1 /* $NetBSD: localtime.c,v 1.66 2012/03/13 21:13:48 christos Exp $ */ 2 3 /* 4 ** This file is in the public domain, so clarified as of 5 ** 1996-06-05 by Arthur David Olson. 6 */ 7 8 #include <sys/cdefs.h> 9 #if defined(LIBC_SCCS) && !defined(lint) 10 #if 0 11 static char elsieid[] = "@(#)localtime.c 8.17"; 12 #else 13 __RCSID("$NetBSD: localtime.c,v 1.66 2012/03/13 21:13:48 christos Exp $"); 14 #endif 15 #endif /* LIBC_SCCS and not lint */ 16 17 /* 18 ** Leap second handling from Bradley White. 19 ** POSIX-style TZ environment variable handling from Guy Harris. 20 */ 21 22 /*LINTLIBRARY*/ 23 24 #include "namespace.h" 25 #include "private.h" 26 #include "tzfile.h" 27 #include "fcntl.h" 28 #include "reentrant.h" 29 30 #if defined(__weak_alias) 31 __weak_alias(daylight,_daylight) 32 __weak_alias(tzname,_tzname) 33 #endif 34 35 #include "float.h" /* for FLT_MAX and DBL_MAX */ 36 37 #ifndef TZ_ABBR_MAX_LEN 38 #define TZ_ABBR_MAX_LEN 16 39 #endif /* !defined TZ_ABBR_MAX_LEN */ 40 41 #ifndef TZ_ABBR_CHAR_SET 42 #define TZ_ABBR_CHAR_SET \ 43 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" 44 #endif /* !defined TZ_ABBR_CHAR_SET */ 45 46 #ifndef TZ_ABBR_ERR_CHAR 47 #define TZ_ABBR_ERR_CHAR '_' 48 #endif /* !defined TZ_ABBR_ERR_CHAR */ 49 50 /* 51 ** SunOS 4.1.1 headers lack O_BINARY. 52 */ 53 54 #ifdef O_BINARY 55 #define OPEN_MODE (O_RDONLY | O_BINARY) 56 #endif /* defined O_BINARY */ 57 #ifndef O_BINARY 58 #define OPEN_MODE O_RDONLY 59 #endif /* !defined O_BINARY */ 60 61 #ifndef WILDABBR 62 /* 63 ** Someone might make incorrect use of a time zone abbreviation: 64 ** 1. They might reference tzname[0] before calling tzset (explicitly 65 ** or implicitly). 66 ** 2. They might reference tzname[1] before calling tzset (explicitly 67 ** or implicitly). 68 ** 3. They might reference tzname[1] after setting to a time zone 69 ** in which Daylight Saving Time is never observed. 70 ** 4. They might reference tzname[0] after setting to a time zone 71 ** in which Standard Time is never observed. 72 ** 5. They might reference tm.TM_ZONE after calling offtime. 73 ** What's best to do in the above cases is open to debate; 74 ** for now, we just set things up so that in any of the five cases 75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the 76 ** string "tzname[0] used before set", and similarly for the other cases. 77 ** And another: initialize tzname[0] to "ERA", with an explanation in the 78 ** manual page of what this "time zone abbreviation" means (doing this so 79 ** that tzname[0] has the "normal" length of three characters). 80 */ 81 #define WILDABBR " " 82 #endif /* !defined WILDABBR */ 83 84 static const char wildabbr[] = WILDABBR; 85 86 static char gmt[] = "GMT"; 87 88 /* 89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. 90 ** We default to US rules as of 1999-08-17. 91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are 92 ** implementation dependent; for historical reasons, US rules are a 93 ** common default. 94 */ 95 #ifndef TZDEFRULESTRING 96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0" 97 #endif /* !defined TZDEFDST */ 98 99 struct ttinfo { /* time type information */ 100 long tt_gmtoff; /* UTC offset in seconds */ 101 int tt_isdst; /* used to set tm_isdst */ 102 int tt_abbrind; /* abbreviation list index */ 103 int tt_ttisstd; /* TRUE if transition is std time */ 104 int tt_ttisgmt; /* TRUE if transition is UTC */ 105 }; 106 107 struct lsinfo { /* leap second information */ 108 time_t ls_trans; /* transition time */ 109 long ls_corr; /* correction to apply */ 110 }; 111 112 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) 113 114 #ifdef TZNAME_MAX 115 #define MY_TZNAME_MAX TZNAME_MAX 116 #endif /* defined TZNAME_MAX */ 117 #ifndef TZNAME_MAX 118 #define MY_TZNAME_MAX 255 119 #endif /* !defined TZNAME_MAX */ 120 121 struct __state { 122 int leapcnt; 123 int timecnt; 124 int typecnt; 125 int charcnt; 126 int goback; 127 int goahead; 128 time_t ats[TZ_MAX_TIMES]; 129 unsigned char types[TZ_MAX_TIMES]; 130 struct ttinfo ttis[TZ_MAX_TYPES]; 131 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), 132 (2 * (MY_TZNAME_MAX + 1)))]; 133 struct lsinfo lsis[TZ_MAX_LEAPS]; 134 }; 135 136 struct rule { 137 int r_type; /* type of rule--see below */ 138 int r_day; /* day number of rule */ 139 int r_week; /* week number of rule */ 140 int r_mon; /* month number of rule */ 141 long r_time; /* transition time of rule */ 142 }; 143 144 #define JULIAN_DAY 0 /* Jn - Julian day */ 145 #define DAY_OF_YEAR 1 /* n - day of year */ 146 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ 147 148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep, 149 long offset, struct tm *tmp); 150 151 /* 152 ** Prototypes for static functions. 153 */ 154 155 static long detzcode(const char * codep); 156 static time_t detzcode64(const char * codep); 157 static int differ_by_repeat(time_t t1, time_t t0); 158 static const char * getzname(const char * strp); 159 static const char * getqzname(const char * strp, const int delim); 160 static const char * getnum(const char * strp, int * nump, int min, 161 int max); 162 static const char * getsecs(const char * strp, long * secsp); 163 static const char * getoffset(const char * strp, long * offsetp); 164 static const char * getrule(const char * strp, struct rule * rulep); 165 static void gmtload(timezone_t sp); 166 static struct tm * gmtsub(const timezone_t sp, const time_t *timep, 167 long offset, struct tm * tmp); 168 static struct tm * localsub(const timezone_t sp, const time_t *timep, 169 long offset, struct tm *tmp); 170 static int increment_overflow(int * number, int delta); 171 static int leaps_thru_end_of(int y); 172 static int long_increment_overflow(long * number, int delta); 173 static int long_normalize_overflow(long * tensptr, 174 int * unitsptr, int base); 175 static int normalize_overflow(int * tensptr, int * unitsptr, 176 int base); 177 static void settzname(void); 178 static time_t time1(const timezone_t sp, struct tm * const tmp, 179 subfun_t funcp, long offset); 180 static time_t time2(const timezone_t sp, struct tm * const tmp, 181 subfun_t funcp, 182 const long offset, int *const okayp); 183 static time_t time2sub(const timezone_t sp, struct tm * consttmp, 184 subfun_t funcp, const long offset, 185 int *const okayp, const int do_norm_secs); 186 static struct tm * timesub(const timezone_t sp, const time_t * timep, 187 long offset, struct tm * tmp); 188 static int tmcomp(const struct tm * atmp, 189 const struct tm * btmp); 190 static time_t transtime(time_t janfirst, int year, 191 const struct rule * rulep, long offset); 192 static int typesequiv(const timezone_t sp, int a, int b); 193 static int tzload(timezone_t sp, const char * name, 194 int doextend); 195 static int tzparse(timezone_t sp, const char * name, 196 int lastditch); 197 static void tzset_unlocked(void); 198 static void tzsetwall_unlocked(void); 199 static long leapcorr(const timezone_t sp, time_t * timep); 200 201 static timezone_t lclptr; 202 static timezone_t gmtptr; 203 204 #ifndef TZ_STRLEN_MAX 205 #define TZ_STRLEN_MAX 255 206 #endif /* !defined TZ_STRLEN_MAX */ 207 208 static char lcl_TZname[TZ_STRLEN_MAX + 1]; 209 static int lcl_is_set; 210 static int gmt_is_set; 211 212 #if !defined(__LIBC12_SOURCE__) 213 214 __aconst char * tzname[2] = { 215 (__aconst char *)__UNCONST(wildabbr), 216 (__aconst char *)__UNCONST(wildabbr) 217 }; 218 219 #else 220 221 extern __aconst char * tzname[2]; 222 223 #endif 224 225 #ifdef _REENTRANT 226 static rwlock_t lcl_lock = RWLOCK_INITIALIZER; 227 #endif 228 229 /* 230 ** Section 4.12.3 of X3.159-1989 requires that 231 ** Except for the strftime function, these functions [asctime, 232 ** ctime, gmtime, localtime] return values in one of two static 233 ** objects: a broken-down time structure and an array of char. 234 ** Thanks to Paul Eggert for noting this. 235 */ 236 237 static struct tm tm; 238 239 #ifdef USG_COMPAT 240 #if !defined(__LIBC12_SOURCE__) 241 long timezone = 0; 242 int daylight = 0; 243 #else 244 extern int daylight; 245 extern long timezone __RENAME(__timezone13); 246 #endif 247 #endif /* defined USG_COMPAT */ 248 249 #ifdef ALTZONE 250 time_t altzone = 0; 251 #endif /* defined ALTZONE */ 252 253 static long 254 detzcode(const char *const codep) 255 { 256 long result; 257 int i; 258 259 result = (codep[0] & 0x80) ? ~0L : 0; 260 for (i = 0; i < 4; ++i) 261 result = (result << 8) | (codep[i] & 0xff); 262 return result; 263 } 264 265 static time_t 266 detzcode64(const char *const codep) 267 { 268 time_t result; 269 int i; 270 271 result = (codep[0] & 0x80) ? -1 : 0; 272 for (i = 0; i < 8; ++i) 273 result = result * 256 + (codep[i] & 0xff); 274 return result; 275 } 276 277 const char * 278 tzgetname(const timezone_t sp, int isdst) 279 { 280 int i; 281 for (i = 0; i < sp->timecnt; ++i) { 282 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]]; 283 284 if (ttisp->tt_isdst == isdst) 285 return &sp->chars[ttisp->tt_abbrind]; 286 } 287 return NULL; 288 } 289 290 static void 291 settzname_z(timezone_t sp) 292 { 293 int i; 294 295 /* 296 ** Scrub the abbreviations. 297 ** First, replace bogus characters. 298 */ 299 for (i = 0; i < sp->charcnt; ++i) 300 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) 301 sp->chars[i] = TZ_ABBR_ERR_CHAR; 302 /* 303 ** Second, truncate long abbreviations. 304 */ 305 for (i = 0; i < sp->typecnt; ++i) { 306 const struct ttinfo * const ttisp = &sp->ttis[i]; 307 char * cp = &sp->chars[ttisp->tt_abbrind]; 308 309 if (strlen(cp) > TZ_ABBR_MAX_LEN && 310 strcmp(cp, GRANDPARENTED) != 0) 311 *(cp + TZ_ABBR_MAX_LEN) = '\0'; 312 } 313 } 314 315 static void 316 settzname(void) 317 { 318 timezone_t const sp = lclptr; 319 int i; 320 321 tzname[0] = (__aconst char *)__UNCONST(wildabbr); 322 tzname[1] = (__aconst char *)__UNCONST(wildabbr); 323 #ifdef USG_COMPAT 324 daylight = 0; 325 timezone = 0; 326 #endif /* defined USG_COMPAT */ 327 #ifdef ALTZONE 328 altzone = 0; 329 #endif /* defined ALTZONE */ 330 if (sp == NULL) { 331 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt); 332 return; 333 } 334 /* 335 ** And to get the latest zone names into tzname. . . 336 */ 337 for (i = 0; i < sp->typecnt; ++i) { 338 const struct ttinfo * const ttisp = &sp->ttis[i]; 339 340 tzname[ttisp->tt_isdst] = 341 &sp->chars[ttisp->tt_abbrind]; 342 #ifdef USG_COMPAT 343 if (ttisp->tt_isdst) 344 daylight = 1; 345 if (!ttisp->tt_isdst) 346 timezone = -(ttisp->tt_gmtoff); 347 #endif /* defined USG_COMPAT */ 348 #ifdef ALTZONE 349 if (i == 0 || ttisp->tt_isdst) 350 altzone = -(ttisp->tt_gmtoff); 351 #endif /* defined ALTZONE */ 352 } 353 settzname_z(sp); 354 } 355 356 static int 357 differ_by_repeat(const time_t t1, const time_t t0) 358 { 359 /* CONSTCOND */ 360 if (TYPE_INTEGRAL(time_t) && 361 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) 362 return 0; 363 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT; 364 } 365 366 static int 367 tzload(timezone_t sp, const char *name, const int doextend) 368 { 369 const char * p; 370 int i; 371 int fid; 372 int stored; 373 ssize_t nread; 374 typedef union { 375 struct tzhead tzhead; 376 char buf[2 * sizeof(struct tzhead) + 377 2 * sizeof *sp + 378 4 * TZ_MAX_TIMES]; 379 } u_t; 380 u_t * up; 381 382 up = calloc(1, sizeof *up); 383 if (up == NULL) 384 return -1; 385 386 sp->goback = sp->goahead = FALSE; 387 if (name == NULL && (name = TZDEFAULT) == NULL) 388 goto oops; 389 { 390 int doaccess; 391 /* 392 ** Section 4.9.1 of the C standard says that 393 ** "FILENAME_MAX expands to an integral constant expression 394 ** that is the size needed for an array of char large enough 395 ** to hold the longest file name string that the implementation 396 ** guarantees can be opened." 397 */ 398 char fullname[FILENAME_MAX + 1]; 399 400 if (name[0] == ':') 401 ++name; 402 doaccess = name[0] == '/'; 403 if (!doaccess) { 404 if ((p = TZDIR) == NULL) 405 goto oops; 406 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) 407 goto oops; 408 (void) strcpy(fullname, p); /* XXX strcpy is safe */ 409 (void) strcat(fullname, "/"); /* XXX strcat is safe */ 410 (void) strcat(fullname, name); /* XXX strcat is safe */ 411 /* 412 ** Set doaccess if '.' (as in "../") shows up in name. 413 */ 414 if (strchr(name, '.') != NULL) 415 doaccess = TRUE; 416 name = fullname; 417 } 418 if (doaccess && access(name, R_OK) != 0) 419 goto oops; 420 /* 421 * XXX potential security problem here if user of a set-id 422 * program has set TZ (which is passed in as name) here, 423 * and uses a race condition trick to defeat the access(2) 424 * above. 425 */ 426 if ((fid = open(name, OPEN_MODE)) == -1) 427 goto oops; 428 } 429 nread = read(fid, up->buf, sizeof up->buf); 430 if (close(fid) < 0 || nread <= 0) 431 goto oops; 432 for (stored = 4; stored <= 8; stored *= 2) { 433 int ttisstdcnt; 434 int ttisgmtcnt; 435 436 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt); 437 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt); 438 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt); 439 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt); 440 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt); 441 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt); 442 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt; 443 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || 444 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || 445 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || 446 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || 447 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || 448 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) 449 goto oops; 450 if (nread - (p - up->buf) < 451 sp->timecnt * stored + /* ats */ 452 sp->timecnt + /* types */ 453 sp->typecnt * 6 + /* ttinfos */ 454 sp->charcnt + /* chars */ 455 sp->leapcnt * (stored + 4) + /* lsinfos */ 456 ttisstdcnt + /* ttisstds */ 457 ttisgmtcnt) /* ttisgmts */ 458 goto oops; 459 for (i = 0; i < sp->timecnt; ++i) { 460 sp->ats[i] = (time_t)((stored == 4) ? 461 detzcode(p) : detzcode64(p)); 462 p += stored; 463 } 464 for (i = 0; i < sp->timecnt; ++i) { 465 sp->types[i] = (unsigned char) *p++; 466 if (sp->types[i] >= sp->typecnt) 467 goto oops; 468 } 469 for (i = 0; i < sp->typecnt; ++i) { 470 struct ttinfo * ttisp; 471 472 ttisp = &sp->ttis[i]; 473 ttisp->tt_gmtoff = detzcode(p); 474 p += 4; 475 ttisp->tt_isdst = (unsigned char) *p++; 476 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) 477 goto oops; 478 ttisp->tt_abbrind = (unsigned char) *p++; 479 if (ttisp->tt_abbrind < 0 || 480 ttisp->tt_abbrind > sp->charcnt) 481 goto oops; 482 } 483 for (i = 0; i < sp->charcnt; ++i) 484 sp->chars[i] = *p++; 485 sp->chars[i] = '\0'; /* ensure '\0' at end */ 486 for (i = 0; i < sp->leapcnt; ++i) { 487 struct lsinfo * lsisp; 488 489 lsisp = &sp->lsis[i]; 490 lsisp->ls_trans = (time_t)((stored == 4) ? 491 detzcode(p) : detzcode64(p)); 492 p += stored; 493 lsisp->ls_corr = detzcode(p); 494 p += 4; 495 } 496 for (i = 0; i < sp->typecnt; ++i) { 497 struct ttinfo * ttisp; 498 499 ttisp = &sp->ttis[i]; 500 if (ttisstdcnt == 0) 501 ttisp->tt_ttisstd = FALSE; 502 else { 503 ttisp->tt_ttisstd = *p++; 504 if (ttisp->tt_ttisstd != TRUE && 505 ttisp->tt_ttisstd != FALSE) 506 goto oops; 507 } 508 } 509 for (i = 0; i < sp->typecnt; ++i) { 510 struct ttinfo * ttisp; 511 512 ttisp = &sp->ttis[i]; 513 if (ttisgmtcnt == 0) 514 ttisp->tt_ttisgmt = FALSE; 515 else { 516 ttisp->tt_ttisgmt = *p++; 517 if (ttisp->tt_ttisgmt != TRUE && 518 ttisp->tt_ttisgmt != FALSE) 519 goto oops; 520 } 521 } 522 /* 523 ** Out-of-sort ats should mean we're running on a 524 ** signed time_t system but using a data file with 525 ** unsigned values (or vice versa). 526 */ 527 for (i = 0; i < sp->timecnt - 2; ++i) 528 if (sp->ats[i] > sp->ats[i + 1]) { 529 ++i; 530 /* CONSTCOND */ 531 if (TYPE_SIGNED(time_t)) { 532 /* 533 ** Ignore the end (easy). 534 */ 535 sp->timecnt = i; 536 } else { 537 /* 538 ** Ignore the beginning (harder). 539 */ 540 int j; 541 542 for (j = 0; j + i < sp->timecnt; ++j) { 543 sp->ats[j] = sp->ats[j + i]; 544 sp->types[j] = sp->types[j + i]; 545 } 546 sp->timecnt = j; 547 } 548 break; 549 } 550 /* 551 ** If this is an old file, we're done. 552 */ 553 if (up->tzhead.tzh_version[0] == '\0') 554 break; 555 nread -= p - up->buf; 556 for (i = 0; i < nread; ++i) 557 up->buf[i] = p[i]; 558 /* 559 ** If this is a narrow integer time_t system, we're done. 560 */ 561 if (stored >= (int) sizeof(time_t) 562 /* CONSTCOND */ 563 && TYPE_INTEGRAL(time_t)) 564 break; 565 } 566 if (doextend && nread > 2 && 567 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && 568 sp->typecnt + 2 <= TZ_MAX_TYPES) { 569 struct __state ts; 570 int result; 571 572 up->buf[nread - 1] = '\0'; 573 result = tzparse(&ts, &up->buf[1], FALSE); 574 if (result == 0 && ts.typecnt == 2 && 575 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { 576 for (i = 0; i < 2; ++i) 577 ts.ttis[i].tt_abbrind += 578 sp->charcnt; 579 for (i = 0; i < ts.charcnt; ++i) 580 sp->chars[sp->charcnt++] = 581 ts.chars[i]; 582 i = 0; 583 while (i < ts.timecnt && 584 ts.ats[i] <= 585 sp->ats[sp->timecnt - 1]) 586 ++i; 587 while (i < ts.timecnt && 588 sp->timecnt < TZ_MAX_TIMES) { 589 sp->ats[sp->timecnt] = 590 ts.ats[i]; 591 sp->types[sp->timecnt] = 592 sp->typecnt + 593 ts.types[i]; 594 ++sp->timecnt; 595 ++i; 596 } 597 sp->ttis[sp->typecnt++] = ts.ttis[0]; 598 sp->ttis[sp->typecnt++] = ts.ttis[1]; 599 } 600 } 601 if (sp->timecnt > 1) { 602 for (i = 1; i < sp->timecnt; ++i) 603 if (typesequiv(sp, sp->types[i], sp->types[0]) && 604 differ_by_repeat(sp->ats[i], sp->ats[0])) { 605 sp->goback = TRUE; 606 break; 607 } 608 for (i = sp->timecnt - 2; i >= 0; --i) 609 if (typesequiv(sp, sp->types[sp->timecnt - 1], 610 sp->types[i]) && 611 differ_by_repeat(sp->ats[sp->timecnt - 1], 612 sp->ats[i])) { 613 sp->goahead = TRUE; 614 break; 615 } 616 } 617 free(up); 618 return 0; 619 oops: 620 free(up); 621 return -1; 622 } 623 624 static int 625 typesequiv(const timezone_t sp, const int a, const int b) 626 { 627 int result; 628 629 if (sp == NULL || 630 a < 0 || a >= sp->typecnt || 631 b < 0 || b >= sp->typecnt) 632 result = FALSE; 633 else { 634 const struct ttinfo * ap = &sp->ttis[a]; 635 const struct ttinfo * bp = &sp->ttis[b]; 636 result = ap->tt_gmtoff == bp->tt_gmtoff && 637 ap->tt_isdst == bp->tt_isdst && 638 ap->tt_ttisstd == bp->tt_ttisstd && 639 ap->tt_ttisgmt == bp->tt_ttisgmt && 640 strcmp(&sp->chars[ap->tt_abbrind], 641 &sp->chars[bp->tt_abbrind]) == 0; 642 } 643 return result; 644 } 645 646 static const int mon_lengths[2][MONSPERYEAR] = { 647 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 648 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } 649 }; 650 651 static const int year_lengths[2] = { 652 DAYSPERNYEAR, DAYSPERLYEAR 653 }; 654 655 /* 656 ** Given a pointer into a time zone string, scan until a character that is not 657 ** a valid character in a zone name is found. Return a pointer to that 658 ** character. 659 */ 660 661 static const char * 662 getzname(strp) 663 const char * strp; 664 { 665 char c; 666 667 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && 668 c != '+') 669 ++strp; 670 return strp; 671 } 672 673 /* 674 ** Given a pointer into an extended time zone string, scan until the ending 675 ** delimiter of the zone name is located. Return a pointer to the delimiter. 676 ** 677 ** As with getzname above, the legal character set is actually quite 678 ** restricted, with other characters producing undefined results. 679 ** We don't do any checking here; checking is done later in common-case code. 680 */ 681 682 static const char * 683 getqzname(const char *strp, const int delim) 684 { 685 int c; 686 687 while ((c = *strp) != '\0' && c != delim) 688 ++strp; 689 return strp; 690 } 691 692 /* 693 ** Given a pointer into a time zone string, extract a number from that string. 694 ** Check that the number is within a specified range; if it is not, return 695 ** NULL. 696 ** Otherwise, return a pointer to the first character not part of the number. 697 */ 698 699 static const char * 700 getnum(strp, nump, min, max) 701 const char * strp; 702 int * const nump; 703 const int min; 704 const int max; 705 { 706 char c; 707 int num; 708 709 if (strp == NULL || !is_digit(c = *strp)) { 710 errno = EINVAL; 711 return NULL; 712 } 713 num = 0; 714 do { 715 num = num * 10 + (c - '0'); 716 if (num > max) { 717 errno = EOVERFLOW; 718 return NULL; /* illegal value */ 719 } 720 c = *++strp; 721 } while (is_digit(c)); 722 if (num < min) { 723 errno = EINVAL; 724 return NULL; /* illegal value */ 725 } 726 *nump = num; 727 return strp; 728 } 729 730 /* 731 ** Given a pointer into a time zone string, extract a number of seconds, 732 ** in hh[:mm[:ss]] form, from the string. 733 ** If any error occurs, return NULL. 734 ** Otherwise, return a pointer to the first character not part of the number 735 ** of seconds. 736 */ 737 738 static const char * 739 getsecs(const char *strp, long *const secsp) 740 { 741 int num; 742 743 /* 744 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like 745 ** "M10.4.6/26", which does not conform to Posix, 746 ** but which specifies the equivalent of 747 ** ``02:00 on the first Sunday on or after 23 Oct''. 748 */ 749 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); 750 if (strp == NULL) 751 return NULL; 752 *secsp = num * (long) SECSPERHOUR; 753 if (*strp == ':') { 754 ++strp; 755 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); 756 if (strp == NULL) 757 return NULL; 758 *secsp += num * SECSPERMIN; 759 if (*strp == ':') { 760 ++strp; 761 /* `SECSPERMIN' allows for leap seconds. */ 762 strp = getnum(strp, &num, 0, SECSPERMIN); 763 if (strp == NULL) 764 return NULL; 765 *secsp += num; 766 } 767 } 768 return strp; 769 } 770 771 /* 772 ** Given a pointer into a time zone string, extract an offset, in 773 ** [+-]hh[:mm[:ss]] form, from the string. 774 ** If any error occurs, return NULL. 775 ** Otherwise, return a pointer to the first character not part of the time. 776 */ 777 778 static const char * 779 getoffset(const char *strp, long *const offsetp) 780 { 781 int neg = 0; 782 783 if (*strp == '-') { 784 neg = 1; 785 ++strp; 786 } else if (*strp == '+') 787 ++strp; 788 strp = getsecs(strp, offsetp); 789 if (strp == NULL) 790 return NULL; /* illegal time */ 791 if (neg) 792 *offsetp = -*offsetp; 793 return strp; 794 } 795 796 /* 797 ** Given a pointer into a time zone string, extract a rule in the form 798 ** date[/time]. See POSIX section 8 for the format of "date" and "time". 799 ** If a valid rule is not found, return NULL. 800 ** Otherwise, return a pointer to the first character not part of the rule. 801 */ 802 803 static const char * 804 getrule(const char *strp, struct rule *const rulep) 805 { 806 if (*strp == 'J') { 807 /* 808 ** Julian day. 809 */ 810 rulep->r_type = JULIAN_DAY; 811 ++strp; 812 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); 813 } else if (*strp == 'M') { 814 /* 815 ** Month, week, day. 816 */ 817 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; 818 ++strp; 819 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); 820 if (strp == NULL) 821 return NULL; 822 if (*strp++ != '.') 823 return NULL; 824 strp = getnum(strp, &rulep->r_week, 1, 5); 825 if (strp == NULL) 826 return NULL; 827 if (*strp++ != '.') 828 return NULL; 829 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); 830 } else if (is_digit(*strp)) { 831 /* 832 ** Day of year. 833 */ 834 rulep->r_type = DAY_OF_YEAR; 835 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); 836 } else return NULL; /* invalid format */ 837 if (strp == NULL) 838 return NULL; 839 if (*strp == '/') { 840 /* 841 ** Time specified. 842 */ 843 ++strp; 844 strp = getsecs(strp, &rulep->r_time); 845 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ 846 return strp; 847 } 848 849 /* 850 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the 851 ** year, a rule, and the offset from UTC at the time that rule takes effect, 852 ** calculate the Epoch-relative time that rule takes effect. 853 */ 854 855 static time_t 856 transtime(const time_t janfirst, const int year, const struct rule *const rulep, 857 const long offset) 858 { 859 int leapyear; 860 time_t value; 861 int i; 862 int d, m1, yy0, yy1, yy2, dow; 863 864 INITIALIZE(value); 865 leapyear = isleap(year); 866 switch (rulep->r_type) { 867 868 case JULIAN_DAY: 869 /* 870 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap 871 ** years. 872 ** In non-leap years, or if the day number is 59 or less, just 873 ** add SECSPERDAY times the day number-1 to the time of 874 ** January 1, midnight, to get the day. 875 */ 876 value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY); 877 if (leapyear && rulep->r_day >= 60) 878 value += SECSPERDAY; 879 break; 880 881 case DAY_OF_YEAR: 882 /* 883 ** n - day of year. 884 ** Just add SECSPERDAY times the day number to the time of 885 ** January 1, midnight, to get the day. 886 */ 887 value = (time_t)(janfirst + rulep->r_day * SECSPERDAY); 888 break; 889 890 case MONTH_NTH_DAY_OF_WEEK: 891 /* 892 ** Mm.n.d - nth "dth day" of month m. 893 */ 894 value = janfirst; 895 for (i = 0; i < rulep->r_mon - 1; ++i) 896 value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY); 897 898 /* 899 ** Use Zeller's Congruence to get day-of-week of first day of 900 ** month. 901 */ 902 m1 = (rulep->r_mon + 9) % 12 + 1; 903 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; 904 yy1 = yy0 / 100; 905 yy2 = yy0 % 100; 906 dow = ((26 * m1 - 2) / 10 + 907 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; 908 if (dow < 0) 909 dow += DAYSPERWEEK; 910 911 /* 912 ** "dow" is the day-of-week of the first day of the month. Get 913 ** the day-of-month (zero-origin) of the first "dow" day of the 914 ** month. 915 */ 916 d = rulep->r_day - dow; 917 if (d < 0) 918 d += DAYSPERWEEK; 919 for (i = 1; i < rulep->r_week; ++i) { 920 if (d + DAYSPERWEEK >= 921 mon_lengths[leapyear][rulep->r_mon - 1]) 922 break; 923 d += DAYSPERWEEK; 924 } 925 926 /* 927 ** "d" is the day-of-month (zero-origin) of the day we want. 928 */ 929 value += (time_t)(d * SECSPERDAY); 930 break; 931 } 932 933 /* 934 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in 935 ** question. To get the Epoch-relative time of the specified local 936 ** time on that day, add the transition time and the current offset 937 ** from UTC. 938 */ 939 return (time_t)(value + rulep->r_time + offset); 940 } 941 942 /* 943 ** Given a POSIX section 8-style TZ string, fill in the rule tables as 944 ** appropriate. 945 */ 946 947 static int 948 tzparse(timezone_t sp, const char *name, const int lastditch) 949 { 950 const char * stdname; 951 const char * dstname; 952 size_t stdlen; 953 size_t dstlen; 954 long stdoffset; 955 long dstoffset; 956 time_t * atp; 957 unsigned char * typep; 958 char * cp; 959 int load_result; 960 961 INITIALIZE(dstname); 962 stdname = name; 963 if (lastditch) { 964 stdlen = strlen(name); /* length of standard zone name */ 965 name += stdlen; 966 if (stdlen >= sizeof sp->chars) 967 stdlen = (sizeof sp->chars) - 1; 968 stdoffset = 0; 969 } else { 970 if (*name == '<') { 971 name++; 972 stdname = name; 973 name = getqzname(name, '>'); 974 if (*name != '>') 975 return (-1); 976 stdlen = name - stdname; 977 name++; 978 } else { 979 name = getzname(name); 980 stdlen = name - stdname; 981 } 982 if (*name == '\0') 983 return -1; 984 name = getoffset(name, &stdoffset); 985 if (name == NULL) 986 return -1; 987 } 988 load_result = tzload(sp, TZDEFRULES, FALSE); 989 if (load_result != 0) 990 sp->leapcnt = 0; /* so, we're off a little */ 991 if (*name != '\0') { 992 if (*name == '<') { 993 dstname = ++name; 994 name = getqzname(name, '>'); 995 if (*name != '>') 996 return -1; 997 dstlen = name - dstname; 998 name++; 999 } else { 1000 dstname = name; 1001 name = getzname(name); 1002 dstlen = name - dstname; /* length of DST zone name */ 1003 } 1004 if (*name != '\0' && *name != ',' && *name != ';') { 1005 name = getoffset(name, &dstoffset); 1006 if (name == NULL) 1007 return -1; 1008 } else dstoffset = stdoffset - SECSPERHOUR; 1009 if (*name == '\0' && load_result != 0) 1010 name = TZDEFRULESTRING; 1011 if (*name == ',' || *name == ';') { 1012 struct rule start; 1013 struct rule end; 1014 int year; 1015 time_t janfirst; 1016 time_t starttime; 1017 time_t endtime; 1018 1019 ++name; 1020 if ((name = getrule(name, &start)) == NULL) 1021 return -1; 1022 if (*name++ != ',') 1023 return -1; 1024 if ((name = getrule(name, &end)) == NULL) 1025 return -1; 1026 if (*name != '\0') 1027 return -1; 1028 sp->typecnt = 2; /* standard time and DST */ 1029 /* 1030 ** Two transitions per year, from EPOCH_YEAR forward. 1031 */ 1032 memset(sp->ttis, 0, sizeof(sp->ttis)); 1033 sp->ttis[0].tt_gmtoff = -dstoffset; 1034 sp->ttis[0].tt_isdst = 1; 1035 sp->ttis[0].tt_abbrind = (int)(stdlen + 1); 1036 sp->ttis[1].tt_gmtoff = -stdoffset; 1037 sp->ttis[1].tt_isdst = 0; 1038 sp->ttis[1].tt_abbrind = 0; 1039 atp = sp->ats; 1040 typep = sp->types; 1041 janfirst = 0; 1042 sp->timecnt = 0; 1043 for (year = EPOCH_YEAR; 1044 sp->timecnt + 2 <= TZ_MAX_TIMES; 1045 ++year) { 1046 time_t newfirst; 1047 1048 starttime = transtime(janfirst, year, &start, 1049 stdoffset); 1050 endtime = transtime(janfirst, year, &end, 1051 dstoffset); 1052 if (starttime > endtime) { 1053 *atp++ = endtime; 1054 *typep++ = 1; /* DST ends */ 1055 *atp++ = starttime; 1056 *typep++ = 0; /* DST begins */ 1057 } else { 1058 *atp++ = starttime; 1059 *typep++ = 0; /* DST begins */ 1060 *atp++ = endtime; 1061 *typep++ = 1; /* DST ends */ 1062 } 1063 sp->timecnt += 2; 1064 newfirst = janfirst; 1065 newfirst += (time_t) 1066 (year_lengths[isleap(year)] * SECSPERDAY); 1067 if (newfirst <= janfirst) 1068 break; 1069 janfirst = newfirst; 1070 } 1071 } else { 1072 long theirstdoffset; 1073 long theirdstoffset; 1074 long theiroffset; 1075 int isdst; 1076 int i; 1077 int j; 1078 1079 if (*name != '\0') 1080 return -1; 1081 /* 1082 ** Initial values of theirstdoffset 1083 */ 1084 theirstdoffset = 0; 1085 for (i = 0; i < sp->timecnt; ++i) { 1086 j = sp->types[i]; 1087 if (!sp->ttis[j].tt_isdst) { 1088 theirstdoffset = 1089 -sp->ttis[j].tt_gmtoff; 1090 break; 1091 } 1092 } 1093 theirdstoffset = 0; 1094 for (i = 0; i < sp->timecnt; ++i) { 1095 j = sp->types[i]; 1096 if (sp->ttis[j].tt_isdst) { 1097 theirdstoffset = 1098 -sp->ttis[j].tt_gmtoff; 1099 break; 1100 } 1101 } 1102 /* 1103 ** Initially we're assumed to be in standard time. 1104 */ 1105 isdst = FALSE; 1106 theiroffset = theirstdoffset; 1107 /* 1108 ** Now juggle transition times and types 1109 ** tracking offsets as you do. 1110 */ 1111 for (i = 0; i < sp->timecnt; ++i) { 1112 j = sp->types[i]; 1113 sp->types[i] = sp->ttis[j].tt_isdst; 1114 if (sp->ttis[j].tt_ttisgmt) { 1115 /* No adjustment to transition time */ 1116 } else { 1117 /* 1118 ** If summer time is in effect, and the 1119 ** transition time was not specified as 1120 ** standard time, add the summer time 1121 ** offset to the transition time; 1122 ** otherwise, add the standard time 1123 ** offset to the transition time. 1124 */ 1125 /* 1126 ** Transitions from DST to DDST 1127 ** will effectively disappear since 1128 ** POSIX provides for only one DST 1129 ** offset. 1130 */ 1131 if (isdst && !sp->ttis[j].tt_ttisstd) { 1132 sp->ats[i] += (time_t) 1133 (dstoffset - theirdstoffset); 1134 } else { 1135 sp->ats[i] += (time_t) 1136 (stdoffset - theirstdoffset); 1137 } 1138 } 1139 theiroffset = -sp->ttis[j].tt_gmtoff; 1140 if (!sp->ttis[j].tt_isdst) 1141 theirstdoffset = theiroffset; 1142 else theirdstoffset = theiroffset; 1143 } 1144 /* 1145 ** Finally, fill in ttis. 1146 */ 1147 memset(sp->ttis, 0, sizeof(sp->ttis)); 1148 sp->ttis[0].tt_gmtoff = -stdoffset; 1149 sp->ttis[0].tt_isdst = FALSE; 1150 sp->ttis[0].tt_abbrind = 0; 1151 sp->ttis[1].tt_gmtoff = -dstoffset; 1152 sp->ttis[1].tt_isdst = TRUE; 1153 sp->ttis[1].tt_abbrind = (int)(stdlen + 1); 1154 sp->typecnt = 2; 1155 } 1156 } else { 1157 dstlen = 0; 1158 sp->typecnt = 1; /* only standard time */ 1159 sp->timecnt = 0; 1160 memset(sp->ttis, 0, sizeof(sp->ttis)); 1161 sp->ttis[0].tt_gmtoff = -stdoffset; 1162 sp->ttis[0].tt_isdst = 0; 1163 sp->ttis[0].tt_abbrind = 0; 1164 } 1165 sp->charcnt = (int)(stdlen + 1); 1166 if (dstlen != 0) 1167 sp->charcnt += (int)(dstlen + 1); 1168 if ((size_t) sp->charcnt > sizeof sp->chars) 1169 return -1; 1170 cp = sp->chars; 1171 (void) strncpy(cp, stdname, stdlen); 1172 cp += stdlen; 1173 *cp++ = '\0'; 1174 if (dstlen != 0) { 1175 (void) strncpy(cp, dstname, dstlen); 1176 *(cp + dstlen) = '\0'; 1177 } 1178 return 0; 1179 } 1180 1181 static void 1182 gmtload(timezone_t sp) 1183 { 1184 if (tzload(sp, gmt, TRUE) != 0) 1185 (void) tzparse(sp, gmt, TRUE); 1186 } 1187 1188 timezone_t 1189 tzalloc(const char *name) 1190 { 1191 timezone_t sp = calloc(1, sizeof *sp); 1192 if (sp == NULL) 1193 return NULL; 1194 if (tzload(sp, name, TRUE) != 0) { 1195 free(sp); 1196 return NULL; 1197 } 1198 settzname_z(sp); 1199 return sp; 1200 } 1201 1202 void 1203 tzfree(const timezone_t sp) 1204 { 1205 free(sp); 1206 } 1207 1208 static void 1209 tzsetwall_unlocked(void) 1210 { 1211 if (lcl_is_set < 0) 1212 return; 1213 lcl_is_set = -1; 1214 1215 if (lclptr == NULL) { 1216 int saveerrno = errno; 1217 lclptr = calloc(1, sizeof *lclptr); 1218 errno = saveerrno; 1219 if (lclptr == NULL) { 1220 settzname(); /* all we can do */ 1221 return; 1222 } 1223 } 1224 if (tzload(lclptr, NULL, TRUE) != 0) 1225 gmtload(lclptr); 1226 settzname(); 1227 } 1228 1229 #ifndef STD_INSPIRED 1230 /* 1231 ** A non-static declaration of tzsetwall in a system header file 1232 ** may cause a warning about this upcoming static declaration... 1233 */ 1234 static 1235 #endif /* !defined STD_INSPIRED */ 1236 void 1237 tzsetwall(void) 1238 { 1239 rwlock_wrlock(&lcl_lock); 1240 tzsetwall_unlocked(); 1241 rwlock_unlock(&lcl_lock); 1242 } 1243 1244 #ifndef STD_INSPIRED 1245 /* 1246 ** A non-static declaration of tzsetwall in a system header file 1247 ** may cause a warning about this upcoming static declaration... 1248 */ 1249 static 1250 #endif /* !defined STD_INSPIRED */ 1251 void 1252 tzset_unlocked(void) 1253 { 1254 const char * name; 1255 int saveerrno; 1256 1257 saveerrno = errno; 1258 name = getenv("TZ"); 1259 errno = saveerrno; 1260 if (name == NULL) { 1261 tzsetwall_unlocked(); 1262 return; 1263 } 1264 1265 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) 1266 return; 1267 lcl_is_set = strlen(name) < sizeof lcl_TZname; 1268 if (lcl_is_set) 1269 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname)); 1270 1271 if (lclptr == NULL) { 1272 saveerrno = errno; 1273 lclptr = calloc(1, sizeof *lclptr); 1274 errno = saveerrno; 1275 if (lclptr == NULL) { 1276 settzname(); /* all we can do */ 1277 return; 1278 } 1279 } 1280 if (*name == '\0') { 1281 /* 1282 ** User wants it fast rather than right. 1283 */ 1284 lclptr->leapcnt = 0; /* so, we're off a little */ 1285 lclptr->timecnt = 0; 1286 lclptr->typecnt = 0; 1287 lclptr->ttis[0].tt_isdst = 0; 1288 lclptr->ttis[0].tt_gmtoff = 0; 1289 lclptr->ttis[0].tt_abbrind = 0; 1290 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars)); 1291 } else if (tzload(lclptr, name, TRUE) != 0) 1292 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0) 1293 (void) gmtload(lclptr); 1294 settzname(); 1295 } 1296 1297 void 1298 tzset(void) 1299 { 1300 rwlock_wrlock(&lcl_lock); 1301 tzset_unlocked(); 1302 rwlock_unlock(&lcl_lock); 1303 } 1304 1305 /* 1306 ** The easy way to behave "as if no library function calls" localtime 1307 ** is to not call it--so we drop its guts into "localsub", which can be 1308 ** freely called. (And no, the PANS doesn't require the above behavior-- 1309 ** but it *is* desirable.) 1310 ** 1311 ** The unused offset argument is for the benefit of mktime variants. 1312 */ 1313 1314 /*ARGSUSED*/ 1315 static struct tm * 1316 localsub(const timezone_t sp, const time_t * const timep, const long offset, 1317 struct tm *const tmp) 1318 { 1319 const struct ttinfo * ttisp; 1320 int i; 1321 struct tm * result; 1322 const time_t t = *timep; 1323 1324 if ((sp->goback && t < sp->ats[0]) || 1325 (sp->goahead && t > sp->ats[sp->timecnt - 1])) { 1326 time_t newt = t; 1327 time_t seconds; 1328 time_t tcycles; 1329 int_fast64_t icycles; 1330 1331 if (t < sp->ats[0]) 1332 seconds = sp->ats[0] - t; 1333 else seconds = t - sp->ats[sp->timecnt - 1]; 1334 --seconds; 1335 tcycles = (time_t) 1336 (seconds / YEARSPERREPEAT / AVGSECSPERYEAR); 1337 ++tcycles; 1338 icycles = tcycles; 1339 if (tcycles - icycles >= 1 || icycles - tcycles >= 1) 1340 return NULL; 1341 seconds = (time_t) icycles; 1342 seconds *= YEARSPERREPEAT; 1343 seconds *= AVGSECSPERYEAR; 1344 if (t < sp->ats[0]) 1345 newt += seconds; 1346 else newt -= seconds; 1347 if (newt < sp->ats[0] || 1348 newt > sp->ats[sp->timecnt - 1]) 1349 return NULL; /* "cannot happen" */ 1350 result = localsub(sp, &newt, offset, tmp); 1351 if (result == tmp) { 1352 time_t newy; 1353 1354 newy = tmp->tm_year; 1355 if (t < sp->ats[0]) 1356 newy -= (time_t)icycles * YEARSPERREPEAT; 1357 else newy += (time_t)icycles * YEARSPERREPEAT; 1358 tmp->tm_year = (int)newy; 1359 if (tmp->tm_year != newy) 1360 return NULL; 1361 } 1362 return result; 1363 } 1364 if (sp->timecnt == 0 || t < sp->ats[0]) { 1365 i = 0; 1366 while (sp->ttis[i].tt_isdst) 1367 if (++i >= sp->typecnt) { 1368 i = 0; 1369 break; 1370 } 1371 } else { 1372 int lo = 1; 1373 int hi = sp->timecnt; 1374 1375 while (lo < hi) { 1376 int mid = (lo + hi) / 2; 1377 1378 if (t < sp->ats[mid]) 1379 hi = mid; 1380 else lo = mid + 1; 1381 } 1382 i = (int) sp->types[lo - 1]; 1383 } 1384 ttisp = &sp->ttis[i]; 1385 /* 1386 ** To get (wrong) behavior that's compatible with System V Release 2.0 1387 ** you'd replace the statement below with 1388 ** t += ttisp->tt_gmtoff; 1389 ** timesub(&t, 0L, sp, tmp); 1390 */ 1391 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp); 1392 tmp->tm_isdst = ttisp->tt_isdst; 1393 if (sp == lclptr) 1394 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; 1395 #ifdef TM_ZONE 1396 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; 1397 #endif /* defined TM_ZONE */ 1398 return result; 1399 } 1400 1401 /* 1402 ** Re-entrant version of localtime. 1403 */ 1404 1405 struct tm * 1406 localtime_r(const time_t * __restrict timep, struct tm *tmp) 1407 { 1408 rwlock_rdlock(&lcl_lock); 1409 tzset_unlocked(); 1410 tmp = localtime_rz(lclptr, timep, tmp); 1411 rwlock_unlock(&lcl_lock); 1412 return tmp; 1413 } 1414 1415 struct tm * 1416 localtime(const time_t *const timep) 1417 { 1418 return localtime_r(timep, &tm); 1419 } 1420 1421 struct tm * 1422 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp) 1423 { 1424 if (sp == NULL) 1425 tmp = gmtsub(NULL, timep, 0L, tmp); 1426 else 1427 tmp = localsub(sp, timep, 0L, tmp); 1428 if (tmp == NULL) 1429 errno = EOVERFLOW; 1430 return tmp; 1431 } 1432 1433 /* 1434 ** gmtsub is to gmtime as localsub is to localtime. 1435 */ 1436 1437 static struct tm * 1438 gmtsub(const timezone_t sp, const time_t * const timep, const long offset, 1439 struct tm *const tmp) 1440 { 1441 struct tm * result; 1442 #ifdef _REENTRANT 1443 static mutex_t gmt_mutex = MUTEX_INITIALIZER; 1444 #endif 1445 1446 mutex_lock(&gmt_mutex); 1447 if (!gmt_is_set) { 1448 int saveerrno; 1449 gmt_is_set = TRUE; 1450 saveerrno = errno; 1451 gmtptr = calloc(1, sizeof *gmtptr); 1452 errno = saveerrno; 1453 if (gmtptr != NULL) 1454 gmtload(gmtptr); 1455 } 1456 mutex_unlock(&gmt_mutex); 1457 result = timesub(gmtptr, timep, offset, tmp); 1458 #ifdef TM_ZONE 1459 /* 1460 ** Could get fancy here and deliver something such as 1461 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, 1462 ** but this is no time for a treasure hunt. 1463 */ 1464 if (offset != 0) 1465 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr); 1466 else { 1467 if (gmtptr == NULL) 1468 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt); 1469 else tmp->TM_ZONE = gmtptr->chars; 1470 } 1471 #endif /* defined TM_ZONE */ 1472 return result; 1473 } 1474 1475 struct tm * 1476 gmtime(const time_t *const timep) 1477 { 1478 struct tm *tmp = gmtsub(NULL, timep, 0L, &tm); 1479 1480 if (tmp == NULL) 1481 errno = EOVERFLOW; 1482 1483 return tmp; 1484 } 1485 1486 /* 1487 ** Re-entrant version of gmtime. 1488 */ 1489 1490 struct tm * 1491 gmtime_r(const time_t * const timep, struct tm *tmp) 1492 { 1493 tmp = gmtsub(NULL, timep, 0L, tmp); 1494 1495 if (tmp == NULL) 1496 errno = EOVERFLOW; 1497 1498 return tmp; 1499 } 1500 1501 #ifdef STD_INSPIRED 1502 1503 struct tm * 1504 offtime(const time_t *const timep, long offset) 1505 { 1506 struct tm *tmp = gmtsub(NULL, timep, offset, &tm); 1507 1508 if (tmp == NULL) 1509 errno = EOVERFLOW; 1510 1511 return tmp; 1512 } 1513 1514 struct tm * 1515 offtime_r(const time_t *timep, long offset, struct tm *tmp) 1516 { 1517 tmp = gmtsub(NULL, timep, offset, tmp); 1518 1519 if (tmp == NULL) 1520 errno = EOVERFLOW; 1521 1522 return tmp; 1523 } 1524 1525 #endif /* defined STD_INSPIRED */ 1526 1527 /* 1528 ** Return the number of leap years through the end of the given year 1529 ** where, to make the math easy, the answer for year zero is defined as zero. 1530 */ 1531 1532 static int 1533 leaps_thru_end_of(const int y) 1534 { 1535 return (y >= 0) ? (y / 4 - y / 100 + y / 400) : 1536 -(leaps_thru_end_of(-(y + 1)) + 1); 1537 } 1538 1539 static struct tm * 1540 timesub(const timezone_t sp, const time_t *const timep, const long offset, 1541 struct tm *const tmp) 1542 { 1543 const struct lsinfo * lp; 1544 time_t tdays; 1545 int idays; /* unsigned would be so 2003 */ 1546 long rem; 1547 int y; 1548 const int * ip; 1549 long corr; 1550 int hit; 1551 int i; 1552 1553 corr = 0; 1554 hit = 0; 1555 i = (sp == NULL) ? 0 : sp->leapcnt; 1556 while (--i >= 0) { 1557 lp = &sp->lsis[i]; 1558 if (*timep >= lp->ls_trans) { 1559 if (*timep == lp->ls_trans) { 1560 hit = ((i == 0 && lp->ls_corr > 0) || 1561 lp->ls_corr > sp->lsis[i - 1].ls_corr); 1562 if (hit) 1563 while (i > 0 && 1564 sp->lsis[i].ls_trans == 1565 sp->lsis[i - 1].ls_trans + 1 && 1566 sp->lsis[i].ls_corr == 1567 sp->lsis[i - 1].ls_corr + 1) { 1568 ++hit; 1569 --i; 1570 } 1571 } 1572 corr = lp->ls_corr; 1573 break; 1574 } 1575 } 1576 y = EPOCH_YEAR; 1577 tdays = (time_t)(*timep / SECSPERDAY); 1578 rem = (long) (*timep - tdays * SECSPERDAY); 1579 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { 1580 int newy; 1581 time_t tdelta; 1582 int idelta; 1583 int leapdays; 1584 1585 tdelta = tdays / DAYSPERLYEAR; 1586 idelta = (int) tdelta; 1587 if (tdelta - idelta >= 1 || idelta - tdelta >= 1) 1588 return NULL; 1589 if (idelta == 0) 1590 idelta = (tdays < 0) ? -1 : 1; 1591 newy = y; 1592 if (increment_overflow(&newy, idelta)) 1593 return NULL; 1594 leapdays = leaps_thru_end_of(newy - 1) - 1595 leaps_thru_end_of(y - 1); 1596 tdays -= ((time_t) newy - y) * DAYSPERNYEAR; 1597 tdays -= leapdays; 1598 y = newy; 1599 } 1600 { 1601 long seconds; 1602 1603 seconds = tdays * SECSPERDAY + 0.5; 1604 tdays = (time_t)(seconds / SECSPERDAY); 1605 rem += (long) (seconds - tdays * SECSPERDAY); 1606 } 1607 /* 1608 ** Given the range, we can now fearlessly cast... 1609 */ 1610 idays = (int) tdays; 1611 rem += offset - corr; 1612 while (rem < 0) { 1613 rem += SECSPERDAY; 1614 --idays; 1615 } 1616 while (rem >= SECSPERDAY) { 1617 rem -= SECSPERDAY; 1618 ++idays; 1619 } 1620 while (idays < 0) { 1621 if (increment_overflow(&y, -1)) 1622 return NULL; 1623 idays += year_lengths[isleap(y)]; 1624 } 1625 while (idays >= year_lengths[isleap(y)]) { 1626 idays -= year_lengths[isleap(y)]; 1627 if (increment_overflow(&y, 1)) 1628 return NULL; 1629 } 1630 tmp->tm_year = y; 1631 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) 1632 return NULL; 1633 tmp->tm_yday = idays; 1634 /* 1635 ** The "extra" mods below avoid overflow problems. 1636 */ 1637 tmp->tm_wday = EPOCH_WDAY + 1638 ((y - EPOCH_YEAR) % DAYSPERWEEK) * 1639 (DAYSPERNYEAR % DAYSPERWEEK) + 1640 leaps_thru_end_of(y - 1) - 1641 leaps_thru_end_of(EPOCH_YEAR - 1) + 1642 idays; 1643 tmp->tm_wday %= DAYSPERWEEK; 1644 if (tmp->tm_wday < 0) 1645 tmp->tm_wday += DAYSPERWEEK; 1646 tmp->tm_hour = (int) (rem / SECSPERHOUR); 1647 rem %= SECSPERHOUR; 1648 tmp->tm_min = (int) (rem / SECSPERMIN); 1649 /* 1650 ** A positive leap second requires a special 1651 ** representation. This uses "... ??:59:60" et seq. 1652 */ 1653 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; 1654 ip = mon_lengths[isleap(y)]; 1655 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) 1656 idays -= ip[tmp->tm_mon]; 1657 tmp->tm_mday = (int) (idays + 1); 1658 tmp->tm_isdst = 0; 1659 #ifdef TM_GMTOFF 1660 tmp->TM_GMTOFF = offset; 1661 #endif /* defined TM_GMTOFF */ 1662 return tmp; 1663 } 1664 1665 char * 1666 ctime(const time_t *const timep) 1667 { 1668 /* 1669 ** Section 4.12.3.2 of X3.159-1989 requires that 1670 ** The ctime function converts the calendar time pointed to by timer 1671 ** to local time in the form of a string. It is equivalent to 1672 ** asctime(localtime(timer)) 1673 */ 1674 struct tm *rtm = localtime(timep); 1675 if (rtm == NULL) 1676 return NULL; 1677 return asctime(rtm); 1678 } 1679 1680 char * 1681 ctime_r(const time_t *const timep, char *buf) 1682 { 1683 struct tm mytm, *rtm; 1684 1685 rtm = localtime_r(timep, &mytm); 1686 if (rtm == NULL) 1687 return NULL; 1688 return asctime_r(rtm, buf); 1689 } 1690 1691 char * 1692 ctime_rz(const timezone_t sp, const time_t * timep, char *buf) 1693 { 1694 struct tm mytm, *rtm; 1695 1696 rtm = localtime_rz(sp, timep, &mytm); 1697 if (rtm == NULL) 1698 return NULL; 1699 return asctime_r(rtm, buf); 1700 } 1701 1702 /* 1703 ** Adapted from code provided by Robert Elz, who writes: 1704 ** The "best" way to do mktime I think is based on an idea of Bob 1705 ** Kridle's (so its said...) from a long time ago. 1706 ** It does a binary search of the time_t space. Since time_t's are 1707 ** just 32 bits, its a max of 32 iterations (even at 64 bits it 1708 ** would still be very reasonable). 1709 */ 1710 1711 #ifndef WRONG 1712 #define WRONG ((time_t)-1) 1713 #endif /* !defined WRONG */ 1714 1715 /* 1716 ** Simplified normalize logic courtesy Paul Eggert. 1717 */ 1718 1719 static int 1720 increment_overflow(int *ip, int j) 1721 { 1722 int i = *ip; 1723 1724 /* 1725 ** If i >= 0 there can only be overflow if i + j > INT_MAX 1726 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. 1727 ** If i < 0 there can only be overflow if i + j < INT_MIN 1728 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. 1729 */ 1730 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) 1731 return TRUE; 1732 *ip += j; 1733 return FALSE; 1734 } 1735 1736 static int 1737 long_increment_overflow(long *lp, int m) 1738 { 1739 long l = *lp; 1740 1741 if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l)) 1742 return TRUE; 1743 *lp += m; 1744 return FALSE; 1745 } 1746 1747 static int 1748 normalize_overflow(int *const tensptr, int *const unitsptr, const int base) 1749 { 1750 int tensdelta; 1751 1752 tensdelta = (*unitsptr >= 0) ? 1753 (*unitsptr / base) : 1754 (-1 - (-1 - *unitsptr) / base); 1755 *unitsptr -= tensdelta * base; 1756 return increment_overflow(tensptr, tensdelta); 1757 } 1758 1759 static int 1760 long_normalize_overflow(long *const tensptr, int *const unitsptr, 1761 const int base) 1762 { 1763 int tensdelta; 1764 1765 tensdelta = (*unitsptr >= 0) ? 1766 (*unitsptr / base) : 1767 (-1 - (-1 - *unitsptr) / base); 1768 *unitsptr -= tensdelta * base; 1769 return long_increment_overflow(tensptr, tensdelta); 1770 } 1771 1772 static int 1773 tmcomp(const struct tm *const atmp, const struct tm *const btmp) 1774 { 1775 int result; 1776 1777 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && 1778 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && 1779 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && 1780 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && 1781 (result = (atmp->tm_min - btmp->tm_min)) == 0) 1782 result = atmp->tm_sec - btmp->tm_sec; 1783 return result; 1784 } 1785 1786 static time_t 1787 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 1788 const long offset, int *const okayp, const int do_norm_secs) 1789 { 1790 int dir; 1791 int i, j; 1792 int saved_seconds; 1793 long li; 1794 time_t lo; 1795 time_t hi; 1796 #ifdef NO_ERROR_IN_DST_GAP 1797 time_t ilo; 1798 #endif 1799 long y; 1800 time_t newt; 1801 time_t t; 1802 struct tm yourtm, mytm; 1803 1804 *okayp = FALSE; 1805 yourtm = *tmp; 1806 #ifdef NO_ERROR_IN_DST_GAP 1807 again: 1808 #endif 1809 if (do_norm_secs) { 1810 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, 1811 SECSPERMIN)) 1812 goto overflow; 1813 } 1814 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) 1815 goto overflow; 1816 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) 1817 goto overflow; 1818 y = yourtm.tm_year; 1819 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) 1820 goto overflow; 1821 /* 1822 ** Turn y into an actual year number for now. 1823 ** It is converted back to an offset from TM_YEAR_BASE later. 1824 */ 1825 if (long_increment_overflow(&y, TM_YEAR_BASE)) 1826 goto overflow; 1827 while (yourtm.tm_mday <= 0) { 1828 if (long_increment_overflow(&y, -1)) 1829 goto overflow; 1830 li = y + (1 < yourtm.tm_mon); 1831 yourtm.tm_mday += year_lengths[isleap(li)]; 1832 } 1833 while (yourtm.tm_mday > DAYSPERLYEAR) { 1834 li = y + (1 < yourtm.tm_mon); 1835 yourtm.tm_mday -= year_lengths[isleap(li)]; 1836 if (long_increment_overflow(&y, 1)) 1837 goto overflow; 1838 } 1839 for ( ; ; ) { 1840 i = mon_lengths[isleap(y)][yourtm.tm_mon]; 1841 if (yourtm.tm_mday <= i) 1842 break; 1843 yourtm.tm_mday -= i; 1844 if (++yourtm.tm_mon >= MONSPERYEAR) { 1845 yourtm.tm_mon = 0; 1846 if (long_increment_overflow(&y, 1)) 1847 goto overflow; 1848 } 1849 } 1850 if (long_increment_overflow(&y, -TM_YEAR_BASE)) 1851 goto overflow; 1852 yourtm.tm_year = (int)y; 1853 if (yourtm.tm_year != y) 1854 goto overflow; 1855 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) 1856 saved_seconds = 0; 1857 else if (y + TM_YEAR_BASE < EPOCH_YEAR) { 1858 /* 1859 ** We can't set tm_sec to 0, because that might push the 1860 ** time below the minimum representable time. 1861 ** Set tm_sec to 59 instead. 1862 ** This assumes that the minimum representable time is 1863 ** not in the same minute that a leap second was deleted from, 1864 ** which is a safer assumption than using 58 would be. 1865 */ 1866 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) 1867 goto overflow; 1868 saved_seconds = yourtm.tm_sec; 1869 yourtm.tm_sec = SECSPERMIN - 1; 1870 } else { 1871 saved_seconds = yourtm.tm_sec; 1872 yourtm.tm_sec = 0; 1873 } 1874 /* 1875 ** Do a binary search (this works whatever time_t's type is). 1876 */ 1877 /* LINTED constant */ 1878 if (!TYPE_SIGNED(time_t)) { 1879 lo = 0; 1880 hi = lo - 1; 1881 /* LINTED constant */ 1882 } else if (!TYPE_INTEGRAL(time_t)) { 1883 /* CONSTCOND */ 1884 if (sizeof(time_t) > sizeof(float)) 1885 /* LINTED assumed double */ 1886 hi = (time_t) DBL_MAX; 1887 /* LINTED assumed float */ 1888 else hi = (time_t) FLT_MAX; 1889 lo = -hi; 1890 } else { 1891 lo = 1; 1892 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) 1893 lo *= 2; 1894 hi = -(lo + 1); 1895 } 1896 #ifdef NO_ERROR_IN_DST_GAP 1897 ilo = lo; 1898 #endif 1899 for ( ; ; ) { 1900 t = lo / 2 + hi / 2; 1901 if (t < lo) 1902 t = lo; 1903 else if (t > hi) 1904 t = hi; 1905 if ((*funcp)(sp, &t, offset, &mytm) == NULL) { 1906 /* 1907 ** Assume that t is too extreme to be represented in 1908 ** a struct tm; arrange things so that it is less 1909 ** extreme on the next pass. 1910 */ 1911 dir = (t > 0) ? 1 : -1; 1912 } else dir = tmcomp(&mytm, &yourtm); 1913 if (dir != 0) { 1914 if (t == lo) { 1915 ++t; 1916 if (t <= lo) 1917 goto overflow; 1918 ++lo; 1919 } else if (t == hi) { 1920 --t; 1921 if (t >= hi) 1922 goto overflow; 1923 --hi; 1924 } 1925 #ifdef NO_ERROR_IN_DST_GAP 1926 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 && 1927 do_norm_secs) { 1928 for (i = sp->typecnt - 1; i >= 0; --i) { 1929 for (j = sp->typecnt - 1; j >= 0; --j) { 1930 time_t off; 1931 if (sp->ttis[j].tt_isdst == 1932 sp->ttis[i].tt_isdst) 1933 continue; 1934 off = sp->ttis[j].tt_gmtoff - 1935 sp->ttis[i].tt_gmtoff; 1936 yourtm.tm_sec += off < 0 ? 1937 -off : off; 1938 goto again; 1939 } 1940 } 1941 } 1942 #endif 1943 if (lo > hi) 1944 goto invalid; 1945 if (dir > 0) 1946 hi = t; 1947 else lo = t; 1948 continue; 1949 } 1950 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) 1951 break; 1952 /* 1953 ** Right time, wrong type. 1954 ** Hunt for right time, right type. 1955 ** It's okay to guess wrong since the guess 1956 ** gets checked. 1957 */ 1958 if (sp == NULL) 1959 goto invalid; 1960 for (i = sp->typecnt - 1; i >= 0; --i) { 1961 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) 1962 continue; 1963 for (j = sp->typecnt - 1; j >= 0; --j) { 1964 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) 1965 continue; 1966 newt = (time_t)(t + sp->ttis[j].tt_gmtoff - 1967 sp->ttis[i].tt_gmtoff); 1968 if ((*funcp)(sp, &newt, offset, &mytm) == NULL) 1969 continue; 1970 if (tmcomp(&mytm, &yourtm) != 0) 1971 continue; 1972 if (mytm.tm_isdst != yourtm.tm_isdst) 1973 continue; 1974 /* 1975 ** We have a match. 1976 */ 1977 t = newt; 1978 goto label; 1979 } 1980 } 1981 goto invalid; 1982 } 1983 label: 1984 newt = t + saved_seconds; 1985 if ((newt < t) != (saved_seconds < 0)) 1986 goto overflow; 1987 t = newt; 1988 if ((*funcp)(sp, &t, offset, tmp)) { 1989 *okayp = TRUE; 1990 return t; 1991 } 1992 overflow: 1993 errno = EOVERFLOW; 1994 return WRONG; 1995 invalid: 1996 errno = EINVAL; 1997 return WRONG; 1998 } 1999 2000 static time_t 2001 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 2002 const long offset, int *const okayp) 2003 { 2004 time_t t; 2005 2006 /* 2007 ** First try without normalization of seconds 2008 ** (in case tm_sec contains a value associated with a leap second). 2009 ** If that fails, try with normalization of seconds. 2010 */ 2011 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE); 2012 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE); 2013 } 2014 2015 static time_t 2016 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp, 2017 long offset) 2018 { 2019 time_t t; 2020 int samei, otheri; 2021 int sameind, otherind; 2022 int i; 2023 int nseen; 2024 int seen[TZ_MAX_TYPES]; 2025 int types[TZ_MAX_TYPES]; 2026 int okay; 2027 2028 if (tmp == NULL) { 2029 errno = EINVAL; 2030 return WRONG; 2031 } 2032 if (tmp->tm_isdst > 1) 2033 tmp->tm_isdst = 1; 2034 t = time2(sp, tmp, funcp, offset, &okay); 2035 #ifdef PCTS 2036 /* 2037 ** PCTS code courtesy Grant Sullivan. 2038 */ 2039 if (okay) 2040 return t; 2041 if (tmp->tm_isdst < 0) 2042 tmp->tm_isdst = 0; /* reset to std and try again */ 2043 #endif /* defined PCTS */ 2044 #ifndef PCTS 2045 if (okay || tmp->tm_isdst < 0) 2046 return t; 2047 #endif /* !defined PCTS */ 2048 /* 2049 ** We're supposed to assume that somebody took a time of one type 2050 ** and did some math on it that yielded a "struct tm" that's bad. 2051 ** We try to divine the type they started from and adjust to the 2052 ** type they need. 2053 */ 2054 if (sp == NULL) { 2055 errno = EINVAL; 2056 return WRONG; 2057 } 2058 for (i = 0; i < sp->typecnt; ++i) 2059 seen[i] = FALSE; 2060 nseen = 0; 2061 for (i = sp->timecnt - 1; i >= 0; --i) 2062 if (!seen[sp->types[i]]) { 2063 seen[sp->types[i]] = TRUE; 2064 types[nseen++] = sp->types[i]; 2065 } 2066 for (sameind = 0; sameind < nseen; ++sameind) { 2067 samei = types[sameind]; 2068 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) 2069 continue; 2070 for (otherind = 0; otherind < nseen; ++otherind) { 2071 otheri = types[otherind]; 2072 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) 2073 continue; 2074 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff - 2075 sp->ttis[samei].tt_gmtoff); 2076 tmp->tm_isdst = !tmp->tm_isdst; 2077 t = time2(sp, tmp, funcp, offset, &okay); 2078 if (okay) 2079 return t; 2080 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff - 2081 sp->ttis[samei].tt_gmtoff); 2082 tmp->tm_isdst = !tmp->tm_isdst; 2083 } 2084 } 2085 errno = EOVERFLOW; 2086 return WRONG; 2087 } 2088 2089 time_t 2090 mktime_z(const timezone_t sp, struct tm *tmp) 2091 { 2092 time_t t; 2093 if (sp == NULL) 2094 t = time1(NULL, tmp, gmtsub, 0L); 2095 else 2096 t = time1(sp, tmp, localsub, 0L); 2097 return t; 2098 } 2099 2100 time_t 2101 mktime(struct tm * const tmp) 2102 { 2103 time_t result; 2104 2105 rwlock_wrlock(&lcl_lock); 2106 tzset_unlocked(); 2107 result = mktime_z(lclptr, tmp); 2108 rwlock_unlock(&lcl_lock); 2109 return result; 2110 } 2111 2112 #ifdef STD_INSPIRED 2113 2114 time_t 2115 timelocal_z(const timezone_t sp, struct tm *tmp) 2116 { 2117 if (tmp != NULL) 2118 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2119 return mktime_z(sp, tmp); 2120 } 2121 2122 time_t 2123 timelocal(struct tm *const tmp) 2124 { 2125 if (tmp != NULL) 2126 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 2127 return mktime(tmp); 2128 } 2129 2130 time_t 2131 timegm(struct tm *const tmp) 2132 { 2133 time_t t; 2134 2135 if (tmp != NULL) 2136 tmp->tm_isdst = 0; 2137 t = time1(gmtptr, tmp, gmtsub, 0L); 2138 return t; 2139 } 2140 2141 time_t 2142 timeoff(struct tm *const tmp, const long offset) 2143 { 2144 time_t t; 2145 2146 if (tmp != NULL) 2147 tmp->tm_isdst = 0; 2148 t = time1(gmtptr, tmp, gmtsub, offset); 2149 return t; 2150 } 2151 2152 #endif /* defined STD_INSPIRED */ 2153 2154 #ifdef CMUCS 2155 2156 /* 2157 ** The following is supplied for compatibility with 2158 ** previous versions of the CMUCS runtime library. 2159 */ 2160 2161 long 2162 gtime(struct tm *const tmp) 2163 { 2164 const time_t t = mktime(tmp); 2165 2166 if (t == WRONG) 2167 return -1; 2168 return t; 2169 } 2170 2171 #endif /* defined CMUCS */ 2172 2173 /* 2174 ** XXX--is the below the right way to conditionalize?? 2175 */ 2176 2177 #ifdef STD_INSPIRED 2178 2179 /* 2180 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 2181 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which 2182 ** is not the case if we are accounting for leap seconds. 2183 ** So, we provide the following conversion routines for use 2184 ** when exchanging timestamps with POSIX conforming systems. 2185 */ 2186 2187 static long 2188 leapcorr(const timezone_t sp, time_t *timep) 2189 { 2190 struct lsinfo * lp; 2191 int i; 2192 2193 i = sp->leapcnt; 2194 while (--i >= 0) { 2195 lp = &sp->lsis[i]; 2196 if (*timep >= lp->ls_trans) 2197 return lp->ls_corr; 2198 } 2199 return 0; 2200 } 2201 2202 time_t 2203 time2posix_z(const timezone_t sp, time_t t) 2204 { 2205 return (time_t)(t - leapcorr(sp, &t)); 2206 } 2207 2208 time_t 2209 time2posix(time_t t) 2210 { 2211 time_t result; 2212 rwlock_wrlock(&lcl_lock); 2213 tzset_unlocked(); 2214 result = (time_t)(t - leapcorr(lclptr, &t)); 2215 rwlock_unlock(&lcl_lock); 2216 return (result); 2217 } 2218 2219 time_t 2220 posix2time_z(const timezone_t sp, time_t t) 2221 { 2222 time_t x; 2223 time_t y; 2224 2225 /* 2226 ** For a positive leap second hit, the result 2227 ** is not unique. For a negative leap second 2228 ** hit, the corresponding time doesn't exist, 2229 ** so we return an adjacent second. 2230 */ 2231 x = (time_t)(t + leapcorr(sp, &t)); 2232 y = (time_t)(x - leapcorr(sp, &x)); 2233 if (y < t) { 2234 do { 2235 x++; 2236 y = (time_t)(x - leapcorr(sp, &x)); 2237 } while (y < t); 2238 if (t != y) { 2239 return x - 1; 2240 } 2241 } else if (y > t) { 2242 do { 2243 --x; 2244 y = (time_t)(x - leapcorr(sp, &x)); 2245 } while (y > t); 2246 if (t != y) { 2247 return x + 1; 2248 } 2249 } 2250 return x; 2251 } 2252 2253 2254 2255 time_t 2256 posix2time(time_t t) 2257 { 2258 time_t result; 2259 2260 rwlock_wrlock(&lcl_lock); 2261 tzset_unlocked(); 2262 result = posix2time_z(lclptr, t); 2263 rwlock_unlock(&lcl_lock); 2264 return result; 2265 } 2266 2267 #endif /* defined STD_INSPIRED */ 2268