timecnt; ++i) { 360 sp->ats[i] = detzcode(p); 361 p += 4; 362 } 363 for (i = 0; i < sp->timecnt; ++i) { 364 sp->types[i] = (unsigned char) *p++; 365 if (sp->types[i] >= sp->typecnt) 366 return -1; 367 } 368 for (i = 0; i < sp->typecnt; ++i) { 369 register struct ttinfo * ttisp; 370 371 ttisp = &sp->ttis[i]; 372 ttisp->tt_gmtoff = detzcode(p); 373 p += 4; 374 ttisp->tt_isdst = (unsigned char) *p++; 375 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) 376 return -1; 377 ttisp->tt_abbrind = (unsigned char) *p++; 378 if (ttisp->tt_abbrind < 0 || 379 ttisp->tt_abbrind > sp->charcnt) 380 return -1; 381 } 382 for (i = 0; i < sp->charcnt; ++i) 383 sp->chars[i] = *p++; 384 sp->chars[i] = '\0'; /* ensure '\0' at end */ 385 for (i = 0; i < sp->leapcnt; ++i) { 386 register struct lsinfo * lsisp; 387 388 lsisp = &sp->lsis[i]; 389 lsisp->ls_trans = detzcode(p); 390 p += 4; 391 lsisp->ls_corr = detzcode(p); 392 p += 4; 393 } 394 for (i = 0; i < sp->typecnt; ++i) { 395 register struct ttinfo * ttisp; 396 397 ttisp = &sp->ttis[i]; 398 if (ttisstdcnt == 0) 399 ttisp->tt_ttisstd = FALSE; 400 else { 401 ttisp->tt_ttisstd = *p++; 402 if (ttisp->tt_ttisstd != TRUE && 403 ttisp->tt_ttisstd != FALSE) 404 return -1; 405 } 406 } 407 for (i = 0; i < sp->typecnt; ++i) { 408 register struct ttinfo * ttisp; 409 410 ttisp = &sp->ttis[i]; 411 if (ttisgmtcnt == 0) 412 ttisp->tt_ttisgmt = FALSE; 413 else { 414 ttisp->tt_ttisgmt = *p++; 415 if (ttisp->tt_ttisgmt != TRUE && 416 ttisp->tt_ttisgmt != FALSE) 417 return -1; 418 } 419 } 420 } 421 return 0; 422 } 423 424 static const int mon_lengths[2][MONSPERYEAR] = { 425 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 426 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } 427 }; 428 429 static const int year_lengths[2] = { 430 DAYSPERNYEAR, DAYSPERLYEAR 431 }; 432 433 /* 434 ** Given a pointer into a time zone string, scan until a character that is not 435 ** a valid character in a zone name is found. Return a pointer to that 436 ** character. 437 */ 438 439 static const char * 440 getzname(strp) 441 register const char * strp; 442 { 443 register char c; 444 445 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && 446 c != '+') 447 ++strp; 448 return strp; 449 } 450 451 /* 452 ** Given a pointer into a time zone string, extract a number from that string. 453 ** Check that the number is within a specified range; if it is not, return 454 ** NULL. 455 ** Otherwise, return a pointer to the first character not part of the number. 456 */ 457 458 static const char * 459 getnum(strp, nump, min, max) 460 register const char * strp; 461 int * const nump; 462 const int min; 463 const int max; 464 { 465 register char c; 466 register int num; 467 468 if (strp == NULL || !is_digit(c = *strp)) 469 return NULL; 470 num = 0; 471 do { 472 num = num * 10 + (c - '0'); 473 if (num > max) 474 return NULL; /* illegal value */ 475 c = *++strp; 476 } while (is_digit(c)); 477 if (num < min) 478 return NULL; /* illegal value */ 479 *nump = num; 480 return strp; 481 } 482 483 /* 484 ** Given a pointer into a time zone string, extract a number of seconds, 485 ** in hh[:mm[:ss]] form, from the string. 486 ** If any error occurs, return NULL. 487 ** Otherwise, return a pointer to the first character not part of the number 488 ** of seconds. 489 */ 490 491 static const char * 492 getsecs(strp, secsp) 493 register const char * strp; 494 long * const secsp; 495 { 496 int num; 497 498 /* 499 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like 500 ** "M10.4.6/26", which does not conform to Posix, 501 ** but which specifies the equivalent of 502 ** ``02:00 on the first Sunday on or after 23 Oct''. 503 */ 504 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); 505 if (strp == NULL) 506 return NULL; 507 *secsp = num * (long) SECSPERHOUR; 508 if (*strp == ':') { 509 ++strp; 510 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); 511 if (strp == NULL) 512 return NULL; 513 *secsp += num * SECSPERMIN; 514 if (*strp == ':') { 515 ++strp; 516 /* `SECSPERMIN' allows for leap seconds. */ 517 strp = getnum(strp, &num, 0, SECSPERMIN); 518 if (strp == NULL) 519 return NULL; 520 *secsp += num; 521 } 522 } 523 return strp; 524 } 525 526 /* 527 ** Given a pointer into a time zone string, extract an offset, in 528 ** [+-]hh[:mm[:ss]] form, from the string. 529 ** If any error occurs, return NULL. 530 ** Otherwise, return a pointer to the first character not part of the time. 531 */ 532 533 static const char * 534 getoffset(strp, offsetp) 535 register const char * strp; 536 long * const offsetp; 537 { 538 register int neg = 0; 539 540 if (*strp == '-') { 541 neg = 1; 542 ++strp; 543 } else if (*strp == '+') 544 ++strp; 545 strp = getsecs(strp, offsetp); 546 if (strp == NULL) 547 return NULL; /* illegal time */ 548 if (neg) 549 *offsetp = -*offsetp; 550 return strp; 551 } 552 553 /* 554 ** Given a pointer into a time zone string, extract a rule in the form 555 ** date[/time]. See POSIX section 8 for the format of "date" and "time". 556 ** If a valid rule is not found, return NULL. 557 ** Otherwise, return a pointer to the first character not part of the rule. 558 */ 559 560 static const char * 561 getrule(strp, rulep) 562 const char * strp; 563 register struct rule * const rulep; 564 { 565 if (*strp == 'J') { 566 /* 567 ** Julian day. 568 */ 569 rulep->r_type = JULIAN_DAY; 570 ++strp; 571 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); 572 } else if (*strp == 'M') { 573 /* 574 ** Month, week, day. 575 */ 576 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; 577 ++strp; 578 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); 579 if (strp == NULL) 580 return NULL; 581 if (*strp++ != '.') 582 return NULL; 583 strp = getnum(strp, &rulep->r_week, 1, 5); 584 if (strp == NULL) 585 return NULL; 586 if (*strp++ != '.') 587 return NULL; 588 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); 589 } else if (is_digit(*strp)) { 590 /* 591 ** Day of year. 592 */ 593 rulep->r_type = DAY_OF_YEAR; 594 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); 595 } else return NULL; /* invalid format */ 596 if (strp == NULL) 597 return NULL; 598 if (*strp == '/') { 599 /* 600 ** Time specified. 601 */ 602 ++strp; 603 strp = getsecs(strp, &rulep->r_time); 604 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ 605 return strp; 606 } 607 608 /* 609 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the 610 ** year, a rule, and the offset from GMT at the time that rule takes effect, 611 ** calculate the Epoch-relative time that rule takes effect. 612 */ 613 614 static time_t 615 transtime(janfirst, year, rulep, offset) 616 const time_t janfirst; 617 const int year; 618 register const struct rule * const rulep; 619 const long offset; 620 { 621 register int leapyear; 622 register time_t value; 623 register int i; 624 int d, m1, yy0, yy1, yy2, dow; 625 626 INITIALIZE(value); 627 leapyear = isleap(year); 628 switch (rulep->r_type) { 629 630 case JULIAN_DAY: 631 /* 632 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap 633 ** years. 634 ** In non-leap years, or if the day number is 59 or less, just 635 ** add SECSPERDAY times the day number-1 to the time of 636 ** January 1, midnight, to get the day. 637 */ 638 value = janfirst + (rulep->r_day - 1) * SECSPERDAY; 639 if (leapyear && rulep->r_day >= 60) 640 value += SECSPERDAY; 641 break; 642 643 case DAY_OF_YEAR: 644 /* 645 ** n - day of year. 646 ** Just add SECSPERDAY times the day number to the time of 647 ** January 1, midnight, to get the day. 648 */ 649 value = janfirst + rulep->r_day * SECSPERDAY; 650 break; 651 652 case MONTH_NTH_DAY_OF_WEEK: 653 /* 654 ** Mm.n.d - nth "dth day" of month m. 655 */ 656 value = janfirst; 657 for (i = 0; i < rulep->r_mon - 1; ++i) 658 value += mon_lengths[leapyear][i] * SECSPERDAY; 659 660 /* 661 ** Use Zeller's Congruence to get day-of-week of first day of 662 ** month. 663 */ 664 m1 = (rulep->r_mon + 9) % 12 + 1; 665 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; 666 yy1 = yy0 / 100; 667 yy2 = yy0 % 100; 668 dow = ((26 * m1 - 2) / 10 + 669 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; 670 if (dow < 0) 671 dow += DAYSPERWEEK; 672 673 /* 674 ** "dow" is the day-of-week of the first day of the month. Get 675 ** the day-of-month (zero-origin) of the first "dow" day of the 676 ** month. 677 */ 678 d = rulep->r_day - dow; 679 if (d < 0) 680 d += DAYSPERWEEK; 681 for (i = 1; i < rulep->r_week; ++i) { 682 if (d + DAYSPERWEEK >= 683 mon_lengths[leapyear][rulep->r_mon - 1]) 684 break; 685 d += DAYSPERWEEK; 686 } 687 688 /* 689 ** "d" is the day-of-month (zero-origin) of the day we want. 690 */ 691 value += d * SECSPERDAY; 692 break; 693 } 694 695 /* 696 ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in 697 ** question. To get the Epoch-relative time of the specified local 698 ** time on that day, add the transition time and the current offset 699 ** from GMT. 700 */ 701 return value + rulep->r_time + offset; 702 } 703 704 /* 705 ** Given a POSIX section 8-style TZ string, fill in the rule tables as 706 ** appropriate. 707 */ 708 709 static int 710 tzparse(name, sp, lastditch) 711 const char * name; 712 register struct state * const sp; 713 const int lastditch; 714 { 715 const char * stdname; 716 const char * dstname; 717 size_t stdlen; 718 size_t dstlen; 719 long stdoffset; 720 long dstoffset; 721 register time_t * atp; 722 register unsigned char * typep; 723 register char * cp; 724 register int load_result; 725 726 INITIALIZE(dstname); 727 stdname = name; 728 if (lastditch) { 729 stdlen = strlen(name); /* length of standard zone name */ 730 name += stdlen; 731 if (stdlen >= sizeof sp->chars) 732 stdlen = (sizeof sp->chars) - 1; 733 stdoffset = 0; 734 } else { 735 name = getzname(name); 736 stdlen = name - stdname; 737 if (stdlen < 3) 738 return -1; 739 if (*name == '\0') 740 return -1; 741 name = getoffset(name, &stdoffset); 742 if (name == NULL) 743 return -1; 744 } 745 load_result = tzload(TZDEFRULES, sp); 746 if (load_result != 0) 747 sp->leapcnt = 0; /* so, we're off a little */ 748 if (*name != '\0') { 749 dstname = name; 750 name = getzname(name); 751 dstlen = name - dstname; /* length of DST zone name */ 752 if (dstlen < 3) 753 return -1; 754 if (*name != '\0' && *name != ',' && *name != ';') { 755 name = getoffset(name, &dstoffset); 756 if (name == NULL) 757 return -1; 758 } else dstoffset = stdoffset - SECSPERHOUR; 759 if (*name == ',' || *name == ';') { 760 struct rule start; 761 struct rule end; 762 register int year; 763 register time_t janfirst; 764 time_t starttime; 765 time_t endtime; 766 767 ++name; 768 if ((name = getrule(name, &start)) == NULL) 769 return -1; 770 if (*name++ != ',') 771 return -1; 772 if ((name = getrule(name, &end)) == NULL) 773 return -1; 774 if (*name != '\0') 775 return -1; 776 sp->typecnt = 2; /* standard time and DST */ 777 /* 778 ** Two transitions per year, from EPOCH_YEAR to 2037. 779 */ 780 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1); 781 if (sp->timecnt > TZ_MAX_TIMES) 782 return -1; 783 sp->ttis[0].tt_gmtoff = -dstoffset; 784 sp->ttis[0].tt_isdst = 1; 785 sp->ttis[0].tt_abbrind = stdlen + 1; 786 sp->ttis[1].tt_gmtoff = -stdoffset; 787 sp->ttis[1].tt_isdst = 0; 788 sp->ttis[1].tt_abbrind = 0; 789 atp = sp->ats; 790 typep = sp->types; 791 janfirst = 0; 792 for (year = EPOCH_YEAR; year <= 2037; ++year) { 793 starttime = transtime(janfirst, year, &start, 794 stdoffset); 795 endtime = transtime(janfirst, year, &end, 796 dstoffset); 797 if (starttime > endtime) { 798 *atp++ = endtime; 799 *typep++ = 1; /* DST ends */ 800 *atp++ = starttime; 801 *typep++ = 0; /* DST begins */ 802 } else { 803 *atp++ = starttime; 804 *typep++ = 0; /* DST begins */ 805 *atp++ = endtime; 806 *typep++ = 1; /* DST ends */ 807 } 808 janfirst += year_lengths[isleap(year)] * 809 SECSPERDAY; 810 } 811 } else { 812 register long theirstdoffset; 813 register long theirdstoffset; 814 register long theiroffset; 815 register int isdst; 816 register int i; 817 register int j; 818 819 if (*name != '\0') 820 return -1; 821 if (load_result != 0) 822 return -1; 823 /* 824 ** Initial values of theirstdoffset and theirdstoffset. 825 */ 826 theirstdoffset = 0; 827 for (i = 0; i < sp->timecnt; ++i) { 828 j = sp->types[i]; 829 if (!sp->ttis[j].tt_isdst) { 830 theirstdoffset = 831 -sp->ttis[j].tt_gmtoff; 832 break; 833 } 834 } 835 theirdstoffset = 0; 836 for (i = 0; i < sp->timecnt; ++i) { 837 j = sp->types[i]; 838 if (sp->ttis[j].tt_isdst) { 839 theirdstoffset = 840 -sp->ttis[j].tt_gmtoff; 841 break; 842 } 843 } 844 /* 845 ** Initially we're assumed to be in standard time. 846 */ 847 isdst = FALSE; 848 theiroffset = theirstdoffset; 849 /* 850 ** Now juggle transition times and types 851 ** tracking offsets as you do. 852 */ 853 for (i = 0; i < sp->timecnt; ++i) { 854 j = sp->types[i]; 855 sp->types[i] = sp->ttis[j].tt_isdst; 856 if (sp->ttis[j].tt_ttisgmt) { 857 /* No adjustment to transition time */ 858 } else { 859 /* 860 ** If summer time is in effect, and the 861 ** transition time was not specified as 862 ** standard time, add the summer time 863 ** offset to the transition time; 864 ** otherwise, add the standard time 865 ** offset to the transition time. 866 */ 867 /* 868 ** Transitions from DST to DDST 869 ** will effectively disappear since 870 ** POSIX provides for only one DST 871 ** offset. 872 */ 873 if (isdst && !sp->ttis[j].tt_ttisstd) { 874 sp->ats[i] += dstoffset - 875 theirdstoffset; 876 } else { 877 sp->ats[i] += stdoffset - 878 theirstdoffset; 879 } 880 } 881 theiroffset = -sp->ttis[j].tt_gmtoff; 882 if (sp->ttis[j].tt_isdst) 883 theirdstoffset = theiroffset; 884 else theirstdoffset = theiroffset; 885 } 886 /* 887 ** Finally, fill in ttis. 888 ** ttisstd and ttisgmt need not be handled. 889 */ 890 sp->ttis[0].tt_gmtoff = -stdoffset; 891 sp->ttis[0].tt_isdst = FALSE; 892 sp->ttis[0].tt_abbrind = 0; 893 sp->ttis[1].tt_gmtoff = -dstoffset; 894 sp->ttis[1].tt_isdst = TRUE; 895 sp->ttis[1].tt_abbrind = stdlen + 1; 896 sp->typecnt = 2; 897 } 898 } else { 899 dstlen = 0; 900 sp->typecnt = 1; /* only standard time */ 901 sp->timecnt = 0; 902 sp->ttis[0].tt_gmtoff = -stdoffset; 903 sp->ttis[0].tt_isdst = 0; 904 sp->ttis[0].tt_abbrind = 0; 905 } 906 sp->charcnt = stdlen + 1; 907 if (dstlen != 0) 908 sp->charcnt += dstlen + 1; 909 if ((size_t) sp->charcnt > sizeof sp->chars) 910 return -1; 911 cp = sp->chars; 912 (void) strncpy(cp, stdname, stdlen); 913 cp += stdlen; 914 *cp++ = '\0'; 915 if (dstlen != 0) { 916 (void) strncpy(cp, dstname, dstlen); 917 *(cp + dstlen) = '\0'; 918 } 919 return 0; 920 } 921 922 static void 923 gmtload(sp) 924 struct state * const sp; 925 { 926 if (tzload(gmt, sp) != 0) 927 (void) tzparse(gmt, sp, TRUE); 928 } 929 930 #ifndef STD_INSPIRED 931 /* 932 ** A non-static declaration of tzsetwall in a system header file 933 ** may cause a warning about this upcoming static declaration... 934 */ 935 static 936 #endif /* !defined STD_INSPIRED */ 937 void 938 tzsetwall P((void)) 939 { 940 if (lcl_is_set < 0) 941 return; 942 lcl_is_set = -1; 943 944 #ifdef ALL_STATE 945 if (lclptr == NULL) { 946 lclptr = (struct state *) malloc(sizeof *lclptr); 947 if (lclptr == NULL) { 948 settzname(); /* all we can do */ 949 return; 950 } 951 } 952 #endif /* defined ALL_STATE */ 953 if (tzload((char *) NULL, lclptr) != 0) 954 gmtload(lclptr); 955 settzname(); 956 } 957 958 void 959 tzset P((void)) 960 { 961 register const char * name; 962 963 name = getenv("TZ"); 964 if (name == NULL) { 965 tzsetwall(); 966 return; 967 } 968 969 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) 970 return; 971 lcl_is_set = (strlen(name) < sizeof(lcl_TZname)); 972 if (lcl_is_set) 973 (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1); 974 975 #ifdef ALL_STATE 976 if (lclptr == NULL) { 977 lclptr = (struct state *) malloc(sizeof *lclptr); 978 if (lclptr == NULL) { 979 settzname(); /* all we can do */ 980 return; 981 } 982 } 983 #endif /* defined ALL_STATE */ 984 if (*name == '\0') { 985 /* 986 ** User wants it fast rather than right. 987 */ 988 lclptr->leapcnt = 0; /* so, we're off a little */ 989 lclptr->timecnt = 0; 990 lclptr->ttis[0].tt_gmtoff = 0; 991 lclptr->ttis[0].tt_abbrind = 0; 992 (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1); 993 } else if (tzload(name, lclptr) != 0) 994 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0) 995 (void) gmtload(lclptr); 996 settzname(); 997 } 998 999 /* 1000 ** The easy way to behave "as if no library function calls" localtime 1001 ** is to not call it--so we drop its guts into "localsub", which can be 1002 ** freely called. (And no, the PANS doesn't require the above behavior-- 1003 ** but it *is* desirable.) 1004 ** 1005 ** The unused offset argument is for the benefit of mktime variants. 1006 */ 1007 1008 /*ARGSUSED*/ 1009 static void 1010 localsub(timep, offset, tmp) 1011 const time_t * const timep; 1012 const long offset; 1013 struct tm * const tmp; 1014 { 1015 register struct state * sp; 1016 register const struct ttinfo * ttisp; 1017 register int i; 1018 const time_t t = *timep; 1019 1020 sp = lclptr; 1021 #ifdef ALL_STATE 1022 if (sp == NULL) { 1023 gmtsub(timep, offset, tmp); 1024 return; 1025 } 1026 #endif /* defined ALL_STATE */ 1027 if (sp->timecnt == 0 || t < sp->ats[0]) { 1028 i = 0; 1029 while (sp->ttis[i].tt_isdst) 1030 if (++i >= sp->typecnt) { 1031 i = 0; 1032 break; 1033 } 1034 } else { 1035 for (i = 1; i < sp->timecnt; ++i) 1036 if (t < sp->ats[i]) 1037 break; 1038 i = sp->types[i - 1]; 1039 } 1040 ttisp = &sp->ttis[i]; 1041 /* 1042 ** To get (wrong) behavior that's compatible with System V Release 2.0 1043 ** you'd replace the statement below with 1044 ** t += ttisp->tt_gmtoff; 1045 ** timesub(&t, 0L, sp, tmp); 1046 */ 1047 timesub(&t, ttisp->tt_gmtoff, sp, tmp); 1048 tmp->tm_isdst = ttisp->tt_isdst; 1049 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; 1050 #ifdef TM_ZONE 1051 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; 1052 #endif /* defined TM_ZONE */ 1053 } 1054 1055 struct tm * 1056 localtime(timep) 1057 const time_t * const timep; 1058 { 1059 tzset(); 1060 localsub(timep, 0L, &tm); 1061 return &tm; 1062 } 1063 1064 /* 1065 ** gmtsub is to gmtime as localsub is to localtime. 1066 */ 1067 1068 static void 1069 gmtsub(timep, offset, tmp) 1070 const time_t * const timep; 1071 const long offset; 1072 struct tm * const tmp; 1073 { 1074 if (!gmt_is_set) { 1075 gmt_is_set = TRUE; 1076 #ifdef ALL_STATE 1077 gmtptr = (struct state *) malloc(sizeof *gmtptr); 1078 if (gmtptr != NULL) 1079 #endif /* defined ALL_STATE */ 1080 gmtload(gmtptr); 1081 } 1082 timesub(timep, offset, gmtptr, tmp); 1083 #ifdef TM_ZONE 1084 /* 1085 ** Could get fancy here and deliver something such as 1086 ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero, 1087 ** but this is no time for a treasure hunt. 1088 */ 1089 if (offset != 0) 1090 tmp->TM_ZONE = wildabbr; 1091 else { 1092 #ifdef ALL_STATE 1093 if (gmtptr == NULL) 1094 tmp->TM_ZONE = gmt; 1095 else tmp->TM_ZONE = gmtptr->chars; 1096 #endif /* defined ALL_STATE */ 1097 #ifndef ALL_STATE 1098 tmp->TM_ZONE = gmtptr->chars; 1099 #endif /* State Farm */ 1100 } 1101 #endif /* defined TM_ZONE */ 1102 } 1103 1104 struct tm * 1105 gmtime(timep) 1106 const time_t * const timep; 1107 { 1108 gmtsub(timep, 0L, &tm); 1109 return &tm; 1110 } 1111 1112 #ifdef STD_INSPIRED 1113 1114 struct tm * 1115 offtime(timep, offset) 1116 const time_t * const timep; 1117 const long offset; 1118 { 1119 gmtsub(timep, offset, &tm); 1120 return &tm; 1121 } 1122 1123 #endif /* defined STD_INSPIRED */ 1124 1125 static void 1126 timesub(timep, offset, sp, tmp) 1127 const time_t * const timep; 1128 const long offset; 1129 register const struct state * const sp; 1130 register struct tm * const tmp; 1131 { 1132 register const struct lsinfo * lp; 1133 register long days; 1134 register long rem; 1135 register int y; 1136 register int yleap; 1137 register const int * ip; 1138 register long corr; 1139 register int hit; 1140 register int i; 1141 1142 corr = 0; 1143 hit = 0; 1144 #ifdef ALL_STATE 1145 i = (sp == NULL) ? 0 : sp->leapcnt; 1146 #endif /* defined ALL_STATE */ 1147 #ifndef ALL_STATE 1148 i = sp->leapcnt; 1149 #endif /* State Farm */ 1150 while (--i >= 0) { 1151 lp = &sp->lsis[i]; 1152 if (*timep >= lp->ls_trans) { 1153 if (*timep == lp->ls_trans) { 1154 hit = ((i == 0 && lp->ls_corr > 0) || 1155 lp->ls_corr > sp->lsis[i - 1].ls_corr); 1156 if (hit) 1157 while (i > 0 && 1158 sp->lsis[i].ls_trans == 1159 sp->lsis[i - 1].ls_trans + 1 && 1160 sp->lsis[i].ls_corr == 1161 sp->lsis[i - 1].ls_corr + 1) { 1162 ++hit; 1163 --i; 1164 } 1165 } 1166 corr = lp->ls_corr; 1167 break; 1168 } 1169 } 1170 days = *timep / SECSPERDAY; 1171 rem = *timep % SECSPERDAY; 1172 #ifdef mc68k 1173 if (*timep == 0x80000000) { 1174 /* 1175 ** A 3B1 muffs the division on the most negative number. 1176 */ 1177 days = -24855; 1178 rem = -11648; 1179 } 1180 #endif /* defined mc68k */ 1181 rem += (offset - corr); 1182 while (rem < 0) { 1183 rem += SECSPERDAY; 1184 --days; 1185 } 1186 while (rem >= SECSPERDAY) { 1187 rem -= SECSPERDAY; 1188 ++days; 1189 } 1190 tmp->tm_hour = (int) (rem / SECSPERHOUR); 1191 rem = rem % SECSPERHOUR; 1192 tmp->tm_min = (int) (rem / SECSPERMIN); 1193 /* 1194 ** A positive leap second requires a special 1195 ** representation. This uses "... ??:59:60" et seq. 1196 */ 1197 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; 1198 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK); 1199 if (tmp->tm_wday < 0) 1200 tmp->tm_wday += DAYSPERWEEK; 1201 y = EPOCH_YEAR; 1202 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400) 1203 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) { 1204 register int newy; 1205 1206 newy = y + days / DAYSPERNYEAR; 1207 if (days < 0) 1208 --newy; 1209 days -= (newy - y) * DAYSPERNYEAR + 1210 LEAPS_THRU_END_OF(newy - 1) - 1211 LEAPS_THRU_END_OF(y - 1); 1212 y = newy; 1213 } 1214 tmp->tm_year = y - TM_YEAR_BASE; 1215 tmp->tm_yday = (int) days; 1216 ip = mon_lengths[yleap]; 1217 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon)) 1218 days = days - (long) ip[tmp->tm_mon]; 1219 tmp->tm_mday = (int) (days + 1); 1220 tmp->tm_isdst = 0; 1221 #ifdef TM_GMTOFF 1222 tmp->TM_GMTOFF = offset; 1223 #endif /* defined TM_GMTOFF */ 1224 } 1225 1226 char * 1227 ctime(timep) 1228 const time_t * const timep; 1229 { 1230 /* 1231 ** Section 4.12.3.2 of X3.159-1989 requires that 1232 ** The ctime funciton converts the calendar time pointed to by timer 1233 ** to local time in the form of a string. It is equivalent to 1234 ** asctime(localtime(timer)) 1235 */ 1236 return asctime(localtime(timep)); 1237 } 1238 1239 /* 1240 ** Adapted from code provided by Robert Elz, who writes: 1241 ** The "best" way to do mktime I think is based on an idea of Bob 1242 ** Kridle's (so its said...) from a long time ago. 1243 ** [kridle@xinet.com as of 1996-01-16.] 1244 ** It does a binary search of the time_t space. Since time_t's are 1245 ** just 32 bits, its a max of 32 iterations (even at 64 bits it 1246 ** would still be very reasonable). 1247 */ 1248 1249 #ifndef WRONG 1250 #define WRONG (-1) 1251 #endif /* !defined WRONG */ 1252 1253 /* 1254 ** Simplified normalize logic courtesy Paul Eggert (eggert@twinsun.com). 1255 */ 1256 1257 static int 1258 increment_overflow(number, delta) 1259 int * number; 1260 int delta; 1261 { 1262 int number0; 1263 1264 number0 = *number; 1265 *number += delta; 1266 return (*number < number0) != (delta < 0); 1267 } 1268 1269 static int 1270 normalize_overflow(tensptr, unitsptr, base) 1271 int * const tensptr; 1272 int * const unitsptr; 1273 const int base; 1274 { 1275 register int tensdelta; 1276 1277 tensdelta = (*unitsptr >= 0) ? 1278 (*unitsptr / base) : 1279 (-1 - (-1 - *unitsptr) / base); 1280 *unitsptr -= tensdelta * base; 1281 return increment_overflow(tensptr, tensdelta); 1282 } 1283 1284 static int 1285 tmcomp(atmp, btmp) 1286 register const struct tm * const atmp; 1287 register const struct tm * const btmp; 1288 { 1289 register int result; 1290 1291 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && 1292 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && 1293 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && 1294 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && 1295 (result = (atmp->tm_min - btmp->tm_min)) == 0) 1296 result = atmp->tm_sec - btmp->tm_sec; 1297 return result; 1298 } 1299 1300 static time_t 1301 time2(tmp, funcp, offset, okayp) 1302 struct tm * const tmp; 1303 void (* const funcp) P((const time_t*, long, struct tm*)); 1304 const long offset; 1305 int * const okayp; 1306 { 1307 register const struct state * sp; 1308 register int dir; 1309 register int bits; 1310 register int i, j ; 1311 register int saved_seconds; 1312 time_t newt; 1313 time_t t; 1314 struct tm yourtm, mytm; 1315 1316 *okayp = FALSE; 1317 yourtm = *tmp; 1318 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) 1319 return WRONG; 1320 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) 1321 return WRONG; 1322 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR)) 1323 return WRONG; 1324 /* 1325 ** Turn yourtm.tm_year into an actual year number for now. 1326 ** It is converted back to an offset from TM_YEAR_BASE later. 1327 */ 1328 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE)) 1329 return WRONG; 1330 while (yourtm.tm_mday <= 0) { 1331 if (increment_overflow(&yourtm.tm_year, -1)) 1332 return WRONG; 1333 i = yourtm.tm_year + (1 < yourtm.tm_mon); 1334 yourtm.tm_mday += year_lengths[isleap(i)]; 1335 } 1336 while (yourtm.tm_mday > DAYSPERLYEAR) { 1337 i = yourtm.tm_year + (1 < yourtm.tm_mon); 1338 yourtm.tm_mday -= year_lengths[isleap(i)]; 1339 if (increment_overflow(&yourtm.tm_year, 1)) 1340 return WRONG; 1341 } 1342 for ( ; ; ) { 1343 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon]; 1344 if (yourtm.tm_mday <= i) 1345 break; 1346 yourtm.tm_mday -= i; 1347 if (++yourtm.tm_mon >= MONSPERYEAR) { 1348 yourtm.tm_mon = 0; 1349 if (increment_overflow(&yourtm.tm_year, 1)) 1350 return WRONG; 1351 } 1352 } 1353 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE)) 1354 return WRONG; 1355 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) { 1356 /* 1357 ** We can't set tm_sec to 0, because that might push the 1358 ** time below the minimum representable time. 1359 ** Set tm_sec to 59 instead. 1360 ** This assumes that the minimum representable time is 1361 ** not in the same minute that a leap second was deleted from, 1362 ** which is a safer assumption than using 58 would be. 1363 */ 1364 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) 1365 return WRONG; 1366 saved_seconds = yourtm.tm_sec; 1367 yourtm.tm_sec = SECSPERMIN - 1; 1368 } else { 1369 saved_seconds = yourtm.tm_sec; 1370 yourtm.tm_sec = 0; 1371 } 1372 /* 1373 ** Divide the search space in half 1374 ** (this works whether time_t is signed or unsigned). 1375 */ 1376 bits = TYPE_BIT(time_t) - 1; 1377 /* 1378 ** If time_t is signed, then 0 is just above the median, 1379 ** assuming two's complement arithmetic. 1380 ** If time_t is unsigned, then (1 << bits) is just above the median. 1381 */ 1382 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits); 1383 for ( ; ; ) { 1384 (*funcp)(&t, offset, &mytm); 1385 dir = tmcomp(&mytm, &yourtm); 1386 if (dir != 0) { 1387 if (bits-- < 0) 1388 return WRONG; 1389 if (bits < 0) 1390 --t; /* may be needed if new t is minimal */ 1391 else if (dir > 0) 1392 t -= ((time_t) 1) << bits; 1393 else t += ((time_t) 1) << bits; 1394 continue; 1395 } 1396 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) 1397 break; 1398 /* 1399 ** Right time, wrong type. 1400 ** Hunt for right time, right type. 1401 ** It's okay to guess wrong since the guess 1402 ** gets checked. 1403 */ 1404 /* 1405 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's. 1406 */ 1407 sp = (const struct state *) 1408 (((void *) funcp == (void *) localsub) ? 1409 lclptr : gmtptr); 1410 #ifdef ALL_STATE 1411 if (sp == NULL) 1412 return WRONG; 1413 #endif /* defined ALL_STATE */ 1414 for (i = sp->typecnt - 1; i >= 0; --i) { 1415 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) 1416 continue; 1417 for (j = sp->typecnt - 1; j >= 0; --j) { 1418 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) 1419 continue; 1420 newt = t + sp->ttis[j].tt_gmtoff - 1421 sp->ttis[i].tt_gmtoff; 1422 (*funcp)(&newt, offset, &mytm); 1423 if (tmcomp(&mytm, &yourtm) != 0) 1424 continue; 1425 if (mytm.tm_isdst != yourtm.tm_isdst) 1426 continue; 1427 /* 1428 ** We have a match. 1429 */ 1430 t = newt; 1431 goto label; 1432 } 1433 } 1434 return WRONG; 1435 } 1436 label: 1437 newt = t + saved_seconds; 1438 if ((newt < t) != (saved_seconds < 0)) 1439 return WRONG; 1440 t = newt; 1441 (*funcp)(&t, offset, tmp); 1442 *okayp = TRUE; 1443 return t; 1444 } 1445 1446 static time_t 1447 time1(tmp, funcp, offset) 1448 struct tm * const tmp; 1449 void (* const funcp) P((const time_t *, long, struct tm *)); 1450 const long offset; 1451 { 1452 register time_t t; 1453 register const struct state * sp; 1454 register int samei, otheri; 1455 int okay; 1456 1457 if (tmp->tm_isdst > 1) 1458 tmp->tm_isdst = 1; 1459 t = time2(tmp, funcp, offset, &okay); 1460 #ifdef PCTS 1461 /* 1462 ** PCTS code courtesy Grant Sullivan (grant@osf.org). 1463 */ 1464 if (okay) 1465 return t; 1466 if (tmp->tm_isdst < 0) 1467 tmp->tm_isdst = 0; /* reset to std and try again */ 1468 #endif /* defined PCTS */ 1469 #ifndef PCTS 1470 if (okay || tmp->tm_isdst < 0) 1471 return t; 1472 #endif /* !defined PCTS */ 1473 /* 1474 ** We're supposed to assume that somebody took a time of one type 1475 ** and did some math on it that yielded a "struct tm" that's bad. 1476 ** We try to divine the type they started from and adjust to the 1477 ** type they need. 1478 */ 1479 /* 1480 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's. 1481 */ 1482 sp = (const struct state *) (((void *) funcp == (void *) localsub) ? 1483 lclptr : gmtptr); 1484 #ifdef ALL_STATE 1485 if (sp == NULL) 1486 return WRONG; 1487 #endif /* defined ALL_STATE */ 1488 for (samei = sp->typecnt - 1; samei >= 0; --samei) { 1489 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) 1490 continue; 1491 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) { 1492 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) 1493 continue; 1494 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - 1495 sp->ttis[samei].tt_gmtoff; 1496 tmp->tm_isdst = !tmp->tm_isdst; 1497 t = time2(tmp, funcp, offset, &okay); 1498 if (okay) 1499 return t; 1500 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - 1501 sp->ttis[samei].tt_gmtoff; 1502 tmp->tm_isdst = !tmp->tm_isdst; 1503 } 1504 } 1505 return WRONG; 1506 } 1507 1508 time_t 1509 mktime(tmp) 1510 struct tm * const tmp; 1511 { 1512 tzset(); 1513 return time1(tmp, localsub, 0L); 1514 } 1515 1516 #ifdef STD_INSPIRED 1517 1518 time_t 1519 timelocal(tmp) 1520 struct tm * const tmp; 1521 { 1522 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 1523 return mktime(tmp); 1524 } 1525 1526 time_t 1527 timegm(tmp) 1528 struct tm * const tmp; 1529 { 1530 tmp->tm_isdst = 0; 1531 return time1(tmp, gmtsub, 0L); 1532 } 1533 1534 time_t 1535 timeoff(tmp, offset) 1536 struct tm * const tmp; 1537 const long offset; 1538 { 1539 tmp->tm_isdst = 0; 1540 return time1(tmp, gmtsub, offset); 1541 } 1542 1543 #endif /* defined STD_INSPIRED */ 1544 1545 #ifdef CMUCS 1546 1547 /* 1548 ** The following is supplied for compatibility with 1549 ** previous versions of the CMUCS runtime library. 1550 */ 1551 1552 long 1553 gtime(tmp) 1554 struct tm * const tmp; 1555 { 1556 const time_t t = mktime(tmp); 1557 1558 if (t == WRONG) 1559 return -1; 1560 return t; 1561 } 1562 1563 #endif /* defined CMUCS */ 1564 1565 /* 1566 ** XXX--is the below the right way to conditionalize?? 1567 */ 1568 1569 #ifdef STD_INSPIRED 1570 1571 /* 1572 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 1573 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which 1574 ** is not the case if we are accounting for leap seconds. 1575 ** So, we provide the following conversion routines for use 1576 ** when exchanging timestamps with POSIX conforming systems. 1577 */ 1578 1579 static long 1580 leapcorr(timep) 1581 time_t * timep; 1582 { 1583 register struct state * sp; 1584 register struct lsinfo * lp; 1585 register int i; 1586 1587 sp = lclptr; 1588 i = sp->leapcnt; 1589 while (--i >= 0) { 1590 lp = &sp->lsis[i]; 1591 if (*timep >= lp->ls_trans) 1592 return lp->ls_corr; 1593 } 1594 return 0; 1595 } 1596 1597 time_t 1598 time2posix(t) 1599 time_t t; 1600 { 1601 tzset(); 1602 return t - leapcorr(&t); 1603 } 1604 1605 time_t 1606 posix2time(t) 1607 time_t t; 1608 { 1609 time_t x; 1610 time_t y; 1611 1612 tzset(); 1613 /* 1614 ** For a positive leap second hit, the result 1615 ** is not unique. For a negative leap second 1616 ** hit, the corresponding time doesn't exist, 1617 ** so we return an adjacent second. 1618 */ 1619 x = t + leapcorr(&t); 1620 y = x - leapcorr(&x); 1621 if (y < t) { 1622 do { 1623 x++; 1624 y = x - leapcorr(&x); 1625 } while (y < t); 1626 if (t != y) 1627 return x - 1; 1628 } else if (y > t) { 1629 do { 1630 --x; 1631 y = x - leapcorr(&x); 1632 } while (y > t); 1633 if (t != y) 1634 return x + 1; 1635 } 1636 return x; 1637 } 1638 1639 #endif /* defined STD_INSPIRED */ 1640